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Item Response Theory to Quantify Longitudinal Placebo
and Paliperidone Effects on PANSS Scores in
Schizophrenia

EHJ Krekels1*, AM Novakovic1, AM Vermeulen2, LE Friberg1 and MO Karlsson1

As biomarkers are lacking, multi-item questionnaire-based tools like the Positive and Negative Syndrome Scale (PANSS) are
used to quantify disease severity in schizophrenia. Analyzing composite PANSS scores as continuous data discards
information and violates the numerical nature of the scale. Here a longitudinal analysis based on Item Response Theory is
presented using PANSS data from phase III clinical trials. Latent disease severity variables were derived from item-level data
on the positive, negative, and general PANSS subscales each. On all subscales, the time course of placebo responses were
best described with Weibull models, and dose-independent functions with exponential models to describe the onset of the full
effect were used to describe paliperidone’s effect. Placebo and drug effect were most pronounced on the positive subscale.
The final model successfully describes the time course of treatment effects on the individual PANSS item-levels, on all
PANSS subscale levels, and on the total score level.
CPT Pharmacometrics Syst. Pharmacol. (2017) 6, 543–551; doi:10.1002/psp4.12207; published online 13 July 2017.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� Composite (sub)scores of the Positive and Negative

Syndrome Scale (PANSS), used to quantify disease

severity in schizophrenia, are generally analyzed as

continuous data, which discards information and is not

true to the nature of the data.
WHAT QUESTION DID THE STUDY ADDRESS?
� Can Item Response Theory (IRT) be used to

describe longitudinal PANSS data upon placebo and

drug treatment on item-level, subscale level, and total

score level with a single model?

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� IRT can be successfully applied to the analysis of
PANSS data. This technique is versatile enough to not
only allow description of item-level data and total score
data, but also of various subscales consisting of sub-
sets of items.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� The improved statistical power that likely results
from a longitudinal IRT analysis may improve success
rates in clinical trials in schizophrenia, bringing effective
treatment faster and more reliably to patients.

Schizophrenia is a brain disorder that is characterized by dis-

tortions in thinking, perception, emotions, language, sense of

self, and behavior.1 Twenty-one million people are affected

by schizophrenia worldwide1 and due to its early onset and

chronic nature, costs for society are high. The disease mech-

anism is not fully understood and physiological biomarkers to

diagnose or quantify the disease severity are lacking; diagno-

sis and quantifications are therefore based on assessments

by psychiatrists using questionnaire-based tools.
The Positive and Negative Syndrome Scale (PANSS) is

one of many clinical assessment scales used for longitudi-
nal disease severity measurements in schizophrenia trials.2

PANSS is a composite psychological and functional scale
of 30 items each ranked by a psychiatrist from 1 (absence
of symptoms) to 7 (extreme symptoms). The scale is divided
into three subscales. The positive subscale consists of 7
items and assesses aspects related to excess or distortion of
normal function (e.g., hallucinations). The negative subscale
also consists of 7 items and assesses reduction or loss of

normal function (e.g., emotional withdrawal). Finally, the gen-
eral subscale consists of 16 items assessing psychopathology
(e.g., anxiety).2

As PANSS scores range from 30 to 210, they are gener-
ally analyzed as continuous data, but this does not respect
the numerical nature and underlying distribution of these
data. Moreover, information may get lost in merging item-
level scores into composite scores, decreasing the power
of the data analysis, contributing to the high failure rates for
clinical trials in schizophrenia, and preventing potentially
efficacious drugs to reach the market. Recently, it was
shown that the application of Item Response Theory (IRT)
in the analysis of ADAS-cog scores in studies on Alz-
heimer’s disease increases the precision of the cognitive
dysfunction measure,3 leading to increased sensitivity to
temporal changes.4,5 Contrary to analyzing single compos-
ite scores, IRT analyses are based on the unobserved
(latent) variable that a questionnaire aims to quantify (e.g.,
disease severity). The latent variable value at each
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timepoint is derived from simultaneously evaluating all item-
level data of multi-item scales.

The current project consisted of a pharmacometric analy-
sis based on IRT and was performed on longitudinal
PANSS data from phase III trials in schizophrenia, quantify-
ing the time course and magnitude of the placebo response
as well as of the response to paliperidone (also known as
9-hydroxyrisperidone) treatment. Compliant with the nature
of the PANSS scale, separate latent variables were esti-
mated for each of the three subscales, after which correla-
tions were included to connect the individual subscales.

METHODS
Data
A total of 102,481 records of item-level PANSS scores were
available from three randomized, double-blind, phase III
studies (SCH-303,6 SCH-304,7 and SCH-3058), including
1,650 diagnosed schizophrenic patients experiencing an
acute episode. Details on patients included in this analysis
are provided in Table 1. Patients were randomized double-
blind to treatment arms and the protocol did not allow for
dose adjustments. The duration of all studies was 6 weeks
with scheduled visits on days 0, 4, 8, 15, 22, 29, 36, and
42. Per protocol, individuals were hospitalized for the first 2
weeks, after which they could be discharged at the discre-
tion of the investigator. Combined dropout at the end of
these three studies was 41.5%.

Protocols were approved by independent Ethics Commit-
tees and informed consent was obtained from patients
before inclusion.

Nonlinear mixed effects model
The nonlinear mixed effects analysis was performed using
NONMEM 7.3 (ICON, Ellicot City, MD) facilitated by Pirana,
Perl-speaks-NONMEM (PsN), and Xpose.9

Item characteristics curves
The IRT model describes the probability (P) for each score
of each item as a function of the disease severity of a
patient, with the latter being an unobserved latent variable.
For each item, these probabilities were derived from an
ordered categorical model, using item characteristics
curves (ICCs) based on difficulty parameters specific for
each of the scores (BGE#, see also Supplemental Model
Codes) and a joint discrimination parameter (SLP).

PðY � #Þ5 1

11e2SLP DS2BGE#ð Þ (1)

To establish the ICCs, all observations were used as inde-
pendent observations under the model (i.e., after taking
into account the latent variable for disease severity). ICC
parameters were estimated as fixed effects, and disease
severities as random effects. The disease severity distribu-
tion at baseline was fixed to a standard normal distribution,
thereby defining the scale for the disease distribution. The
disease severity distribution for later observations was
assumed to be normally distributed with an estimated mean
and variance. For items without an observation of a score
of 7 at baseline, probabilities for scores of 1, 2, 3, 4, 5, and

�6 were estimated. Data for each subscale were analyzed
separately for establishment of the ICC parameters.

Potential deviation from the normality assumption of the
latent variable was investigated by testing a semiparametric
Box-Cox distribution (gBox-Cox):

gBox2Cox 5
ððegnormal ÞSHP

21Þ
SHP

(2)

in which gnormal represents a random variable from a stan-
dard normal distribution, and the shape parameter (SHP) is
estimated.10

The model in Eq. 1 assumes the probability of a score of
1 (absence of symptoms) for each item to asymptote to 1
as the disease severity approaches –1 (i.e., completely
“healthy”). This assumption was investigated by testing the
estimation of a value lower than 1 for this asymptote. Simi-
larly, at infinitely high disease severities, the model
assumes the probability of the highest score to asymptote
to 1. As observed frequencies of the highest scores were
low for all items (�0.09%), the appropriateness of this
assumption was not investigated further.

Establishment of the ICCs defined the scale for the dis-
ease states. The obtained parameters for the ICCs were
therefore fixed for the subsequent modeling of correlations
and changes in disease states over time, including:

1. Estimation of correlations between the disease severities on the
three subscales at baseline;

2. Estimation of the time course of placebo response on the disease
severities on all subscales, and subsequent estimation of the corre-
lations between disease severities at baseline and placebo
response within each subscale, and correlations between placebo
responses on the different subscales;

3. Estimation of the time course of paliperidone response on the dis-
ease severities, and subsequent estimation of the correlations
between disease severity at baseline and drug response within
each subscale, and correlations between drug responses on the dif-
ferent subscales.

Table 1 Characteristics of patients included in the current analysis

Patient characteristic n (%) Median (range)

Treatment Placebo 344 (21)

Oral paliperidone 3 mg QD 124 (7.5)

Oral paliperidone 6 mg QD 230 (14)

Oral paliperidone 9 mg QD 242 (15)

Oral paliperidone 12 mg QD 241 (15)

Oral paliperidone 15 mg QD 111 (6.7)

Oral olanzapine 10 mg QD 358 (21)

Sex M 1043 (63)

F 607 (37)

Age (yr) 38 (18–76)

Disease duration (yrs) 9.0 (0–49)

PANSS score at baseline 93 (65–147)

Patients included in the US 579 (35)

Patients discharged during study 1015 (62)

Patients dropped out during study 685 (42)
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For the longitudinal analyses in Steps 2 and 3, changes

in disease severities were modeled over time. Per defini-

tion, disease severity on each subscale is expressed rela-

tive to the disease severity distribution on that subscale at

baseline. At any time, a disease severity of 21 indicates,

for instance, the disease severity of an individual is one

standard deviation “healthier” than the typical individual in

the current dataset at baseline.

Baseline model
Baseline data from individuals allocated to all treatment

arms were used to estimate individual disease severities for

each subscale at baseline and the correlations between

disease severities on these subscales. As the variances

were fixed to 1 and the $OMEGA BLOCK functionality in

NONMEM does not allow fixing variances while estimating

covariances, the correlations were estimated using Cho-

lesky decomposition. As can be seen in the Supplementary

Model Code, the magnitude of variances and correlations are

estimated as fixed effects and can therefore be estimated or

fixed as desired. Due to long run times and model instability,

parameter estimates from this step were fixed in subsequent

steps.

Placebo model
The following models were tested to describe temporal

changes in the disease severity of the patients on placebo

treatment: linear model, bilinear model, power model, expo-

nential model, and Weibull model. Inclusion of interindivid-

ual variability (IIV) was tested for model parameters.
Placebo models were first developed for each of the sub-

scales separately, after which the three submodels were

combined. Correlations were estimated between the dis-

ease severity at baseline and IIV parameters of the placebo

model within each subscale, and between IIV parameters

of the placebo model of the three subscales. To improve

run times and model stability, only statistically significant

correlations that were higher than 0.1 or lower than 20.1,

were retained. Estimated parameters were fixed in subse-

quent steps.

Drug response model
Individual pharmacokinetic data were not available and

therefore dose–response relationships were investigated for

paliperidone. The following drug response models were

tested: step-function (i.e., no dose-dependencies), linear

model, log-linear model, exponential model, and Emax

model with and without Hill factor. A linear and an exponen-

tial function were tested to describe the time delay to reach

the full drug response. The time course of disease severity

in individual patients on active treatment was described as

the sum of the baseline disease severity, the placebo

response, and the drug response. Inclusion of IIV was

tested for different model parameters.
After optimizing the drug response models for each of

the subscales, the three submodels were combined.

Regarding the drug response, correlations were estimated

between the disease severity at baseline and the drug

response within subscales as well as between the IIV

parameters describing the magnitude of the drug response

between the three subscales. Again, only significant corre-

lations higher than 0.1 or lower than 20.1 were retained.

Dropout model
To describe dropout patterns, a previously developed model

by Friberg et al.11 was fitted to the current dataset. The

published logistic regression model included the following

covariates: time after start of treatment in a second-order

polynomial function with estimated peak, last PANSS score,

difference between the last and second-to-last PANSS

score, difference between last PANSS and baseline PANSS

score, location of study within or outside the US, and first

week as an outpatient. Contrary to the previous published

analysis, time of hospital discharge was unknown in the

current study; it was, however, reported whether patients

were hospitalized throughout the study or not. As per proto-

col, patients were hospitalized for the first 2 weeks of the

studies; all patients who were not hospitalized throughout

the entire study were assumed to become outpatients on

day 15 of the study and, contrary to the previous analysis,

the outpatient effect was described to last till the end of the

study. Additionally, paliperidone dose was tested as a

covariate in this model.

Model evaluation
Throughout the analysis, model selection was based on the

objective function values (OFV) of the fits. A difference in

OFV corresponding to a significance level of 0.05 was con-

sidered statistically significant, assuming a v2-distribution.
Model predictions using the obtained ICCs and correla-

tions at baseline were assessed by plotting the frequency

distribution of each score of each item at baseline in the

observed dataset and in 100 simulated datasets in a bar

plot. The predictions of the total PANSS score obtained by

summation of all 30 item scores from the baseline mea-

surement within an individual were evaluated in a plot

depicting the observed percentage of each total score to

the median and 95% prediction interval of these percen-

tages in the same 100 model simulations.
For the longitudinal data, predictions of total PANSS

scores over time were evaluated in VPC plots stratified by

treatment arm using PsN and Xpose.9 Due to long run-

times and limitations in data processing capacities in R, the

VPCs were based on 20 simulated datasets taking dropout

patterns into account. Predictions of scores on the three

subscales, as well as individual item scores were also eval-

uated in VPCs of these simulated datasets.

RESULTS
Item characteristics curves
Histograms of the individual post-hoc disease severities at

baseline did not suggest major skewness for any of the

subscores and when Box-Cox distributions were fitted, the

estimated shape parameters suggested the distributions to

approach normality. The normal distributions of disease

severities at baseline were therefore retained. For all items,

the probability for a score of 1 was estimated to approach 1

when the disease severity was approaching –1. The model

in Eq. 1 was therefore retained for all items.
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The model code for the estimation of the ICCs is pro-

vided as supplementary material and obtained parameter

estimates are provided in Supplemental Table 1.
Figure 1 shows examples of the obtained ICCs for two

items, an overview of the ICCs for all items is provided in

Supplemental Figure 1. On all three subscales, the mean

of the distribution of disease severity after baseline was

negative, suggesting a trend of improvement in disease

severity upon treatment on all subscales. The variance in

disease severities at these timepoints increased to values

greater than baseline values.

Baseline model
The correlation between the positive and general subscales

at baseline was 0.525, and between the negative and gen-

eral subscale this correlation was 0.384, suggesting that a

relatively high disease severity on the general scale is

associated with higher disease severities on the positive

and negative subscale. The estimated correlation between

the positive and negative subscales at baseline was low

(–0.108), indicating that these subscales measure different

aspects of the disease.
The bar plot depicted in Supplemental Figure 2 shows

close agreement in the percentages of observed scores for

each item at baseline and the predicted percentage of

these scores in 100 simulations using the baseline model,

confirming that individual item scores can be accurately

predicted. Figure 2 shows that the frequency distribution of

the total PANSS score at baseline is also predicted accu-

rately with this model.

Placebo model
On all three subscales, the temporal changes in disease

severities in patients on placebo treatment were best

described by a Weibull model:

DSij 5DSi ;base2Amax � ð12e
2

lnð2Þ
HL�tj ÞPOW (3)

in which DSij is the disease severity of individual i at time j,

DSi,base is the disease severity at baseline for individual i,

Amax is the disease severity asymptote or maximum pla-

cebo response, HL is the half-life to obtain the maximum

response, and POW is the Weibull exponent.
The placebo response was largest on the positive sub-

scale, with Amax being 20.413, indicating the typical dis-

ease severity to improve to 0.413 standard deviations

“healthier” than the typical individual in the current dataset

at baseline. For the negative and general subscales, Amax

was 20.173 and 20.144, respectively. The time course of

the placebo response was similar on all subscales with

half-lives around 10 days. Figure 3 illustrates the temporal

changes in disease state for a typical individual on placebo

treatment for each of the three subscales.
IIV was included on the disease severity asymptotes in a

normal distribution and on half-life parameters in a log-

normal distribution. On the positive subscale the correlation

between DSij and the HL was 0.106, indicating that a

higher disease severity at baseline will slightly increase the

time to reach the maximum placebo response. The correla-

tion between Amax on the positive and general subscale

was approaching unity and was therefore fixed to 1. The

correlation between Amax on the positive/general subscale

and the negative subscales was also high, with a value of

0.895. The correlations between the HL on the different

subscales ranged between 0.563 and 0.882.
In Figure 4, the VPCs of the total PANSS score and

PANSS subscores over time in the placebo-treated patients

are depicted. Supplemental Figure 3 shows the VPC of

Figure 1 Examples of item characteristics curves for item 1
(delusions) and item 24 (disorientation). Indicated as a function
of the disease state are the probabilities of obtaining a score of
1 (green), a score of 2 (yellow), a score of 3 (orange), a score of
4 (red), a score of 5 (purple), a score of 6 (blue), and a score of
7 (gray). The dotted black line indicates the average score for a
particular item as a function of the disease state. The slope
parameter (SLP) for item 1 is higher compared to item 24, result-
ing in improved discrimination of the disease state with the score
of item 1. Moreover, the score of item 24 increases at higher dis-
ease state values compared to item 1, indicating that high scores
of this item only occur in very sick patients.

Figure 2 Percentage of times a total PANSS score is observed
in the dataset at baseline (symbols), and median value (line),
and 95% prediction interval (shaded area) of percentages of
times these scores were obtained in 100 simulated datasets
using the baseline model.
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each individual item in the placebo model. These VPCs

illustrate how the temporal changes in disease states trans-

late into changes on the PANSS (sub)scores in this popula-

tion. It can be seen that the placebo model can accurately

describe the observed scores over time on all these levels.

Drug response model
Paliperidone drug response was modeled as additive to the

placebo response on the latent variable scale. In the range

from 3 to 15 mg once daily, dose-dependencies could not

be observed in the clinical response on any of the three

subscales, and therefore the same effects for all doses

were used to describe the drug response on the PANSS

subscales.
With a value of 21.30, the drug response was highest on

the positive subscale, indicating that upon paliperidone

treatment, the disease severity in the typical individual

improves with an additional 1.30 points on the scale of

standard deviation in disease severities at baseline com-

pared to the placebo response (–0.413). Typical values for

the drug responses on the negative and general scale were

20.572 and 21.03, respectively. Correlations between dis-

ease severity at baseline and the drug response within the

same subscale were 20.468 on the positive subscale and

20.495 on the negative subscale; for the general scale this

correlation was not statistically significant. Correlations

between the drug responses on the different subscales

could only be identified between the positive and general

subscale, with the value being 20.721.
The delay in onset of the full drug response was best

described by an exponential function on all subscales. IIV

parameters were not included in this function, as they could

not be estimated independently from the IIV in the time

course of the placebo response. The half-life of reaching

full drug response was around 9 days on all subscales. Fig-

ure 3 illustrates the temporal changes in disease state for

a typical individual on paliperidone treatment for each of

the three subscales.
Figure 4 shows the VPCs for this model of the total

PANSS score and of the PANSS subscores over time in

patients on different doses of paliperidone. Supplemental

Figure 4 shows the VPC of all individual PANSS items for

all patients on paliperidone treatment combined. The

scores of the individual items can be predicted reasonably

well, although a number of items show an overprediction of

the score 1 and underprediction of the score 3, but this

does not negatively affect the model’s ability to predict the

time course of the composite PANSS scores.

Dropout model
Combined dropout in the dataset was 41.5%. A previously

developed dropout model11 was fitted to the current data-

set. The parameters were estimated with a relative stan-

dard error below 30% and they were within 25% of the

previously published estimates, with the exception of the

parameter related to the difference between the last two

observed PANSS scores, which was more than twice as

high. Moreover, in the current dataset an increased dropout

was observed in patients on 15 mg q.d. paliperidone.
An overview of all model parameters in the longitudinal

and dropout models is provided in Table 2. Estimation and

simulation codes for the final are provided as a supplemen-

tary file.

DISCUSSION

We developed the first IRT-based longitudinal model,

describing placebo effects and paliperidone’s effects on a

PANSS item-level, subscale level, and total score level in

phase III schizophrenia trials.
Good psychometric properties of the PANSS have

already been confirmed using an IRT approach12 and the

ICCs of that study correspond well with our ICCs, pre-

sented in the supplementary file. Both our analysis and the

previous analysis show the positive and negative items to

be most discriminative of disease severity, suggesting that

these subscales are more sensitive to change than the

general subscale.
Our application of IRT on longitudinal PANSS data has

multiple benefits, of which an increase in statistical power

may be the most important, as many late-phase clinical tri-

als in schizophrenia fail to show statistically significant drug

effects. Model-based approaches in analyzing multiple

repeated measurements are known to generally increase

the statistical power of detecting drug effects in clinical tri-

als,13–15 and, similar to Alzheimer’s disease,3–5 IRT may

further increase the statistical power of observing drug

effects in schizophrenia, by using all item-level information

to derive a latent variable, instead of only analyzing a com-

posite score. Moreover, IRT allows for pooling of data from

multiple studies, even when different clinical scales to quan-

tify disease severity are used.

Figure 3 Longitudinal changes in disease state for typical indi-
viduals on placebo treatment (dotted lines) and paliperidone
treatment (solid lines) for the positive (blue), negative (green),
and general (red) subscale, according to our model.
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Analyzing PANSS item-level data does come at a cost.
Compared to analyzing total PANSS scores, the size of a
dataset increases about 30-fold, requiring increased com-
putational and data storage capacities besides increasing
computational run times. As a result, the VPCs in the cur-
rent analysis are only based on a limited number of 20
simulations. The fluctuations in the width of the shaded
confidence intervals from one bin to another would likely be
smoother with more simulations, but we believe that they
are stable enough to provide an evaluation of the model
agreement with the data. Although the VPCs generally
show an adequate description of the observed PANSS
data, some deviations between observed data and 95%
prediction intervals can be observed that potentially indicate
misspecification.

Currently, another restrictive factor for IRT analyses is the
limited availability of diagnostics for the longitudinal data.
Simulation-based diagnostics by means of VPCs are

currently the most suitable option; however, due to the
large dropout and total PANSS score being a covariate for
dropout, model development for all subscales was primarily
guided by NONMEM’s objective function value and only
after finalizing all three submodels could VPCs be con-
structed for evaluation. As a result, it cannot be excluded
that misspecification in one part of the model is nullified by
misspecification in another part, to yield acceptable VPCs
on the subscales and total score. Slight overprediction of a
score of 1 and underprediction of a score of 3, seen in
some individual items, may for instance have yielded the
observed unbiased predictions on the composite scales.

The possibility to model PANSS scores on different levels
allowed us to investigate parameter correlations within as
well as between the PANSS subscales. Despite that differ-
ent classifications of the PANSS items have been pro-
posed, consensus on any of these is not strong16 and we
therefore adhered to traditional classifications in positive,

Figure 4 Visual predictive check in all treatment arms of the total PANSS score and the PANSS score on the three subscales. The
lines represent 2.5th, 50th, and 97.5th percentiles of the observed data, the shaded areas represent the 95% confidence intervals of
these percentiles based on 20 simulated datasets. From left to right, the columns show the results for the following daily paliperidone
doses: 0 mg (placebo), 3 mg, 6 mg, 9 mg, 12 mg, and 15 mg.
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negative, and general subscales. In future analyses, IRT
methodologies would be suited to aid in the optimization of
PANSS subclassifications. The increase in the number of
estimated parameters upon inclusion of the correlations
negatively influenced the ability to obtain standard errors
from NONMEM, decreased model stability, and increased
the number of local minima in the search space. As a
result, model parameters had to be fixed during model
development and a condition number or relative standard
errors cannot be reported for the final model. This also pre-
vented us from pursuing a covariate analysis. To avoid local

minima, many intermediate models were fitted multiple
times with different initial estimates.

In addition to schizophrenia and Alzheimer’s disease, IRT
is likely to be useful in a wide range of diseases for which
no biomarker is easily available to directly establish disease
severity, and for which multi-item scales are used to indi-
rectly score disease severity, which is the case for most
neurodegenerative and psychological drugs. Undoubtedly,
with the promise the application of IRT concepts holds for
pharmacometric analyses of longitudinal clinical data, future
research efforts will yield methodologies to handle some of

Table 2 Parameter estimates of the final base model, placebo model, and drug effect model as provided in the Supplementary simulation model code

THETA in NM

simulation code Parameter description (unit)

Estimated

value

Estimate of

variance of IIV

on parameter

(THETA number)

Baseline model

9 Correlation between disease severity at baseline on positive and negative scale (–) 20.108 —

10 Correlation between disease severity at baseline on positive and general scale (–) 0.525 —

19 Correlation between disease severity at baseline on negative and general scale (–) 0.384 —

Placebo model

65 Weibull asymptote positive scale (–) 20.413 4.22 (TH(1))

68 Weibull asymptote negative scale (–) 20.173 2.21 (TH(2))

71 Weibull asymptote general scale (–) 20.144 5.78 (TH(1)*TH(64))

66 Half-life positive scale (days) 8.47 0.328 (TH(3))

69 Half-life negative scale (days) 11.3 0.498 (TH(4))

72 Half-life general scale (days) 10.2 0.325 (TH(5))

67 Weibull exponent positive scale (–) 2.86 —

70 Weibull exponent negative scale (–) 2.46 —

73 Weibull exponent positive scale (–) 1.96 —

21 Correlation disease severity at baseline and Weibull asymptote negative scale (–) 20.182 —

13 Correlation disease severity at baseline and half-life positive scale (–) 0.106 —

- Correlation Weibull asymptote on positive and general scale (–) 1 FIX —

36 Correlation Weibull asymptote on positive/general scale and negative scale (–) 0.895 —

49 Correlation half-life on positive and negative scale (–) 0.563 —

50 Correlation half-life on positive and general scale (–) 0.882 —

54 Correlation half-life on negative and general scale (–) 0.673 —

Drug effect model

74 Drug effect positive scale (–) 21.30 0.193 (TH(6))

75 Drug effect negative scale (–) 20.572 0.0214 (TH(7))

76 Drug effect general scale (–) 21.03 0.00719 (TH(8))

Derived from 77 Half-life to reach full drug effect positive scale (days) 8.21 —

Derived from 78 Half-life to reach full drug effect negative scale (days) 13.1 —

Derived from 79 Half-life to reach full drug effect general scale (days) 5.98 —

16 Correlation disease severity at baseline and drug effect positive scale (–) 20.468 —

26 Correlation disease severity at baseline and drug effect negative scale (–) 20.495 —

62 Correlation drug effect on positive and general scale (–) 20.721 —

Dropout model

80 Intercept 25.29 —

81 Time slope parameter (day21) 20.0027 —

82 Time peak (day) 29.6 —

83 Parameter related to previous observed PANSS score 0.0175 —

84 Parameter related to difference between the last two observed PANSS scores 0.0454 —

85 Parameter related to difference between the previous observed PANSS score and baseline score 0.0285 —

86 Parameter included for patients of studies in US 0.768 —

87 Parameter included in first after two weeks, when patients were discharged during the study 20.374 —

88 Parameter included for patients receiving 15 mg paliperidon 20.397 —
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the complicating factors encountered in the current analy-

sis. The newly developed Sampling Importance Resampling

(SIR) method could, for instance, prove beneficial in obtain-

ing confidence intervals for parameter estimates.17 Despite

the concerns outlined above, the IRT approach did allow us

to accurately describe longitudinal phase III PANSS data on

all levels with a single model. Our confidence in the

obtained model is strengthened by the similarities between

our results and previously reported results based on more

traditional analyses.
Like previous reports, our analysis shows highly variable

responses upon both placebo and paliperidone treatment,

but with a clear improvement of the disease state in typical

patients and with the response in drug treatment groups

being higher than the response in placebo-treated groups.

The Weibull model has been reported before to describe

the placebo response on the total PANSS score18 and on

the three PANSS subscales19 in schizophrenia studies well,

albeit with slightly higher half-life parameters, and the time

course for the onset of the paliperidone response also cor-

relates well with previous reports.19,20 Moreover, traditional

data analysis techniques could also not identify dose-

dependencies in the response to paliperidone treatment in

the range from 3 to 15 mg once daily.21

Analogously to a previous study analyzing the composite

PANSS subscores, our analysis shows the highest response

to both placebo and paliperidone treatment for the positive

subscale.19,22 For the placebo treatment, the differences

between the response on the negative and general subscale

were small but lowest for the general subscale, while this dif-

ference was larger in the patients on active treatment with

the lowest response on the negative subscale. This is also in

line with previous reports.19 As far as we know, correlations

between IIV parameters as defined in the current analysis

have not been investigated previously. In our analysis, the

correlations between the disease states on the three sub-

scales at baseline was moderate to low, while the correlation

between effect magnitude and time course of the effects are

positive and moderate to high for the placebo effect and the

only correlation that could be identified on the magnitude of

drug effect was relatively high but negative. Although antipsy-

chotic drug effects are generally believed to favor positive

rather than negative symptoms,19 it cannot be concluded

whether such observations reflect an absence of correlation

between the effects on these scales or only a reduced magni-

tude of the effect on the negative scale, making a comparison

with our findings difficult.
In conclusion, IRT has been successfully applied to yield a

single model that can predict the time course of PANSS

scores at different levels upon placebo and paliperidone

treatment. The increase in statistical power in this disease

area has yet to be proven, but is likely given results in other

disease areas.3–5 This increased statistical power may

improve the characterization of treatment-related longitudinal

changes in schizophrenia disease states, yielding increased

sensitivity to detect drug effects in phase III clinical trials.
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