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Abstract

Background—The incidence of childhood cancers has been increasing, and environmental 

exposure to air toxics has been suggested as a possible risk factor. This study aims to explore 

ambient exposure to dichloromethane (methylene chloride).

Methods—We frequency matched by birth year approximately 20 cancer-free controls identified 

from birth records to all childhood cancers ages 0–5 in the California Cancer Registry diagnosed 

from 1988–2012; i.e. 13,636 cases and a total of 270,673 controls. Information on industrial 

releases of dichloromethane within 3km of birth addresses was retrieved from mandatory industry 

reports to the EPA’s Toxics Release Inventory (TRI). We derived exposure to dichloromethane 

within close vicinity of birth residences using several modeling techniques including unconditional 

logistic regression models with multiple buffer distances, inverse distance weighting, and 

quadratic decay models.

Results—We observed elevated risks for germ cell tumors [Odds Ratio (OR): 1.52, 95% 

Confidence Interval (CI) 1.11, 2.08], particularly teratomas (OR: 2.08, 95% CI 1.38–3.13), and 

possible increased risk for acute myeloid leukemias (AML) (OR: 1.29, 95% CI 0.93, 1.77). Risk 

estimates were similar in magnitude whether releases occurred in pregnancy or the child’s first 

year of life.
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Conclusion—Our findings suggest that exposure to industrial dichloromethane releases may be 

a risk factor for childhood germ cell tumors, teratomas, and possibly AML.
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Introduction

Childhood cancers are the leading cause of death from disease among children less than 14 

years of age in the United States (Ries, 1999). Incidence rates have been increasing and 

incidence in 2010 was 41% higher than it was in 1975 (Howlader, 2013). Still, not much is 

known about the causes of childhood cancers. Evidence is slowly growing for several 

possible causal associations. Ionizing radiation and prior chemotherapy have been shown to 

cause childhood cancers (Spector et al., 2015). In addition, males have a slightly higher risk 

of developing most childhood cancers. Older parental age and race/ethnicity also play a role 

in the development of malignancies in infancy with highest rates observed among whites 

(Spector et al., 2015).

Pregnancy and early life exposures are important in the study of childhood cancer etiology 

due to possible damage and toxicity during the sensitive period of organism development. 

Some studies of parental occupational exposures and childhood cancers found increased risk 

among children born to parents exposed to solvents, diesel exhaust, air pollution and paint 

during pregnancy (Ghosh et al., 2013; Greenop et al., 2014; Peters et al., 2013). There is also 

possible support for a role of environmental exposures including ambient air pollution and 

pesticides (Heck et al., 2013c; Ward et al., 2009; Zahm and Ward, 1998).

Dichloromethane (also called methylene chloride) is a solvent used in paint removers, 

adhesives, aerosols, pharmaceuticals, chemical processes, and metal cleaning. This 

chlorinated hydrocarbon has also been used in many household products including adhesive 

removers, paint thinners, and as a propellant in aerosols such as insect sprays and 

automotive products (NTP, 2011). Potential routes of human exposure to dichloromethane 

include inhalation, dermal contact, and ingestion (NTP, 1986). Dichloromethane is highly 

volatile and because its vapors are heavier than air it tends to stay close to the ground 

becoming an inhalation hazard. Worldwide, background levels in ambient air are reported at 

~ 0.17 ug/m3 while urban areas and hazardous waste sites may reach up to 43ug/m3 (IARC, 

1999). According to the Occupational Safety & Health Administration, the permissible 

exposure limit (PEL) is set at 86.8 mg/m3 with an action level at 43.4 mg/m3 calculated over 

as an eight-hour time-weighted average. If the PEL is exceeded, respiratory protection is 

mandatory while exceeding the action level signals that compliance activities such as 

monitoring and surveillance must be initiated (USDL, 2003). Dichloromethane has a half-

life of 53–127 days in air and is broken down through photochemical reactions that generate 

hydroxyl radicals. Once inhaled, the body metabolizes dichloromethane fairly rapidly and 

releases its metabolites through exhalation and urine within 48 hours. However, physical 

activity or high body fat can lead to accumulation in body tissue, mainly in fat since physical 

activity increases the amount inhaled and fat stores dichloromethane. Dichloromethane 
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accumulated in fat is slowly released back into the bloodstream over a longer period of time 

compared to those with lower body fat. In a previous study, dichloromethane was found in 

100% of the breast milk of eight lactating women living near an industrial facility; 

furthermore, a simulation study suggested that lactational transfer may occur in 

occupationally exposed mothers (Fisher et al., 1997; Pellizzari et al., 1982). In adults, 

dichloromethane can affect the respiratory, gastrointestinal, hepatic, and neurological 

systems, but research on possible health effects in children is scarce (ATSDR, 2000).

The International Agency for Research on Cancer (IARC) recently classified 

dichloromethane as a probable human carcinogen (Group 2A) based upon studies in mice 

which found increased incidence of hepatocellular and lung tumors. In humans, the most 

compelling evidence supports an association with cancers of the liver and biliary tract. 

(IARC, 1999, 2016). A recent review summarizing results from cohort and case-control 

studies reported increased risks of lung cancer and non-Hodgkin lymphoma as well as 

possible associations with brain, breast, and liver cancers (Cooper et al., 2011). Most of the 

studies included in this review examined adult cancers in occupationally exposed workers, 

who are exposed at much higher levels than measured in ambient air (3 – 4000+mg/m3). 

Exposure levels in industrial settings in the US measurements ranged from 247 mg/m3 to 

1736 mg/m3 in a study of factories located in Massachusetts (IARC, 1999; Roelofs and 

Ellenbecker, 2003). Two studies assessed childhood leukemia, one examining maternal 

occupational dichloromethane exposures in the 2 years before pregnancy and another 

measuring residential proximity to industrial sites (<2.5km) which released the chemical and 

exposed children in early childhood. These studies estimated 11%–65% increases in risk of 

all leukemia in children 0–14 and 0–9 years old, respectively (Garcia-Perez et al., 2015; 

Infante-Rivard et al., 2005). A third study in Texas focusing on CNS tumors and 

dichloromethane exposures, measured annual average ambient chlorinated solvents at the 

census-tract level using the EPA’s 1999 Assessment System for Population Exposure 

Nationwide (ASPEN) model and reported associations with childhood medulloblastoma and 

primitive neuroectodermal tumors (PNET) among children <18 years of age (OR: 4.5) 

(Lupo et al., 2012).

After two chemical plant disasters in India and West Virginia in 1984 and 1985 respectively, 

Congress passed the Emergency Planning and Community Right-to-Know Act (EPCRA) to 

enable public access to data regarding chemical releases in their communities. As part of this 

act, the Toxic Release Inventory (TRI) program was created in 1986 to track and record 

industrial management of toxic chemicals. Currently, over 650 chemicals are reported 

through the TRI Program. The TRI reporting is mandated for facilities which are included in 

the TRI-covered North American Industry Classification System (NAICS), have 10 or more 

full-time employees, and the facility manufactures or imports, processes, or uses any 

EPCRA chemicals in quantities greater than the EPA established thresholds over the course 

of a calendar year (US EPA, 2015).

The purpose of the present study was to investigate the association between childhood 

cancers and exposures to dichloromethane releases from industrial plants, as reported to the 

TRI, near (≤3km) residences of pregnant women and infants living in California.
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Methods

Cases and controls belong to an existing population-based study on childhood cancers, 

whose source population included all births in California from 1983–2011; that study has 

been described in detail elsewhere (Heck et al., 2013a). In brief, cases were collected from 

the California Cancer Registry (CCR) from among those diagnosed 1988–2013 with any 

cancer, younger than age 6, and born in California. Birth certificates were linked to cases 

using a probabilistic linkage program (LinkPlus, CDC) using first names, last names, dates 

of birth, and social security numbers when available. As a result, 89% of all cases were 

matched to a California birth certificate. Twenty controls for each case were randomly 

selected from California birth records and frequency-matched by year of birth to all cases. 

To be eligible, controls had to not appear in the CCR prior to the age of 6 in California. As 

this was a record-based study, we did not seek informed consent from individual subjects. 

The demographic and gestational characteristics of cases and controls have been previously 

reported (Abrahao et al., 2015; Hall et al., 2016; Heck et al., 2012; Heck et al., 2013b; Heck 

et al., 2014, 2015; Heck et al., 2013c; Shrestha et al., 2013).

Residential addresses were obtained from electronic birth certificates, which contain street 

addresses. If the exact address was unavailable, we calculated the most precise address 

information available, whether it was intersections, city centroids or zip code centroids. Prior 

to 1998, California birth certificates only included zip code information. As such, zip code 

centroids were used as the geocoded point of residence for estimating exposures.

Covariate information was obtained from California Cancer Registry records, birth 

certificates, and the year 2000 census data. Birth dates and gestational ages, as measured 

from date of last menstruation, were obtained from birth certificates. To identify control 

children who died of other causes, we obtained California death certificates and linked these 

to the participants. After exclusion of controls who died prior to age 6 (n = 1,895), children 

with improbable gestational lengths (<20 weeks; n = 131), children with missing or 

improbable birthweight (< 500g; n = 41), and children with an unclear/missing 

socioeconomic status information (n = 317), 13,636 cases and 270,673 controls remained for 

this study. The SES-index variable is a 5-level SES census-tract/block level measure created 

using principal components analysis based on seven neighborhood-level measures (percent 

blue-collar workers, average years of education, percent older than 16 years without 

employment, median household income, percent living 200% below poverty, median rent, 

and median house value) (Yost et al., 2001). For those lacking exact addresses, zip code 

centroids were used to determine the SES-index.

Cancer types were classified according to the National Cancer Institute’s Surveillance, 

Epidemiology and End Results (SEER) Program International Classification of Childhood 

Cancer (ICCC) main and extended classification recodes. International Classification of 

Diseases for Oncology (ICD-O-3) codes were used in conjunction with ICCC codes to 

identify specific histologic subtypes. Here we report only on cancer subtypes with at least 10 

exposed cases.
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Exposure Assessment

Data on air releases of dichloromethane, in pounds per year, were obtained from the TRI 

database. Any amount of dichloromethane released by a TRI facility was considered in our 

analyses. Releases from individual sites ranged from 2.8 pounds to 1,016,106 pounds per 

year with a median of 5,562 pounds and a mean of 34,147.87 pounds. Using ArcGIS 10.2 

(ESRI, Redlands), we mapped ambient air release data to the location of the site of release 

based on the latitude and longitude for each site provided by EPA. TRI classifies ambient air 

releases as “stack air” and “fugitive air” and these account for 85% of all releases in 

California. “Stack air” releases refer to gases created during mixing or heating of substances 

that are then processed and released through the smokestack, e.g. releases that are unable to 

be reclaimed or recaptured and escape to the external environment. “Fugitive air” releases 

refer to particles or gases created during processes such as cutting or molding where the air 

is not directly captured for processing. The resulting pollutants leak into the ambient 

environment through doors and windows of the building. A majority (~85%) of 

dichloromethane releases are into the air while water and land releases are fairly infrequent 

(~2% and ~12% respectively), thus, we chose to focus on ambient air releases only (IARC, 

1999).

Since TRI data are reported annually, exposures were estimated using an average exposure 

over the course of the year, and then assigned to individuals based on timing of pregnancy in 

the year. This was accomplished by creating an average amount for the length of time 

exposed to a given year’s releases either during pregnancy or during the first year of life.

Based on recommendations from the literature (Conley, 2011), we implemented several 

models to estimate exposures: a) a buffer model; b) an inverse-distance weighting model; 

and c) a quadratic decay model. First, we drew buffers of different sizes around the 

industrial site and classified children inside a radius of 3, 5, 8 or 10km as exposed. We 

determined the smallest buffer size that still allowed for an adequate sample size; in final 

analyses we present the 3km distance as it allowed for adequate sample size for most cancer 

types. Using an inverse-distance weighting approach, we applied a decay function (Jir = 1/

dir
2) to an exposure total summed over multiple sites denoted by i and residences denoted by 

r, where J is the total exposure amount. The quadratic decay model uses a modified equation 

based on equation 1 from Cutter et al.(Cutter and Solecki, 1996) The following equation 

shows Kir which is the impact of site i on residence r, vi is the volume of releases from site i, 
dir is the distance between site i and residence r, and T is the threshold distance (Conley, 

2011). The threshold distance is based on the radius used in the buffer model.

We determined straight line distance between residences of subjects and TRI sites using 

ArcGIS. For the exposures modeled based on inverse-distance weighting or the quadratic 

decay models, we utilized the pounds of air toxics released and distance to the sources. 

Exposures were assigned to individual’s residences by utilizing each of the three 

approaches. We assigned “ever/never” exposures based on birth addresses being within 3km 

of any industrial release of dichloromethane reported to the TRI or outside of the 3km 
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distance. To determine if higher exposures were relevant for disease risk, we also calculated 

the median exposure in controls and examined this in the inverse-distance weighted and 

quadratic decay models. Those with above median exposure were classified as “exposed” 

while those below the median, including non-exposed, were considered “unexposed.” The 

median value for the inverse-distance weighted model was 1,321 pounds while the median 

value for the quadratic decay model was 1,833 pounds. Analyses using the inverse-distance 

weighted and quadratic decay models both use all years of data and the entire study 

population.

Statistical Analyses

Unconditional logistic regression (SAS 9.3 (SAS, Cary, NC)), was performed with 

adjustment for birth year, the matching factor. Selection of additional covariates was based 

upon factors previously associated with childhood cancers in our data and possibly 

associated with dichloromethane exposure, and/or the criterion of a >10% change in effect 

estimate. Covariates we considered for inclusion in models included mother’s age (<20 

years, 20–24 years, 25–29 years, 30–34 years, 35+ years), mother’s educational attainment 

(<8 years, 9–11 years, 12 years, 13–15 years, 16+ years), the socioeconomic (SES)-index 

variable, child’s sex, mother’s race, method of prenatal care payment (private insurance vs. 

Medi-Cal, other government source, self-pay, military), father’s race, and residence in an 

urban/rural environment, as defined from census tract information (ERS, 2016).

We also explored adjustment for traffic pollution, as measured by fine particulate matter 

(PM2.5) which was calculated using a CAlifornia LINE Source Dispersion Model 

(CALINE4) as detailed previously (Heck et al., 2013c). Covariates included in the final 

models were birth year, SES, mother’s age, mother’s education, rural/urban status, and 

child’s sex.

We examined the difference in effect estimates across the 3 modeling methods. We found 

that results were similar across all models. We present only the results from the smallest 

buffer with sufficient sample size for exposed cases (3km).

Because exact address was only available starting from 1998, we additionally conducted 

sensitivity analyses restricting to those children born after 1997. Prior to 1998, only zip 

codes were available.

Results were fairly consistent across the models except when exposed case counts were 

relatively low, which is expected as small changes in counts can greatly impact effect 

estimates. Thus, we present results from only the 3km buffer model, which was the model 

that allowed for the largest sample size. We additionally examined dose-response, 

comparing never exposed (i.e. >3km distance from a emitting facility) to low exposed 

(below the median) and high exposure (above the median).

Results

Demographics are presented in Tables 1a and 1b. Mothers exposed to dichloromethane 

tended to be younger, less educated, of lower SES, and more often Black or Hispanic. 
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Compared to controls, germ cell tumors had higher percentages exposed, while 

ependymomas had fewer. Cases and controls were fairly similar in terms of most 

demographic factors (Supplemental Table 1a and 1b). Several of the cancer types were more 

common among male children, and cancer incidence also differed by maternal race/ethnicity 

for some types.

We observed a slight increase in germ cell cancers (OR: 1.52, 95% CI 1.11–2.08), 

particularly in teratomas (OR:2.08, 95% CI 1.38–3.13), in the 3km buffer exposure model; 

results were similar when we instead relied on the inverse-weighted and quadratic exposure 

assessment models, but the latter produced wider confidence intervals (Table 2). We 

estimated the strongest associations for teratomas with this cancer being mostly responsible 

for the elevated odds ratio for all germ cell tumors (OR: 2.08, 95% CI 1.38–3.13). Effect 

estimates were also elevated for AML with stronger associations found for exposures in the 

first year of life (OR: 1.29, 95% CI 0.93–1.77). The negative association between 

dichloromethane and neuroblastoma disappeared when we limited the analysis to children 

for whom we had exact addresses, i.e. the association crossed the null (OR: 1.11, 95% CI 

0.74–1.68).

Results from the inverse-distance weighted and quadratic decay models are presented in 

Table 3. In these models, we found similar elevated odds ratios with AML and teratomas 

(Table 3) during pregnancy. In sensitivity analyses (Supplemental Table 2) we saw slightly 

increased odds ratios in two cancers with sufficient sample size after restriction to the years 

for which we had exact home address; leukemias (all types; OR:1.08, 95% CI 0.88, 1.32) 

and ALL (OR:1.12, 95% CI 0.89, 1.39).

The dose-response analysis is shown in table 4. Risk for AML was highest in the high 

exposure group, while for teratomas, results were elevated in both low and high exposed 

groups.

Discussion

We observed positive effects for germ cell tumors, specifically teratomas, and possibly ALL 

and AML in children under age 6 with exposures to ambient levels of industrial 

dichloromethane pollution in pregnant women and infants living in close proximity to 

dichloromethane releasing facilities in California. Ambient air levels of dichloromethane in 

California are comparable to levels elsewhere, as the median and maximum monitored 

ambient concentrations in California in 1999 were 1.735 and 16.6 ug/m3 (CA EPA, 2001); 

while worldwide background levels in ambient air have been ranging from 0.17 – 43 ug/m3 

(IARC, 1999). When TRI reporting began in 1987, 130 facilities in 16 CA counties reported 

over 6 million pounds of air releases for dichloromethane that year. The number of facilities 

declined steadily over the next decade to 37 facilities in 12 counties releasing approximately 

1 million pounds in 1997 and this has continued to decline since. However, the South Coast 

Air Quality Management District, which monitors air toxics in the South Coast Air Basin 

(SCAB) including Orange county and the non-desert regions of Los Angeles County, San 

Bernardino County, and Riverside County, detected increases in ambient dichloromethane 

from 2009–2012, with average levels increasing from 0.7–1.0 ug/m3 to 4.9–8.3 ug/m3 due to 
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recent spikes of high exposure in Rubidoux, a city in Los Angeles County (Wallerstein, 

2015).

In sensitivity analyses, we restricted to the years with exact addresses to reduce 

misclassification error, and found that estimates were stable across the three models. Our 

sensitivity analyses lend support to the results of two previous studies that examined 

maternal occupational dichloromethane exposures and reported elevated odds of both 

childhood leukemias (all types) and ALL specifically (OR: 1.65, 95% CI 1.11–2.45, OR: 

1.34, 95% CI 0.54–3.34) (Garcia-Perez et al., 2015; Infante-Rivard et al., 2005). In the 

Infante-Rivard paper, exposures were assessed based on maternal occupation coded using 

Canadian industrial titles and job titles to determine exposures to specific solvents, thus 

exposures were possibly elevated compared to the ambient exposures in our study. Our 

analyses using exact addresses (1998+) only found slightly elevated point estimates, with 

wide confidence intervals, for childhood leukemia (all types) and ALL.

The effect estimates were similar for exposures in pregnancy and first year of life exposures, 

but TRI reports are collected annually and thus exposure estimates for these two periods of 

interest frequently overlapped especially if the mother and child remained at the same 

addresses and the facility did not change operations. Thus, our ability to determine the most 

relevant time period for carcinogenicity of dichloromethane exposure was limited.

To the best of our knowledge, this is the first study to report an association between 

dichloromethane and germ cell tumors. Previous studies have shown that prenatal and early 

life exposures play a role in germ cell tumor carcinogenesis (Chen et al., 2005; Moller, 

1997). Type 1 germ cell tumors consist of teratomas and yolk sac tumors that are found in 

neonates and children <5 years of age and most often are located in the testes, ovaries, 

retroperitoneum, in the hypophyseal region of the brain, and in the head and neck regions. 

The origins of these type 1 germ cell tumors have been traced to early primordial germ cells 

based on a partially erased biparental pattern of genomic imprinting (Bussey et al., 2001; 

Neumann et al., 2011; Oosterhuis and Looijenga, 2005; Schneider et al., 2001). Based on 

these findings, we hypothesize that the association seen in germ cell tumors with 

dichloromethane exposure could be due to effects of dichloromethane metabolites on 

differentiation and migration of the early primordial germ cells during neonatal 

development.

The two primary mechanistic pathways for dichloromethane transformation involve 

CYP2E1 dependent oxidative metabolism that yields carbon monoxide, and glutathione S-

transferase theta 1 (GSTT1) that yields carbon dioxide. The CYP2E1 route of degradation 

saturates at fairly low levels and CO levels alone have not been sufficiently linked to 

genotoxicity. However, at larger concentrations of dichloromethane, the GSTT1-based 

mechanism creates S-haloalkylglutathione and formaldehyde as intermediates which are 

both more toxic than the parent compound (Olvera-Bello et al., 2010). These increases, 

especially in formaldehyde, have been linked to carcinogenic potential (Hu et al., 2006). 

Since dichloromethane is released from industrial facilities, we also found that 1,1,1-

trichloroethane was co-released from approximately one-third of the sites. The effects of 

dichloromethane on the cancers we observed may be in part due to exposure to 1,1,1-
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trichloroethane, though it is a less toxic substance. One study reported maternal occupational 

exposure to, 1,1-trichloroethane was related to increased risk of leukemia in offspring 

(Infante-Rivard et al., 2005).

One limitation of this study is that possible residential mobility of mothers during and 

shortly after pregnancy would introduce exposure misclassification if mothers’ addresses at 

child’s birth are different from their actual residences earlier in the pregnancy or later in the 

child’s 1st year of life. Previous studies showed that changes in residence between birth and 

diagnosis for leukemia did not affect the type of residence (urban/rural) for most children 

(<20% change) and when families move they typically stay in the same municipality (~62%) 

(Fell et al., 2004; Urayama et al., 2009). There is a possibility of differential exposure 

misclassification if case mothers moved more frequently than control mothers. The direction 

of bias is difficult to ascertain as case mothers may have moved into areas or out of areas of 

exposure. The resulting differential exposure misclassification could bias the associations 

away or toward the null. However, differential exposure misclassification is unlikely prior to 

diagnosis in cases and controls. risk factors previously associated with higher mobility are 

low SES, lower maternal age, unmarried status (Bell and Belanger, 2012; Fell et al., 2004). 

We adjusted for SES and in sensitivity analyses, for maternal age. Therefore, we expect non-

differential exposure misclassification which would likely bias our estimates toward the null.

One of the major strengths of this study is the large sample size. Using the California Cancer 

Registry and California birth certificates, we are able to examine specific childhood cancer 

subtypes. In addition, this is a registry-based study and therefore, recall bias and selective 

study participation are not a concern with regards to exposure assessment. Also, the three 

models generally found comparable results.

In conclusion, our study presents some evidence that dichloromethane releases from 

industrial facilities may play a role for several childhood cancers including germ cell tumors 

and teratomas, and possibly AML. The findings for leukemias supports the results of 

previous studies (Garcia-Perez et al., 2015; Infante-Rivard et al., 2005).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1a

Dichloromethane exposure patterns in relation to demographic characteristics

Ever Exposed* Never Exposed

Total N = 284,309 25,200 (8.9%) 259,109 (91.1%)

Child’s Sex

 Male 12,830 (8.8%) 132,872 (91.2%)

 Female 12,370 (8.9%) 126,237 (91.1%)

Maternal age

 <20 2,954 (9.9%) 26,931 (90.1%)

 20–24 6,549 (9.6%) 61,847 (90.4%)

 25–29 7,315 (9.3%) 71,483 (90.7%)

 30–34 5,504 (8.3%) 60,911 (91.7%)

 35+ 2,868 (7.0%) 37,895 (93.0%)

 Missing 10 42

Maternal education (1989+)

 < 8 years 4,196 (13.7%) 26,515 (86.3%)

 9–11 years 4,594 (10.2%) 40,261 (89.8%)

 12 years 5,774 (8.3%) 63,520 (91.7%)

 13–15 years 3,456 (7.0%) 46,136 (93.0%)

 16+ 2,906 (5.9%) 46,703 (94.1%)

 Missing 195 4,451

Neighborhood SES-Index Variable

 1 (lowest) 8,520 (12.0%) 62,455 (88.0%)

 2 6,949 (10.1%) 62,146 (89.9%)

 3 4,280 (6.8%) 58,743 (93.2%)

 4 3,084 (6.9%) 41,891 (93.1%)

 5 (highest) 2,367 (6.5%) 33,874 (93.5%)

Method of Payment for Prenatal Care (1989+)

 Private, HMO, Blue Cross, Blue Shield 11,052 (9.0%) 111,735 (91.0%)

 Medi-Cal, Government, Self-pay, Military 9,841 (8.0%) 113,558 (92.0%)

 Missing 228 2,546

Mother’s Race

 White Non-Hispanic 5,772 (5.8%) 94,070 (94.2%)

 Hispanic 14,930 (11.4%) 115,536 (88.6%)

 Black 1,793 (9.6%) 16,919 (90.4%)

 Other/refused 2,705 (7.7%) 32,584 (92.3%)

Father’s Race

 White Non-Hispanic 5,537 (6.3%) 81,967 (93.7%)

 Hispanic 14,445 (11.7%) 109,394 (88.3%)

 Black 1,894 (10.1%) 16,945 (89.9%)

 Other/refused 3,324 (6.2%) 50,803 (93.8%)

Urban/Rural
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Ever Exposed* Never Exposed

 Metropolitan 25,200 (9.7%) 233,856 (90.3%)

 Micropolitan/Small Town 0 (0%) 11,987 (100%)

 Rural 0 (0%) 13,266 (100%)

*
Children and pregnant women living within 3km of dichloromethane releases
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Table 1b

Dichloromethane exposures at 3km and childhood cancers

ICCC/ICD-O-3** Codes Ever Exposed* Never Exposed

Hematopoietic cancers 011–015, 021–025 559 (9.8%) 5162 (90.2%)

Leukemias 011–015 492 (9.6%) 4608 (90.4%)

   ALL 011 399 (9.7%) 3722 (90.3%)

   AML 012 72 (9.7%) 668 (90.3%)

  Lymphomas 021–025 67 (10.8%) 554 (89.2%)

Non-Hodgkin’s Lymphoma 022–023 16 (9.5%) 152 (90.5%)

CNS tumors 031–037 218 (9.2%) 2162 (90.8%)

  Ependymoma 031 22 (7.7%) 264 (92.3%)

  Astrocytoma 032 83 (8.3%) 918 (91.7%)

Neuroblastoma 041 106 (7.7%) 1275 (92.3%)

Retinoblastoma 050 68 (9.2%) 675 (90.9%)

  Unilateral RB 050 46 (9.0%) 467 (91.0%)

  Bilateral RB 050 22 (9.9%) 201 (90.1%)

Wilms tumor 061 92 (8.7%) 965 (91.3%)

Hepatoblastoma 071 28 (8.2%) 314 (91.8%)

Soft Tissue sarcomas 091–095 67 (9.5%) 639 (90.5%)

Germ Cell tumors 101–105 61 (13.5%) 388 (86.5%)

  Yolk Sac tumors 101–105,**9071 22 (12.2%) 159 (87.9%)

  Teratomas 101–105,**9080 34 (16.4%) 171 (83.6%)

Controls 23,956 (8.9%) 246,717 (91.1%)

*
Children and pregnant women living within 3km of dichloromethane releases

**
ICD-O-3 Code
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