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Abstract

People are capable of learning other people’s preferences by observing the choices they make. We 

propose that this learning relies on inverse decision-making—inverting a decision-making model 

to infer the preferences that led to an observed choice. In Experiment 1, participants observed 47 

choices made by others and ranked them by how strongly each choice suggested that the decision 

maker had a preference for a specific item. An inverse decision-making model generated 

predictions that were in accordance with participants’ inferences. Experiment 2 replicated and 

extended a previous study by Newtson (1974) in which participants observed pairs of choices and 

made judgments about which choice provided stronger evidence for a preference. Inverse decision-

making again predicted the results, including a result that previous accounts could not explain. 

Experiment 3 used the same method as Experiment 2 and found that participants did not expect 

decision makers to be perfect utility-maximizers.
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Introduction

One way to learn what other people like is by observing the choices they make. For example, 

suppose that Alice orders a boxed lunch that includes an eggplant sandwich and you want to 

know how much Alice likes eggplant sandwiches. If Alice ordered the only box with an 

eggplant sandwich, you might infer that Alice has a strong preference for eggplant 
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sandwiches. If the eggplant sandwich is part of the only box that contains a cookie, you 

might instead infer that Alice has no particular preference for eggplant sandwiches and she 

really wanted the cookie. Although people commonly make these sorts of inferences, this 

example illustrates that someone’s choice could have many different explanations, and 

deciding which of these explanations is best can be a challenging inductive problem.

Inferences like these have been studied in the literature on interpersonal attribution (Gilbert, 

1998; Hamilton, 1998), and have been the target of developmental work with children 

(Repacholi & Gopnik, 1997; Kushnir, Xu, & Wellman, 2010; Ma & Xu, 2011; Lucas et al., 

2014; Diesendruck, Salzer, Kushnir, & Xu, 2015; Hu, Lucas, Griffiths, & Xu, 2015; Luo, 

Hennefield, Mou, vanMarle, & Markson, in press). Most of this literature, however, does not 

emphasize computational approaches (for some exceptions, see Lucas et al., 2014; Medcof, 

1990; Kunda, 1998). Research in economics and marketing has produced multiple 

computational methods for inferring consumers’ preferences from their choices (Green & 

Srinivasan, 1990; Varian, 2006), but these methods have not been explored as psychological 

models. By contrast, there are multiple psychological models of how people make choices 

(Busemeyer & Johnson, 2008; Train, 2009; Schneider, Oppenheimer, & Detre, 2007; Shenoy 

& Yu, 2013), but few attempts to apply models like these to the problem of inferring 

people’s preferences from observations of their choices. In this paper, we explore a 

computational approach to preference learning based on inverting a decision-making model 

and test it as a psychological account. We call this approach inverse decision-making.

The inverse decision-making approach is illustrated in Figure 1a. The figure shows an 

example in which Alice chooses between three boxed lunch options: (1) eggplant sandwich 

and a cookie, (2) turkey sandwich and a slice of cake, and (3) tuna sandwich and an apple. 

The utility function in Figure 1a (depicted by a bar chart) shows that Alice prefers the 

eggplant sandwich over the other sandwiches and the cookie over the other desserts. A 

decision-making model specifies a decision function that maps preferences to choices. Given 

Alice’s preferences, any standard model of decision-making will predict that Alice will 

choose the option with an eggplant sandwich and a cookie. The shading on the nodes of the 

graph in Figure 1a indicates what information about Alice’s choice is visible to an observer. 

In this case, that includes the three boxed lunch options and Alice’s choice. The unshaded 

node indicates that Alice’s preferences are not visible to an observer. Even so, the observer 

can invert a decision-making model to make inferences about the unobserved preferences 

that led to the observed choice.

Figure 1b shows an alternative feature-based approach that does not rely on a decision-

making model. Instead, this approach characterizes Alice’s choice using a set of features. 

For example, the features in Figure 1b indicate that Alice chose the only option with an 

eggplant sandwich and the only option with a cookie, that her choice had two attributes 

(eggplant sandwich and cookie), that she passed up four attributes (turkey, tuna, cake, apple), 

and that she passed up two options (the two boxes that she did not choose). These features 

carry information about Alice’s preferences, and the feature-based approach relies on an 

inference function that maps choice features to preferences. For example, the larger the 

number of chosen attributes, the less likely it is that she was specifically interested in the 
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eggplant sandwich, and the larger the number of forgone options, the more likely it is that 

Alice has a strong preference for eggplant.

The inverse decision-making approach has received little attention in the social psychology 

literature, but the feature-based approach has served as the basis for several influential 

accounts of interpersonal attribution (e.g., Jones & Davis, 1965; Kelley, 1973; Newtson, 

1974). One example of the feature-based approach is Jones’s and Davis’s (1965) 

correspondent inference theory (CIT). One choice feature identified by CIT is whether a 

chosen attribute is common to other options; if not, then the choice is especially informative 

about the decision maker’s preferences. For example, if Alice chose the only option that 

included an eggplant sandwich, then her choice provides strong evidence that she was 

interested in the eggplant sandwich. In CIT, this idea is called the principle of non-common 

attributes.

The choice features and inference principles identified by CIT and other feature-based 

approaches are intuitive. In addition, as Figure 1 suggests, there are cases in which inverse 

decision-making and feature-based approaches make the same inferences about Alice’s 

preferences. However, feature-based approaches have two fundamental limitations. First, 

they assert that the inference function respects a set of principles, but they do not provide a 

complete set of principles or suggest a way to enumerate these principles. Second, CIT 

makes no clear predictions about how conflicts between different principles should be 

resolved (Newtson, 1974). Both limitations arise because it is difficult to characterize the 

inference function directly. The inverse decision-making approach overcomes these 

limitations by characterizing the inference function indirectly, letting it emerge from some 

simple assumptions about decision making.

The inverse decision-making approach is an instance of a class of modeling approaches that 

rely on what Jara-Ettinger, Gweon, Schulz, and Tenenbaum (2016) have called the naïve 
utility calculus. Naïve utility calculus refers to the expectation people have that others will 

generally make choices that produce greater utility. Combining naïve utility calculus with 

inverse reasoning has led to a number of useful accounts of social inference in recent years 

(Baker, Saxe, & Tenenbaum, 2009; Ullman et al., 2009; Tauber & Steyvers, 2011; Baker & 

Tenenbaum, 2014; Wu, Baker, Tenenbaum, & Schulz, 2014; Jern & Kemp, 2015; Baker, 

Jara-Ettinger, Saxe, & Tenenbaum, 2017). However, few studies in this literature have 

explored the basic question of how people infer what other people like and dislike by 

observing their choices. Studies that have explored this question have focused on how 

children learn simple preferences (Lucas et al., 2014), how adults predict other people’s 

choices (Bergen, Evans, & Tenenbaum, 2010), and how adults take into account deviations 

from optimal choice behavior when reasoning about other people’s choices (Evans, 

Stuhlmueller, & Goodman, 2016). However, previous tests of inverse decision-making as a 

psychological account of how people learn other people’s preferences have been limited. For 

example, using a model essentially identical to the one we present below, Lucas et al. (2014) 

tested predictions on children’s inferences for 11 different observed choices. In this paper, 

we test the inverse decision-making approach in much greater detail, comparing its 

predictions to adults’ inferences about many more choices: 47 different choices in 

Experiment 1, 6 different choices in Experiment 2, and 8 different choices in Experiment 3. 
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Testing the model on a greater number of choices allows us to test the robustness of the 

inverse decision-making approach and more thoroughly compare it to the feature-based 

approach.

All of our experiments used a preference learning task in which a hypothetical person makes 

a choice between multiple discrete options, each with multiple attributes. Figure 2 shows a 

set of such choices. Each choice in the figure has between one and four options, represented 

as columns. Each option has between one and five attributes, represented by letters, with 

identical attributes identified by the same letter. The attributes may be desirable, like 

different candies, or undesirable, like different electric shocks. In all cases, the decision 

maker chose the leftmost option, which includes attribute X. Suppose that the different 

attributes are different kinds of candy. Some of the choices in Figure 2 provide strong 

evidence of a preference for candy X. For instance, consider Choice 47, in which the 

decision maker chose a single piece of candy X over one piece each of candies A, B, C, and 

D. Intuitively, this choice provides strong evidence that the decision maker has a preference 

for candy X. Other choices provide weak evidence of a preference for candy X. In Choice 

14, for example, the decision maker chose candy X plus three other pieces of candy over 

only a single piece of candy. Intuitively, this choice provides little evidence of a preference 

for candy X because the decision maker may have wanted a piece of candy other than X, or 

may simply have wanted more candy.

In the next section, we describe a formal model that can capture these intuitions. We then 

discuss the results of three experiments that test the model by comparing its predictions to 

people’s inferences about choices like the ones in Figure 2. Finally, we present an analysis 

of whether our results could be explained just as well by a feature-based model.

The inverse decision-making model

We will characterize the inference problem as follows. Suppose you observe someone make 

a choice from a set of n options {o1, …, on}. Each option oj includes binary attributes from 

the set {a1, a2, …, am}. Option oj can be described by a binary vector aj of length m 
denoting whether each attribute is present or absent.

Inverse decision-making is a general approach that can be instantiated in many ways. To 

create a specific inverse decision-making model, one must first specify the decision function 

that maps preferences to choices. In this section, we specify one decision function that is 

based on some simple assumptions that are shared by many decision-making models. Later, 

in Experiment 1, we consider several common alternative decision functions.

First, we assume that the utilities for attributes are additive. That is, let Uj be the utility for 

option oj, where Uj is equal to the sum of the utilities assigned to its attributes aj. Utilities 

may be positive if the attributes are desirable, like different candies, or they may be negative 

if the attributes are undesirable, like different electric shocks. Second, to account for 

possible hidden factors contributing to a decision maker’s choice, we assume that choices 

are made probabilistically, favoring options with greater utility (Luce, 1959). One common 

way of instantiating this assumption leads to the logit model (McFadden, 1974; Train, 2009):
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(1)

where c is the chosen option, u is a vector of utilities assigned to each attribute, and A = {a1, 

…, an} specifies the available options and their corresponding attributes.

Inverting the decision function involves reasoning backward from an observed choice to the 

preferences that motivated it. For example, according to Equation 1, someone with a strong 

preference for candy X (i.e., someone who assigns a high utility to X) would be more likely 

to make Choice 47 in Figure 2 (choosing {X} over {A,B,C,D}) than someone with a weak 

preference for Candy X. Inverting Equation 1 therefore means that observing someone make 

Choice 47 provides evidence for a strong preference for Candy X. Formally, we invert the 

decision function using Bayes’s rule:

(2)

In simple terms, Equation 2 states that inferences about utilities are made by starting with 

prior beliefs p(u) about the utilities a decision maker assigns to the attributes and then 

updating the prior beliefs to posterior beliefs p(u|c,A) after observing the decision maker’s 

choice.

The denominator on the right of Equation 2—the marginal likelihood p(c|A)—captures the 

probability of making choice c, averaged over all possible utility assignments. This term 

takes into account how probable a choice would be, regardless of a decision maker’s 

preferences. For example, consider Choice 14 in Figure 2, in which the decision maker 

chose {X,A,B,C} over {D}. A decision maker would be likely to make this choice no matter 

what her preferences were because the choice provides four candies over one. As a result, 

the likelihood p(c|u,A) and the marginal likelihood p(c|A) are virtually the same for any 

value of u, and an inverse decision-making model would predict that Choice 14 provides 

little information about the decision maker’s preferences. By contrast, Choice 47 would be 

unlikely unless the decision maker had a strong preference for Candy X. In this case, the 

likelihood is high and the marginal likelihood is low.

In real-world applications, the prior distribution, p(u), can capture the fact that some 

attributes (e.g., cookies) tend to be liked more than others (e.g., eggplant), but in our 

experiments, we kept the task as simple as possible by providing no information about the 

relative utilities of different attributes. Therefore, when generating predictions for our 

experiments, we used the same prior distribution for the utilities of each attribute.

Comparing inferences

We tested our inverse decision-making model by asking participants to observe choices 

made by multiple people and judge which people had stronger preferences. Equation 2 
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provides a way to infer a decision maker’s utilities but does not provide a way to compare 

inferences about two people’s utilities for the purpose of judging which person likes 

something more. Therefore, to generate predictions for our experiments, one must also 

specify a criterion for ordering choices. We considered four criteria, which we call absolute 
utility, relative utility, likelihood, and marginal likelihood. First we will define the four 

models. Then we will discuss several example cases that illustrate differences between the 

models.

Absolute utility—The absolute utility model orders choices by the mean posterior utility 

for attribute X. This is computed as follows. For each observed choice, use Equation 2 to 

compute the posterior probability distribution over utilities. Then compute the mean 

(expected value) of the posterior distribution over the utility ux for attribute X:

(3)

and order the choices based on these means.

Relative utility—The absolute utility model requires an inference about the utility of X in 

isolation, but research suggests that people sometimes think about the utility of an attribute 

only in relation to other salient possibilities (Ariely, Loewenstein, & Prelec, 2006). The 

relative utility model captures this idea. The relative utility model orders choices by how 

strongly each choice suggests that the decision maker assigns the greatest utility to attribute 

X1:

(4)

where p(c|ux is greatest,A) = ∫ p(c|u,A)p(u|ux is greatest)du.

Likelihood—The absolute and relative utility models are two versions of the inverse 

decision-making model that make different assumptions about how observers will compare 

choices made by others. As discussed previously, the inverse decision-making model 

incorporates three qualitatively different components: the likelihood p(c|u,A), the prior p(u), 

and the reciprocal of the marginal likelihood 1/p(c|A). For our experiments, we assumed that 

the prior was the same for all choices. The two other components, however, vary across 

choices. The inverse decision-making model predicts that both components should influence 

preference inferences. To test this prediction, we considered two more ordering criteria that 

rely on only one of these components: either the likelihood or the marginal likelihood.

The first criterion is based on the likelihood term from the relative utility model in Equation 

4. Specifically, the likelihood model orders choices by how likely the observed choice would 

be if the utility for X were higher than the utility for all other attributes:

1Formally, ux ≥ uj for all j.
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(5)

The likelihood model is related to a social inference heuristic called pseudo-diagnostic 
inference. A pseudo-diagnostic inference about someone’s disposition considers how 

probable the person’s behavior is given a certain disposition, but not how probable the 

behavior is given other dispositions (Trope & Liberman, 1993; Trope, 1998).

Marginal likelihood—The final ordering criterion is based on the reciprocal of the 

marginal likelihood of the inverse decision-making model in Equation 2. The marginal 

likelihood model orders choices by how improbable the observed choice would be, averaged 

over all possible utility assignments:

(6)

The marginal likelihood model is related to the idea that unexpected choices that seem to 

violate random sampling assumptions may provide a clue about underlying preferences 

(Kushnir et al., 2010; Ma & Xu, 2011; Diesendruck et al., 2015). For example, surprising 

choices may be best explained in terms of a strong preference for X, but unsurprising 

choices provide little information about a preference for X in particular.

Examples

To illustrate the differences between the four ordering criteria, we will apply them to 

selected choices from Figure 2 in a set of worked examples.

Positive utilities—We will use Choice 38 from Figure 2 as an example. In this choice, the 

decision maker had three options—{A}, {B}, and {X}—and chose {X}. To simplify the 

calculations for illustrative purposes, we will assume that all utilities are positive and from 

the set {1, 2}. We will also assume a prior distribution on utilities that places 0.6 probability 

on utility 1 and 0.4 probability on utility 2.

Absolute utility: To compute predictions for the absolute utility model, we first compute the 

posterior probability distribution over the utilities assigned to each attribute. Because there 

are three attributes that can each take on two utility values, there are 23 = 8 possible utility 

assignments. Consider one case: u = (ua = 1, ub = 1, ux = 1). Each option in Choice 38 

contains only one attribute, so the utility of each option is 1. We compute the posterior 

probability of this utility assignment using Equation 2:

In this computation, we have used the logit model in Equation 1 as the decision function. To 

compute the full posterior probability distribution over utilities, this calculation must be 
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carried out for all 8 possible utility assignments. The resulting probabilities must then be 

normalized (i.e., adjusted so that they sum to 1) by dividing each value by the sum of all 8 

values. The results of these calculations are shown in Table 1. These results make intuitive 

sense: After seeing the decision maker choose {X}, possible utility assignments in Table 1 

that assign utility of 2 to X have higher probability than possibilities that assign utility of 1.

The absolute utility model orders choices on the basis of the mean posterior utility assigned 

to attribute X. To compute this, we first compute the posterior probability over the utility for 

X. For example:

In this calculation, we have summed all the probabilities in Table 1 for cases in which ux = 

1. We would repeat this calculation for all remaining possible utility assignments for X. In 

this example, there is only one other possibility: ux = 2. Because these probabilities must 

sum to 1, we can conclude that p(ux = 2|c = {X},A) = 1 − 0.4439 = 0.5561. Finally, we 

compute the mean posterior utility assigned to X as follows:

For comparison, the first column of Table 2 shows E(ux|c,A) for Choice 38, as well as for 

Choices 11, 16, and 34. These choices all include the attributes A, B, and X. Note that the 

prediction for Choice 11 follows directly from the prior probabilities: (1)(0.6)+(2)(0.4). This 

is because, in Choice 11, X appears in both options, so the choice provides no information 

about the decision maker’s preference for X. Unlike Choice 38, some of these choices 

include options that contain two attributes. Recall that we assume that the total utility for an 

option is the sum of the utilities assigned to each attribute in the option.

Because the mean posterior utility for X is greater for Choice 38 than for the other choices, 

the absolute utility model concludes that Choice 38 provides evidence of a stronger 

preference for attribute X.

Relative utility: The relative utility model computes the posterior probability that the 

decision maker assigns highest utility to attribute X using Equation 4. To compute this, we 

must first compute p(ux is greatest), the prior probability that X has the highest utility. This 

can be done by summing the prior probabilities assigned to all utility assignments where ux 

≥ uj for all j. In our example with Choice 38, p(ux is greatest) = 0.616.

Next, we must compute p(c|ux is greatest,A), the probability of making a choice given that 

ux has the highest utility. In our example, this is computed by summing over utility 

assignments:

Jern et al. Page 8

Cognition. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The first term on the right is the decision function and can be computed using Equation 1, 

just as we did for the absolute utility model. The second term on the right can be computed 

by starting with the prior probabilities computed for the absolute utility model, assigning a 

prior probability of 0 to all utility assignments where ux is less than the utility for any other 

attributes, and re-normalizing the probabilities so they sum to 1. For example, for the case in 

which u = (ua = 1, ub = 1, ux = 1), the prior probability p(u) was computed as (0.6)3 = 0.216 

for the absolute utility model. For the relative utility model, p(u|ux is greatest) = 0.3506. The 

prior probability is larger for the relative utility model because we have eliminated all utility 

assignments in which ux is not highest (3 of the rows in Table 1).

Finally, we compute p(c|A), the marginal likelihood. This is computed as follows:

The terms in this sum are computed exactly as they were for the absolute utility model.

The second column of Table 2 shows the results of these calculations for four choices. Note 

that the prediction for Choice 11 once again is determined by the prior probability—this 

time, the prior probability of ux having the greatest utility. Because the posterior probability 

of ux having greatest utility given Choice 38 is higher than for the other choices, the relative 

utility model, like the absolute utility model, concludes that Choice 38 provides evidence of 

a stronger preference for attribute X than the other choices. In fact, Table 2 shows that the 

order of the relative utility model’s predictions for these choices is identical to the absolute 

utility model’s predictions. In general, these models produce very similar predictions when 

utilities are positive. As we will show shortly, however, they sometimes produce different 

predictions when utilities are negative.

Likelihood: The likelihood model is based on the likelihood term of the relative utility 

model: p(c|ux is greatest,A). This term is computed exactly as described above for the 

relative utility model. The third column of Table 2 shows the result of this computation for 

the four choices. Once again, Choice 11 is instructive. The model assigns a probability of 0.5 

to Choice 11, which is the same as if the decision maker were choosing at random between 

the two options. This makes sense because attribute X appears in both options. As a result, 

the decision maker’s choice is unaffected by whether or not X has the highest utility—only 

the utilities for the other attributes affect the choice.

It is also instructive to compare the model’s predictions for Choices 34 and 38. In Choice 34, 

the decision maker chose {X} over {A}. In Choice 38, the decision maker chose {X} over 

{A} and {B}. Therefore, these two choices only differ in the number of available options. 

According to the model, assuming that X has highest utility, there is a higher probability for 

choosing {X} when there is one alternative (Choice 34) instead of two (Choice 38). Based 
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on these probabilities, the model would therefore conclude that Choice 34 provides evidence 

of a stronger preference for X than Choice 38, which does not align with common sense. 

This prediction is a consequence of the fact that the likelihood model does not take into 

account how probable a choice is overall—the marginal likelihood.

Marginal likelihood: The marginal likelihood is computed exactly as described above for 

the relative utility model. The fourth column of Table 2 shows the result of this computation 

for the four choices. Because the reciprocal of the marginal likelihood is higher for Choice 

38 than for the other choices, the marginal likelihood model concludes that Choice 38 

provides evidence of a stronger preference for attribute X than the other choices. In this case, 

the prediction is largely a consequence of the fact that Choice 38 has the largest number of 

options, so choosing any option in that choice would be more “surprising” than for the other 

choices. Contrary to the inverse decision-making models, the marginal likelihood model 

does not rank Choice 11 lowest even though that choice should provide no information about 

a preference for X. This is because the marginal likelihood model is based on the probability 

of selecting the option that was actually chosen, not the probability of selecting any option 

that includes attribute X.

Negative utilities—To illustrate how the absolute and relative utility models can 

sometimes produce different predictions, we now consider an example in which utilities are 

negative. This time, we will only compare Choices 16 and 38. Conceptually, the absolute 

utility model infers a higher tolerance (i.e., greater preference) for X after observing Choice 

16 because the decision maker chose to receive two shocks instead of just one. This is a 

highly improbable choice unless the decision maker considers shocks A and X to both be 

quite tolerable. By contrast, the relative utility model infers a higher tolerance for X given 

Choice 38 because that choice is most probable if the decision maker tolerates X the most. 

For example, even if the decision maker found all of the shocks highly painful, Choice 38 

would be probable as long as the decision maker found X to be slightly less painful than the 

others. On the other hand, Choice 16 provides no way to determine the decision maker’s 

relative tolerance for shocks A and X.

To make these predictions concrete, we will assume that all utilities are from the set {−2,−1} 

and we will assume a prior distribution on utilities that places 0.6 probability on utility −1 

and 0.4 probability on utility −2. Aside from the different assumptions about utilities, model 

predictions for both the absolute and relative utility models are generated exactly as 

described previously for positive utilities. Table 3 shows the resulting numerical predictions. 

The table confirms that the two models make opposite predictions for these two choices. In 

this example, the magnitude of the differences between each model’s predictions for the two 

choices is small but real (i.e., not due to sampling error). As a result of these predictions, the 

absolute utility model concludes that Choice 16 provides evidence of a higher tolerance for 

X because it has a higher (less negative) mean posterior utility. The relative utility model 

concludes that Choice 38 provides evidence of a higher tolerance for X because there is a 

higher posterior probability that X has highest utility after observing that choice.

Summary—Although these examples used a simpler setting than our experiments2, they 

illustrate why all components of the inverse decision-making model are important. 
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Accordingly, in the experiments that follow, we predicted that the absolute and relative 

utility models would predict participants’ inferences better than the likelihood and marginal 

likelihood models. We conducted three experiments. Experiment 1 compared all of the 

models’ predictions to people’s judgments for all of the choices in Figure 2. Experiment 2 

tested whether the inverse decision-making model can account for an experimental result 

that previous accounts could not explain. Experiment 3 tested an assumption of our decision 

function that choices are made probabilistically.

Experiment 1: Ordering choices by strength of evidence for a preference

Method

Participants—85 Carnegie Mellon University undergraduates participated for course 

credit.

Materials—The set of choices that we used (Figure 2) included every possible unique 

choice with up to five different attributes, subject to the following constraints: (1) attribute X 

always appears in the chosen option, (2) there are no duplicate options, (3) each attribute 

appears in an option at most once, (4) only attributes in the chosen option are repeated in 

other options, and (5) when attributes appear in multiple options, the number of attributes is 

held constant across options. The first constraint was necessary for the task described below, 

the second two constraints created a finite space of choices, and the last two constraints 

limited attention to what we deemed the most effective cases for testing the inverse decision-

making model. For example, the fourth constraint rules out cases like a choice between {X}, 

{A}, and {A}, which is not meaningfully different from a choice between {X} and {A}. 

However, we do consider cases like these in Experiment 3. The fifth constraint rules out 

cases like a choice between {X,A} and {A}, in which the first option clearly dominates the 

second option when all attributes are desirable. This choice therefore provides no 

information about the decision maker’s preference for either attribute.

Procedure—There were two between-subjects conditions. In the positive-attributes 
condition, the attributes were pieces of candy, suggesting that all attributes had positive 

utility. In the negative-attributes condition, the attributes were electric shocks at different 

body locations, suggesting that all attributes had negative utility. We randomly assigned 

participants to conditions, with 43 participants in the positive-attributes condition and 42 

participants in the negative-attributes condition.

We gave each participant a set of cards, with one choice printed on each card. The choices 

were represented visually as in Figure 2 but with differently-colored rectangles instead of 

letters to indicate the different attributes. In the positive-attributes condition, we told 

participants that each option was a different bag of candy and that a decision maker in each 

choice had chosen one of the bags. Participants then ordered the choices by how strongly 

each choice suggested that the decision maker had a preference for X. In the negative-

attributes condition, we told participants that the decision maker in each choice had been 

2See Appendix A for details about how to generalize the modeling procedure described in this section to continuous utilities.
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part of an experiment involving electric shocks, and the decision maker was given a choice 

between different sets of electric shocks that he or she would receive. Participants then 

ordered the choices by how strongly each choice suggested that the decision maker had a 

tolerance for X. In both conditions, we instructed participants to order the choices as 

completely as possible, but that they could assign the same ranking to a set of choices if they 

believed those choices provided equal evidence.

Model implementation—As described in Appendix A, we computed model predictions 

by generating 20 million samples using a Monte Carlo simulation. We made a standard 

assumption that utilities are independent and normally distributed (Allenby & Lenk, 1994; 

Albert & Chib, 1993; McCulloch & Rossi, 1994). The model predictions were generated 

using the prior distribution ui ~ (μ = 4, σ = 2) for the positive-attributes condition and ui ~ 

(μ = −4, σ = 2) for the negative-attributes condition. Appendix B describes an analysis in 

which we varied these parameters. The analysis revealed that the inverse decision-making 

model’s performance is largely insensitive to specific choices about the prior distribution of 

utilities.

Results

Two participants from the positive-attributes condition and three participants from the 

negative-attributes condition were excluded as outliers because their rankings for at least five 

choices were at least three standard deviations from the mean.

Figure 3 shows the mean human rankings for the remaining participants for each condition 

compared with the predictions of the four models. (See Appendix A for a complete table of 

these results.) All rankings are fractional rankings3. The human rankings shown in the figure 

were generated by first converting each participant’s responses to fractional rankings, and 

then computing the mean fractional ranking participants assigned to each choice. The 

diagonal lines in the plots indicate a perfect correspondence between model and human 

rankings. Thus, the largest deviations from these lines represent the largest deviations in the 

data from each model’s predictions.

Results for the positive-attributes condition are shown in Figure 3a. The absolute utility 

model provides a close overall fit to the human rankings (rank correlation ρ = 0.98 [0.97, 

0.99]4) and correctly predicts the highest ranked choice and the set of lowest ranked choices. 

The only clear discrepancy between the model’s predictions and the data is the cluster of 

points at the lower left representing Choices 6–13. These are all choices in which X appears 

in all options. Therefore these choices provide no information about a decision maker’s 

preference for X. Consequently, the model assigns the same ranking to this group as to the 

group of choices for which there is only a single option (Choices 1–5). However, 

participants assigned lower rankings to Choices 1–5. One explanation for participants’ 

3In fractional ranking, items that have the same ranking are assigned a ranking equal to the mean of the rankings they would receive if 
the items were fully ordered. For example, if someone assigned the lowest ranking to all of Choices 1–5 and assigned the second 
lowest ranking to Choice 6, Choices 1–5 would all receive a ranking of 3 and Choice 6 would receive a ranking of 6. Alternatively, if 
someone assigned different rankings to Choices 1–6 (from lowest to highest), Choice 1 would receive a ranking of 1, Choice 2 would 
receive a ranking of 2, and so on. Under the fractional ranking scheme, the sum of the rankings of all items is always the same.
4Numbers in brackets are 95% confidence intervals computed by applying a Fisher transformation to ρ (see Ruscio, 2008).
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rankings is that these choices are the only ones for which there was a single option, making 

it obvious that no choice had been made. Participants may have focused on this salient detail 

when making their rankings by grouping Choices 1–5 together instead of grouping them 

with Choices 6–13.

The overall predictions of the relative utility model (ρ = 0.98 [0.97, 0.99]) are virtually 

identical to those of the absolute utility model. One exception is the set of predictions for 

Choices 1–13. Some of these choices provide evidence about attributes other than X, altering 

the probability that X has the highest utility. For instance, the relative utility model predicts a 

higher rank for Choice 12 than either participants or the absolute utility model.

Results for the negative-attributes condition are shown in Figure 3b. Participants in this 

condition assigned substantially different rankings to many of the choices than participants 

in the positive-attributes condition. Both inverse decision-making models provide good 

predictions of participants’ rankings (ρ = 0.90 [0.82, 0.94] for absolute utility; ρ = 0.93 

[0.88, 0.96] for relative utility) but neither version achieves the same level of accuracy for 

the mean human rankings as for positive attributes. Participants in the negative-attributes 

condition provided less consistent rankings than participants in the positive-attributes 

condition: the mean rank correlation between individual participants’ rankings and the mean 

ranking was 0.90 in the positive-attributes condition and 0.76 in the negative-attributes 

condition. Appendix C describes an analysis suggesting that groups of participants in the 

negative-attributes condition used different ordering criteria but that the inverse decision-

making model does provide accurate predictions for a majority of participants.

The likelihood and marginal likelihood models do not perform well in either condition (ρs = 

−0.51 [−0.70,−0.26] and 0.74 [0.57, 0.85], respectively, for positive attributes; ρs = −0.28 

[−0.52, 0.01] and 0.59 [0.36, 0.75] for negative attributes). Although the marginal likelihood 

model captures some of the general trends in the data, it makes several major errors. For 

example, Choice 7 provides no information about a preference for X because it appears in 

every option. The choice is “surprising” however, because a decision maker choosing at 

random from these options would make the observed choice only 1/4 of the time. The 

likelihood model performs even worse, primarily because it does not take into account 

alternative explanations for why an option was chosen, such as the fact that no other options 

were available (e.g., Choice 1). The poor performance of these two models suggests that 

both the likelihood p(c|u,A) and marginal likelihood p(c|A) are important components of the 

inverse decision-making model.

Alternative decision functions

The inverse decision-making model predictions considered so far have been based on the 

logit choice model of Equation 1. To test whether the model predictions depend critically on 

the choice of decision function, we generated inverse decision-making model predictions 

using two common alternative decision functions.

Probit model—The logit model is limited in some circumstances (Shafto & Bonawitz, 

2015). For example, it does not allow for the assumption that utilities for certain attributes 

are correlated. A common alternative that addresses this limitation is the probit model. The 
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logit and probit models differ in the assumptions they make about unobserved factors that 

contribute to utility. The logit model assumes that unobserved utilities are distributed 

according to a Gumbel distribution and the probit model assumes that unobserved utilities 

are distributed according to a normal distribution (Train, 2009). Unlike the logit model, the 

probit model decision function does not have a closed-form solution, but can be 

approximated using Monte Carlo simulation. We generated probit model predictions using 

the procedure described in Train (2009, Ch. 5).

Linear probability model—An alternative to both the logit and probit models is to 

simply assume that choice probabilities increase as a linear function of utility. One simple 

way to capture this assumption is as follows:

(7)

Note that this model is identical to the logit model in Equation 1, without the exponential 

function applied to utilities. One limitation of the model above is that it produces 

nonsensical predictions when utilities are negative. For example, consider a choice with two 

options and suppose that the utility for Option 1 is −1 and the utility for Option 2 is −2. 

Applying Equation 7 to these utilities would predict a higher choice probability for Option 2, 

even though this violates the commonsense expectation that a decision maker would be more 

likely to choose the option with higher (less negative) utility. Therefore, we modified the 

model when dealing with negative attributes as follows:

(8)

The first condition prevents setting the choice probability to 0 when there is only one option.

Model performance—We generated model predictions for Experiment 1 using the probit 

model and the linear probability model, with the absolute utility criterion. The predictions 

were based on 20 million samples for the linear probability model and 200,000 samples for 

the probit model5.

Table 4 compares the performance of the probit and linear probability models to the absolute 

utility logit model discussed earlier. The table shows that all models, except for the linear 

probability model in the negative-attributes condition, predicted people’s judgments well. 

The fact that the model predictions do not appear to depend critically on either the sorting 

criterion (absolute versus relative utility) or the form of the decision function strongly 

suggests that the strength of the inverse decision-making model is in the basic inverse 

decision-making assumption, rather than specific assumptions needed to specify an 

5Because each sample of the probit model requires its own Monte Carlo simulation, it was not feasible to generate as many samples.
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implementation of the model. Therefore, for brevity, for the remainder of this paper, we will 

only show and discuss results for the inverse decision-making model using the logit decision 

function and the absolute utility sorting criterion.

An alternative feature-based model

In the Introduction, we contrasted the inverse decision-making approach with a feature-

based approach. Recall that the feature-based approach specifies an inference function that 

maps choice features to preferences (see Figure 1). In this section, we consider whether a 

feature-based model could account for our results in Experiment 1.

We began by generating a set of 10 features relevant for inferring someone’s preferences. 

Two features were previously identified by Newtson (1974). We generated the remaining 

features by attempting to include all other possible features that seemed both simple and 

relevant. The full set of features is shown in Table 5. The table includes a description of each 

feature and its type (integer or binary). The last two columns of the table indicate the 

direction of the feature that would indicate a stronger preference for X, depending on 

whether attributes are positive or negative. For example, the first feature is the number of 

chosen attributes. When the attributes are all positive, like pieces of candy, the more 

attributes there are in the decision maker’s chosen option, the less evidence there is that she 

was interested specifically in X. When the attributes are all negative, like electric shocks, 

choosing more attributes suggests that the chosen attributes are especially tolerable.

Can a feature-based model perform as well as the inverse decision-making model?

We used this set of features to generate predictions using a standard linear regression model, 

which we will refer to as the weighted feature model. Specifically, we fit weights on the 

features in Table 5 to best predict participants’ mean rankings. Our goal was to directly 

compare the performance of the weighted feature model to the inverse decision-making 

model. To do this, we trained the weighted feature model using every subset of features in 

Table 5 to determine the minimum number of features needed by the model to achieve the 

same level of predictive accuracy as the inverse decision-making model, as measured by 

Spearman rank correlation. For the positive-attributes condition, the weighted feature model 

could not outperform the inverse decision-making model even when all ten features were 

included. For the negative-attributes condition, the weighted feature model needed only two 

features to outperform the inverse decision-making model.

The weighted feature model has many fitted parameters. By contrast, the inverse decision-

making model has no fitted parameters. Therefore, the weighted feature model has a 

considerable accuracy advantage over the inverse decision-making model. To account for the 

possibility of over-fitting with the weighted feature model, we conducted a second analysis 

in which we randomly partitioned the data into training (n = 37), validation (n = 5), and test 

(n = 5) sets. We used the training set to train the weighted feature model using every subset 

of features. We then chose the features and corresponding fitted weights that produced the 

best performance, as measured by Spearman rank correlation, on the validation set. Finally, 

we used these features and weights to generate predictions for the test set. We repeated this 

analysis 500 times, each time with different randomly selected partition. For the positive-
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attributes condition, the mean Spearman rank correlation on the test set was 0.77 (SD = 

0.26). For the negative-attributes condition, the mean rank correlation was 0.69 (SD = 0.34). 

For comparison, we computed Spearman rank correlations using the predictions of the 

inverse decision-making model on the same test set. The corresponding mean rank 

correlations were 0.98 (SD = 0.02) and 0.90 (SD = 0.11). These analyses suggest that the 

weighted feature model can perform well, but is susceptible to over-fitting6. By contrast, the 

inverse decision-making model predicts people’s judgments well and is not fitted at all.

Are deviations from the inverse decision-making approach explained by a feature-based 
model?

A separate question is whether there is any variance in people’s judgments that is not 

accounted for by the inverse decision-making model but that could be accounted for by 

features in Table 5. For example, Figure 4 shows residual plots depicting the prediction error 

for the inverse decision-making model predictions. Particularly in the negative-attributes 

condition (Figure 4b), the negative correlation in the plot suggests there are other sources of 

variance that the model does not account for.

To test for this possibility, we performed a linear regression on the prediction errors in 

Figure 4 using the features in Table 5 as predictors. Features that were statistically 

significant predictors after applying the Bonferroni correction are shown in Table 6. The fact 

that some features account for variance in the prediction errors of the inverse decision-

making model suggests that some participants may have used feature-based strategies that 

are not entirely consistent with the model. To explore this possibility further, we now 

analyze the judgments of individual participants.

Individual differences

To explore individual differences, we repeated the first weighted feature analysis, described 

earlier, for individual participant rankings. That is, we fit the weighted feature model to each 

participant’s rankings individually, using the same procedure described above. The results of 

this analysis are shown in Figure 5. Figure 5a shows the results for the positive-attributes 

condition. For a majority of the participants in that condition, at least four features were 

needed to match the performance of the inverse decision-making model. For 13 of 41 

participants in that condition, the weighted feature model could not outperform the inverse 

decision-making model even when all ten features were included. Figure 5b shows the 

results for the negative-attributes condition. The weighted feature model performed better in 

this condition, where 21 of 39 participants were better fit using only one feature. For 7 

participants, at least four features were needed to match the performance of the inverse 

decision-making model, including 5 participants for which the weighted feature model could 

not outperform the inverse decision-making model even when all ten features were included.

6We also considered a version of the weighted feature model that used lasso regression to select features and fit feature weights. Lasso 
regression includes a regularization term that produces a bias for fewer features and smaller weights, making it less susceptible to 
over-fitting. We used the validation set to choose the magnitude of the regularization parameter λ. We then generated predictions for 
the test set. For the positive-attributes condition, the mean Spearman rank correlation on the test set was 0.85 (SD = 0.21). For the 
negative-attributes condition, the mean rank correlation was 0.88 (SD = 0.20).
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Summary

These analyses do not discredit the feature-based approach, but they do highlight three 

limitations of the approach. First, as we noted earlier, the approach provides no principled 

way to enumerate the set of relevant features; we generated the features in Table 5 though 

brainstorming and discussion. Second, our analyses suggest that a large number of features 

is often needed to provide a close fit to people’s judgments, especially for judgments about 

attributes with positive utilities. Third, the feature-based approach provides no principled 

way to identify which features are most important. For example, even though 21 participants 

in the negative-attributes condition were better fit using only a single feature, the best-fitting 

single feature varied from participant to participant. In total, each of five different features 

was the best-fitting single feature for at least one of the 21 participants. In contrast to these 

limitations of the feature-based approach, the inverse decision-making approach provides a 

parsimonious and principled account of our data.

Experiment 2: Accounting for previous results

Although Experiment 1 is more comprehensive than previous studies of preference learning, 

it used a novel preference learning paradigm unlike those used in previous studies. We 

conducted a second experiment to show that our approach can account for previous 

psychological data and can resolve an issue not addressed by previous theories of preference 

learning.

As noted earlier, previous researchers have highlighted the importance of non-common 

attributes. Newtson (1974) proposed two versions of this principle. First, the fewer non-

common attributes there are in a chosen option, the more certain an observer can be that the 

decision maker wanted a specific attribute. For example, an observer can be more certain 

that a decision maker wanted candy X if she chose a bag containing just candy X than if she 

chose a bag containing candy X and another piece of candy. Second, the more non-common 

attributes there are in the forgone (i.e., non-chosen) options, the more certain an observer 

can be that the decision maker wanted a specific attribute in the chosen option. For example, 

an observer can be more certain that a decision maker wanted candy X if she forwent many 

bags with different candies than if she forwent just one bag.

Both of these principles follow from the inverse decision-making model. When there are 

fewer attributes in a chosen option, the observed choice would only be probable if the 

decision maker assigned high utility to the chosen attributes. Similarly, when there are more 

attributes in the forgone options, the observed choice would only be probable if the decision 

maker assigned high utility to the chosen attributes.

Newtson (1974) conducted the first experimental test of these principles. He presented 

participants with choices made by two people who both chose between three options for 

what to do on a Friday night: babysit for a professor, go to the beach with some fraternity 

brothers, or fill in for a friend working in the library. The “attributes” of these options were 

varied across conditions. The conditions are shown in Figure 6. In each row of the figure, 

one person made the choice on the left and the other person made the choice on the right. 

For clarity, we will refer to the person on the left as Lee and the person on the right as 
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Rachel7. For example, Figure 6a shows a condition in which Lee had two possible reasons 

for babysitting: to ingratiate himself with the professor (attribute X) and to get some extra 

studying done (attribute A). In contrast, Rachel had only one possible reason for babysitting: 

to ingratiate herself with the professor. Participants were asked to make inferences about 

which person is more ingratiating.

The comparisons used by Newtson (1974) included all conditions in Figure 6 except 6e and 

6f. The six conditions Newtson used were generated by systematically exploring the two 

versions of the principle of non-common attributes. Conditions 6a through 6d are cases in 

which only one version of the principle is relevant. For example, in 6a, the number of 

attributes forgone is the same for Lee and Rachel, and their choices differ only with respect 

to the number of chosen attributes. As a result, the principle of non-common attributes 

makes clear predictions in these four conditions. In condition 6g, both versions of the 

principle are relevant, and they both predict that Rachel values attribute X more than Lee. 

Therefore the principle of non-common attributes again makes a clear prediction.

Condition 6h is especially interesting because it pits the two versions of the principle against 

each other. In this condition, Lee chose more attributes than Rachel, but also forwent more 

attributes. As a result, one principle (more non-common attributes in the forgone options) 

suggests that Lee values attribute X more, and one principle (fewer non-common attributes 

in the chosen option) suggests that Rachel values attribute X more. Because Newtson’s 

principles were not defined in formal terms, he could not predict which principle should 

carry more weight in this case. As we explain later, however, the inverse decision-making 

model predicts that Rachel’s preference for X is probably stronger than Lee’s. In 

Experiment 2, we replicated and extended Newtson’s experiment to show that the inverse 

decision-making model can account for his results and more.

Method

Participants—160 participants completed the experiment online on Amazon Mechanical 

Turk. They were paid for their participation.

Materials and Procedure—There were eight between-subjects conditions. Each 

condition is represented by one row in Figure 6. Each row shows a pair of choices that vary 

with respect to one or two of four features. In addition to the six conditions used by Newtson 

(1974), we included two conditions that varied the number of options presented to each 

person. One of these new conditions (6f) is a case in which a person chose an option on 

three successive occasions. As in the positive-attributes condition of Experiment 1, the 

attributes for all conditions were pieces of candy.

We randomly assigned 20 participants to each condition. Each participant saw a pair of 

choices made by two different people. The positions of the two choices on the screen (left or 

right) were randomized across participants. For the condition in which the decision maker 

made three choices, participants read that the person chose the bag containing candy X on 

three separate occasions.

7Newtson (1974) used the names Alex and Bob.
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Participants answered the following question: “Based only on the above information, which 

person do you think likes candy X more?” They provided their responses on a numerical 

scale from 1 (Lee likes candy X more) to 8 (Rachel likes candy X more). The names of the 

decision makers were different in each condition and the polarity of the scale was reversed 

for half of the participants.

Model implementation—We generated model predictions in the same way as for 

Experiment 1. For the condition in which multiple choices are observed, we assumed that 

choices are independent, such that p(c|u,A) = Πi p(ci|u,A).

Results

Figure 6 shows, for each condition, the mean human ratings compared with the inverse 

decision-making model predictions. In the figure, the human ratings are rescaled so that the 

midpoint of the scale is 0. The model predictions were produced by computing the 

difference between E(ux) for each choice. Consistent with the predictions of the inverse 

decision-making model, participants judged in every case that the choice on the right 

provides better evidence of a preference for X. We performed one-tailed t-tests to test 

whether the means in each condition were significantly greater than 0. The results were 

statistically significant in every condition (p = .025 for the condition in Figure 6d; p = 0.010 

for condition 6h; p < .001 for all other conditions). The direction of participants’ judgments 

from all conditions in Newtson’s (1974) experiment match his results.

Our results replicate the finding that Newtson (1974) could not explain, shown in Figure 6h. 

To illustrate how the inverse decision-making model explains this result, consider again a 

simpler setting in which all utilities are drawn from the set {1, 2}. Suppose again that Lee 

made the choice on the left and Rachel made the choice on the right. We will consider the 

relative probability that Rachel assigns a probability of 2 to X ( ) compared to Lee 

( ). This can be quantified by the following odds ratio:

where the ratio on the right-hand side follows from an application of Bayes’s rule. Consider 

the ratio on the right. If Rachel assigns a utility of 2, the highest possible utility to X, there is 

a reasonably high probability that she will choose {X} over {C} or {E} because the other 

two options cannot have higher utility than {X}. However, even if Lee assigns the highest 

possible utility to X, the probability that he will choose {X,A} over {B,C} and {D,E} is 

lower than it is for Rachel because it is possible for one of the other options to have higher 

total utility—for example, if Lee assigns a utility of 1 to A, and a utility of 2 to both B and 

C. It follows that the ratio on the right exceeds one and therefore the ratio on the left exceeds 

one, resulting in a slightly stronger preference inference for Rachel.

Newtson was not primarily concerned with comparing the results in individual conditions 

and his data do not support robust conclusions about the magnitudes of effects for different 

conditions. Our results are similarly uninformative regarding differences between 
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conditions. We performed two-sample t-tests for all pairs of conditions (28 total 

comparisons). After applying the Bonferroni correction for multiple comparisons, no 

comparisons were statistically significant at α = 0.0018. Figure 4 shows that the inverse 

decision-making model does make predictions about these magnitudes, but experimental 

designs more sensitive than ours and Newtson’s would be needed to test these predictions.

Experiment 3: Utility-matching vs. utility-maximizing

The inverse decision-making model assumes that choices are made probabilistically to 

account for possible hidden factors or attributes that contribute to a decision maker’s choice. 

An alternative model might assume that there are no hidden factors, and that decision 

makers always maximize utility with respect to the observed attributes alone. We refer to 

this alternative as the maximizing model. For Experiments 1 and 2, the maximizing model 

generates predictions that closely match the predictions shown in Figure 3. We therefore 

designed a third experiment to explore whether people’s inferences are more consistent with 

the maximizing model or a model that assumes a probabilistic choice function.

As in Experiment 2, we presented participants with eight pairs of choices and asked them to 

judge which choice provides better evidence of a preference for X. Figure 7 shows the pairs 

of choices we used. For each pair of choices, the inverse decision-making model predicts 

that the choice on the right provides stronger evidence of a preference for X, but the 

maximizing model predicts that the two choices provide equal evidence. For example, 7a 

and 7b differ only in the number of times an identical choice is made. If Rachel always 

makes choices to maximize her utility, then observing Rachel make the same choice more 

than once cannot provide any new information about her preferences. Thus, if participants 

judge that the choices on the right provide stronger evidence of a preference for X, they 

probably are not assuming that Rachel always makes choices this way.

Method

Participants—30 participants completed the experiment online on Amazon Mechanical 

Turk. They were paid for their participation.

Materials and Procedure—The design and procedure was nearly identical to Experiment 

2, except that the experiment was run within-subjects rather than between-subjects. That is, 

all 30 participants made a judgment for every pair of choices in Figure 7. The choices were 

presented in a random order. Unlike in Experiment 2, participants made their judgments on a 

1 to 7 scale to allow them to express a belief that the choices provided equal evidence of a 

preference.

Maximizing model—The maximizing model is identical to the inverse decision-making 

model except that, instead of using Equation 1, the maximizing model assumes that choices 

are made to maximize utility:
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Results

Figure 7 shows, for each condition, the mean human ratings compared with the inverse 

decision-making model predictions. In the figure, the human ratings are rescaled so that the 

midpoint of the scale is 0. Consistent with the predictions of the inverse decision-making 

model, but not the maximizing model, participants judged in every case that the choice on 

the right provides better evidence of a preference for X. We performed one-tailed t-tests to 

test whether the means were significantly greater than 0. The results were statistically 

significant in every condition (p = .033 for the condition in Figure 6g; p < .001 for all other 

conditions). These judgments are consistent with the assumptions of the inverse decision-

making model but not the maximizing model.

Discussion

Across three experiments, we found that people’s inferences about other people’s choices 

were consistent with the inverse decision-making approach. Our results are consistent with 

previous studies that have tested predictions of the inverse decision-making approach 

(Bergen et al., 2010; Lucas et al., 2014). However, our results go further than past studies by 

offering the most comprehensive test to date of an inverse decision-making model as a 

psychological account of preference learning. In addition to accounting for our own data, the 

model accounts for previous data and also provides an explanation for a previously 

unexplained result (Newtson, 1974).

Unlike previous feature-based accounts, inverse decision-making does not directly specify 

inference principles that map choices to preferences. Instead, it inverts a decision function 

that maps preferences to choices. Compared to the feature-based approach, our work 

suggests that the inverse decision-making approach provides a more parsimonious account 

of how people infer preferences. Specifically, inference principles proposed by earlier 

accounts, like the principle of non-common effects (Jones & Davis, 1965; Newtson, 1974), 

emerge naturally under the inverse decision-making approach. Moreover, we found that for 

many individuals, a feature-based model would need to include many features to match the 

performance of the inverse decision-making model.

Utility priors

In our tasks, we provided no information about the relative utilities of different attributes. 

Accordingly, in the inverse decision-making model, we assumed that the prior probability 

distribution for utilities of different attributes were the same. As we acknowledged earlier, 

however, in some real-world situations, some attributes tend to be more liked than others. 

The inverse decision-making model predicts that differences in expectations about the 

utilities of different attributes should affect inferences about an individual’s preferences. 

Thus, one question for future work is whether this prediction is true of people’s inferences.

A second question is where people’s prior beliefs about utilities for different attributes come 

from. One hypothesis is that people base these beliefs on their own preferences (Ames, 

2004; Epley, Keysar, Boven, & Gilovich, 2004; Ross, Greene, & House, 1977). Orhun and 

Urminsky (2013) studied whether this egocentrism hypothesis could account for people’s 
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inferences about other people’s political attitudes from their choices. The researchers found 

that people’s attitudes toward political candidates influenced their judgments of others’ 

attitudes toward the same candidates, even when other people voted differently than they 

did. Orhun and Urminsky (2013) focused only on political attitudes, but future work can 

explore whether egocentrism can explain people’s inferences about other types of 

preferences.

Utility functions

Our results provide support for the inverse decision-making approach in general, but future 

work is needed to clarify the specific assumptions people make about how others make 

choices. We implemented an inverse decision-making model that treats positive and negative 

utilities the same way and assumes that utilities are additive. However, neither of these 

assumptions is fundamental to the inverse decision-making approach and there are reasons 

to question both assumptions.

First, data from the negative-attributes condition of Experiment 1 suggest that people may 

reason differently about choices involving positive versus negative utilities. In particular, 

even though the inverse decision-making model predicted most individual participants’ 

judgments well in the positive-attributes condition, the model did not perform as well as a 

simple feature-based model at predicting many participants’ judgments in the negative-

attributes condition. Although our experiment focused on reasoning about other people’s 

choices, this result is consistent with research showing that people treat gains and losses 

differently when making choices (Kahneman & Tversky, 1979) and predicting future 

feelings (Kermer, Driver-Linn, Wilson, & Gilbert, 2006). It would be possible to combine 

the inverse decision-making approach with a more psychologically accurate account of 

subjective utility. Doing so might better account for people’s inferences about choices 

involving negative utilities.

Second, we made several assumptions that were reasonable for our tasks but that are clearly 

violated in other situations. For one, the logit model makes the independence of irrelevant 

alternatives (IIA) assumption—that the relative choice probabilities between options should 

be unaffected by the introduction of additional options. In some situations, this assumption 

is incorrect. For example, consider the classic red bus/blue bus problem (McFadden, 1974). 

A commuter has a choice between driving a car or taking a red bus. Then a third option, a 

blue bus, is introduced. Because the blue bus and red bus are identical from the commuter’s 

standpoint, whatever choice probability the commuter initially assigned to the blue bus will 

be split evenly between the blue and red buses once the red bus option is introduced. In other 

words, the addition of the third option changes the relative choice probabilities of the first 

two options—a violation of the IIA assumption. After observing that the commuter chose to 

drive, our model would incorrectly infer a stronger preference for driving if there were two 

bus alternatives than if there were just one. Other decision functions, like the probit model, 

overcome this limitation by allowing for attributes to be correlated or substituted. As we 

showed earlier, it is straightforward to incorporate alternative decision functions into the 

inverse decision-making approach.
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Another assumption we made was that utilities are additive. In some real-world domains, 

this assumption is also clearly violated. For example, a Blu-ray disc and a Blu-ray player are 

complements: each item has little value without the other. As a result, the utility of both the 

disc and the player together will exceed the sum of utilities of each item separately. In some 

domains, interactions between attributes are complex. For example, sometimes combining 

two ingredients (e.g., chips and salsa) tastes better than either ingredient alone; other times, 

combining two ingredients (e.g., ice cream and tomatoes) tastes worse than either ingredient 

alone. Knowledge of complementary attributes and interactions between attributes could 

affect people’s preference inferences. For example, suppose you observe a decision maker 

choose an option containing attributes X, A, and B. If attributes A and B are complements, 

this choice should provide less evidence that the decision maker likes attribute X than if 

attributes A and B are not complements.

Researchers have developed utility functions to account for cases like these (Tversky & 

Sattath, 1979; Gershman, Malmaud, & Tenenbaum, 2017). Once again, such functions can 

be straightforwardly incorporated into the inverse decision-making approach. Empirical 

work will be needed, however, to study whether people’s inferences about other people’s 

preferences match the predictions of the inverse decision-making approach in these more 

complex domains. One study by Bergen et al. (2010) found evidence that people do take 

some non-additive utility assumptions into account when inferring other people’s 

preferences and predicting their future choices, but more work will be needed to thoroughly 

test this hypothesis.

Probabilistic decision functions

Our results from Experiment 3 suggest that people do not necessarily expect others to 

maximize utility. This conclusion is consistent with many decision functions, like the logit 

choice model in our inverse decision-making model, which assumes that choices are made 

probabilistically. A probabilistic decision function accounts for hidden factors that might 

affect someone’s choice. For example, when choosing between candies, factors like calorie 

counts, a preference for variety, or a desire not to be wasteful might all contribute to 

someone’s choice. In other contexts, however, there is little reason to assume that hidden 

factors are present. For example, decision makers would likely not choose between $10 and 

$20 probabilistically in proportion to the options’ utilities. Moreover, unlike in our 

experiments, people would likely not expect others to choose probabilistically between these 

two options. Future work can explore how expectations about probabilistic versus 

deterministic choice vary across contexts.

Conclusion

Our work is related to a growing body of research using probabilistic inference and inverse 

decision-making to explain social inferences (Zaki, 2013). This literature includes recent 

probabilistic accounts of emotion inference (Ong, Zaki, & Goodman, 2015) and attitude 

attribution (Walker, Smith, & Vul, 2015), and inverse decision-making accounts of belief 

and goal inference (Baker et al., 2009; Ullman et al., 2009; Tauber & Steyvers, 2011; Baker 

& Tenenbaum, 2014; Wu et al., 2014; Jern & Kemp, 2015; Jara-Ettinger et al., 2016; Baker 

et al., 2017). Although these accounts rely on different formal assumptions, they are all 
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based on the idea that people interpret social behavior by inverting a model of the process 

that produced the behavior. Our work therefore adds to a growing body of research 

suggesting that inverse decision-making is a powerful psychological mechanism for social 

inference.
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Appendix A. Computing model predictions

In the main text, we used a simpler setting to illustrate how to generate model predictions for 

the four models (absolute utility, relative utility, likelihood, and marginal likelihood). In this 

Appendix, we explain how to generalize the modeling procedure used in the examples to 

generate the actual model predictions in the main text. We also provide a table of complete 

model predictions and results from Experiment 1.

Monte Carlo simulation methods

The model predictions for all experiments assumed a continuous normal prior probability 

distribution over utilities, unlike the simple discrete prior probability distributions used in 

the illustrative examples. We generated the model predictions in the main text using Monte 

Carlo simulation.

We drew n = 20 million utility samples from the prior probability distribution over utilities. 

For each sample ui and each choice, we computed p(c|ui,A). Averaging these computations 

over samples produces an approximation of p(c|A). Averaging these computations only for 

samples in which ux has the greatest utility produces an approximation of p(c|uix is 

greatest,A), where uix denotes ux in sample ui. We used the first approximation to generate 

predictions for the marginal likelihood model. We used the second approximation to 

generate predictions for the likelihood model. We used both approximations to generate 

predictions for the absolute and relative utility models. Specifically, absolute utility 

predictions were approximated as follows:
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Relative utility model predictions were approximated as follows:

Complete Experiment 1 results

Table A1

Mean human fractional rankings and the output of the model computations for the positive-

attributes condition of Experiment 1.

Human Absolute utility Relative utility Likelihood Marginal likelihood

Choice Mean (SD) E(ux|c,A) p(ux is greatest|c,A) p(c|ux is greatest,A) 1/p(c|A)

1 4.2 (2.9) 4.00 0.20 1.00 1.00

2 4.5 (2.6) 4.00 0.20 1.00 1.00

3 4.9 (2.6) 4.00 0.20 1.00 1.00

4 5.4 (3.3) 4.00 0.20 1.00 1.00

5 6.3 (6.7) 4.00 0.20 1.00 1.00

6 10.3 (5.7) 4.00 0.20 0.50 2.00

7 10.5 (7.9) 4.00 0.20 0.25 4.00

8 10.7 (4.5) 4.00 0.20 0.50 2.00

9 11.2 (6.4) 4.00 0.20 0.33 3.00

10 11.2 (4.8) 4.00 0.20 0.50 2.00

11 11.3 (5.6) 4.00 0.20 0.50 2.00

12 12.0 (6.6) 4.00 0.21 0.29 3.53

13 12.3 (7.7) 4.00 0.20 0.33 3.00

14 12.6 (4.6) 4.00 0.20 1.00 1.00

15 15.1 (4.6) 4.01 0.20 1.00 1.01

16 17.9 (5.8) 4.12 0.22 0.99 1.10

17 18.0 (5.7) 4.03 0.20 1.00 1.02

18 18.3 (5.7) 4.14 0.22 0.97 1.16

19 22.3 (7.2) 4.19 0.23 0.97 1.18

20 22.7 (5.9) 4.37 0.28 0.44 3.17

21 22.7 (5.4) 4.48 0.31 0.77 2.00

22 22.8 (8.5) 4.47 0.30 0.30 4.94

23 23.0 (8.3) 4.25 0.24 0.96 1.25

24 23.1 (6.8) 4.52 0.31 0.44 3.53

25 23.8 (4.9) 4.52 0.31 0.44 3.53

26 24.0 (4.5) 4.48 0.31 0.77 2.00

27 26.1 (8.9) 4.61 0.33 0.83 2.00

28 26.8 (6.0) 4.51 0.32 0.77 2.06

29 28.1 (7.4) 4.76 0.39 0.39 4.94

30 28.5 (4.6) 4.61 0.33 0.83 2.00

31 28.6 (6.6) 4.61 0.33 0.83 2.00
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Human Absolute utility Relative utility Likelihood Marginal likelihood

Choice Mean (SD) E(ux|c,A) p(ux is greatest|c,A) p(c|ux is greatest,A) 1/p(c|A)

32 29.2 (4.0) 4.84 0.42 0.66 3.17

33 29.5 (9.1) 4.88 0.43 0.29 7.40

34 30.5 (9.1) 4.61 0.33 0.83 2.00

35 33.0 (5.4) 4.88 0.43 0.71 3.00

36 33.8 (3.2) 4.88 0.43 0.71 3.00

37 37.0 (4.4) 5.05 0.50 0.62 4.00

38 37.7 (4.6) 4.88 0.43 0.71 3.00

39 37.8 (6.4) 5.16 0.55 0.26 10.74

40 40.6 (3.2) 5.05 0.50 0.62 4.00

41 40.6 (2.2) 5.30 0.61 0.24 12.99

42 42.3 (3.4) 5.16 0.55 0.55 5.00

43 42.5 (5.0) 5.52 0.73 0.03 109.14

44 42.5 (3.9) 5.57 0.77 0.11 36.20

45 43.2 (2.6) 5.38 0.66 0.22 15.03

46 44.1 (2.5) 5.59 0.77 0.03 119.41

47 44.4 (5.3) 5.73 0.90 0.00 1555.72

Table A2

Mean human fractional rankings and the output of the model computations for the negative-

attributes condition of Experiment 1.

Human Absolute utility Relative utility Likelihood Marginal likelihood

Choice Mean (SD) E(ux|c,A) p(ux is greatest|c,A) p(c|ux is greatest,A) 1/p(c|A)

1 4.2 (2.6) −4.00 0.20 1.00 1.00

2 5.4 (3.4) −4.00 0.20 1.00 1.00

3 5.5 (4.3) −4.00 0.20 1.00 1.00

4 7.6 (8.9) −4.00 0.20 1.00 1.00

5 7.6 (11.3) −4.00 0.20 1.00 1.00

6 10.4 (6.8) −4.00 0.20 0.50 2.00

7 13.2 (8.8) −4.00 0.20 0.25 4.00

8 10.1 (4.7) −4.00 0.20 0.50 2.00

9 12.4 (7.0) −4.00 0.20 0.33 3.00

10 11.4 (6.6) −4.00 0.20 0.50 2.00

11 12.2 (8.1) −4.00 0.20 0.50 2.00

12 11.7 (6.0) −4.00 0.21 0.29 3.53

13 12.9 (7.3) −4.00 0.20 0.33 3.00

14 28.5 (14.4) −2.27 0.25 0.00 1550.36

15 28.2 (11.6) −2.48 0.32 0.01 109.30

16 30.2 (9.1) −2.84 0.38 0.18 10.74

17 33.0 (11.0) −2.29 0.33 0.00 333.71

18 26.2 (11.9) −3.12 0.32 0.22 7.40
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Human Absolute utility Relative utility Likelihood Marginal likelihood

Choice Mean (SD) E(ux|c,A) p(ux is greatest|c,A) p(c|ux is greatest,A) 1/p(c|A)

19 33.0 (8.9) −2.57 0.43 0.09 24.65

20 21.7 (5.7) −3.63 0.28 0.44 3.17

21 19.6 (7.2) −3.52 0.31 0.77 2.00

22 23.4 (8.7) −3.53 0.30 0.30 4.94

23 38.7 (8.2) −2.45 0.46 0.06 40.31

24 22.5 (8.0) −3.48 0.31 0.44 3.53

25 24.3 (5.8) −3.48 0.31 0.44 3.53

26 22.8 (7.1) −3.52 0.31 0.77 2.00

27 26.3 (11.4) −3.39 0.33 0.83 2.00

28 31.7 (7.2) −2.79 0.41 0.17 12.07

29 28.8 (9.4) −3.24 0.39 0.39 4.94

30 27.7 (8.5) −3.39 0.33 0.83 2.00

31 26.0 (8.7) −3.39 0.33 0.83 2.00

32 29.8 (5.6) −3.16 0.42 0.66 3.17

33 21.3 (6.3) −3.86 0.23 0.99 1.15

34 29.9 (11.1) −3.39 0.33 0.83 2.00

35 33.5 (8.9) −3.12 0.43 0.71 3.00

36 34.3 (7.6) −3.12 0.43 0.71 3.00

37 38.4 (7.8) −2.95 0.50 0.62 4.00

38 38.0 (7.4) −3.12 0.43 0.71 3.00

39 24.2 (11.7) −3.88 0.22 1.00 1.10

40 42.0 (6.6) −2.95 0.50 0.62 4.00

41 33.0 (8.3) −3.36 0.34 0.83 2.08

42 43.1 (7.0) −2.84 0.55 0.55 5.00

43 24.0 (11.7) −3.99 0.20 1.00 1.01

44 26.8 (10.3) −3.79 0.24 0.99 1.20

45 37.0 (8.9) −3.10 0.44 0.71 3.08

46 31.9 (7.6) −3.39 0.33 0.83 2.01

47 23.5 (13.0) −4.00 0.20 1.00 1.00

Appendix B. Experiment 1 model parameter sensitivity analysis

The model predictions were generated assuming a (μ = 4, σ = 2) prior probability 

distribution on each utility for positive attributes and a  (μ = −4, σ = 2) prior probability 

distribution on each utility for negative attributes. To test how strongly our results depended 

on the parameters of these distributions, we generated model predictions using a variety of 

different parameter values. First, we generated a series of predictions in which we held σ = 2 

constant and varied μ from σ/4 to 12σ (−σ/4 to −12σ for negative attributes) in increments of 

0.25. Second, we generated a series of predictions in which we held μ = 4 constant (μ = −4 

for negative attributes) and varied σ from |μ|/16 to 4|μ| in increments of 0.25. In all cases, we 

generated predictions for the absolute utility model, the relative utility model, the likelihood 
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model, and the marginal likelihood model. The predictions were based on 500,000 samples 

each.

The results of these analyses are shown in Figure B1. As the figure shows, the predictions of 

the four models were largely insensitive to the settings of the prior probability distribution 

parameters. Therefore, we used (μ = 4, σ = 2) and (μ = −4, σ = 2) to generate all the 

model predictions in the main text.

Figure B1. 
Model parameter sensitivity analysis. The plots show a comparison between model 

predictions and data from Experiment 1 for various settings of the prior probability 

parameters. ρ is the Spearman rank correlation coefficients between the model predictions 

and data.

Appendix C. Experiment 1 individual differences

To better understand the poorer performance of the inverse decision-making models in the 

negative-attributes condition of Experiment 1, we performed a hierarchical clustering 

analysis of the participants in both conditions. We used rank correlation as a distance metric 

and average link clustering to build the clusters. We cut the resulting dendrograms at 0.8. We 

chose this threshold because it produced the most informative clustering for the negative-

attributes condition. Specifically, a higher threshold produced many more, smaller clusters, 

and a lower threshold resulted in fewer, larger clusters that appeared to obscure real 

differences in the data. Participants’ rankings in the positive-attributes condition were highly 
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correlated: cutting the dendrogram at 0.8 resulted in one cluster that included 32 

participants, one cluster that included 7 participants, and 2 singleton clusters.

Participants’ rankings in the negative-attributes condition were more varied: 29 participants 

in this condition could be grouped into one of three clusters, with the remaining participants 

in clusters of one or two. We analyzed the three largest clusters independently, excluding the 

remaining 10 participants who could not be naturally grouped. We compared the mean 

rankings of each cluster to the predictions of the absolute and relative utility models. Figure 

C1 shows that the mean rankings of participants in Cluster 1 (n = 10) were better fit by the 

absolute utility model (absolute utility model ρ = 0.97 [0.94, 0.98]; relative utility model ρ = 

0.85 [0.74, 0.91]), the mean rankings of participants in Cluster 2 (n = 13) were better fit by 

the relative utility model (absolute utility model ρ = 0.85 [0.74, 0.91]; relative utility model 

ρ = 0.96 [0.92, 0.98]), and the mean rankings of participants in Cluster 3 (n = 6) were not 

well fit by either the absolute utility model (ρ = 0.66 [0.46, 0.80]) or the relative utility 

model (ρ = 0.77 [0.61, 0.86]). In sum, about half of participants’ rankings (n = 23) were well 

predicted by either the absolute or relative utility versions of the inverse decision-making 

model.

Figure C1. 
Comparison of absolute and relative utility model predictions for four clusters of participants 

in the negative-attributes condition of Experiment 1.

Jern et al. Page 31

Cognition. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• We propose that people learn others’ preferences by inverting a decision-

making model

• In three experiments, participants inferred people’s preferences from their 

choices

• Inverse decision-making provided a strong account of participants’ inferences

• Inverse decision-making is more parsimonious and principled than other 

accounts
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Figure 1. 
Two approaches to preference learning applied to Alice’s choice of boxed lunch. In both 

panels, the shaded nodes represent observed information and the unshaded nodes represent 

inferred information. (a) The inverse decision-making approach specifies a decision function 

that maps Alice’s preferences and choice options to her choice and then inverts this function 

to infer the preferences that led to her choice. (b) The feature-based approach maps a set of 

features directly to the preferences that led to Alice’s choice.

Jern et al. Page 33

Cognition. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
The set of 47 choices used in Experiment 1. In each case, a decision maker chose one of 

between 1–5 options. The columns represent different options; different letters represent 

different attributes. The chosen option is shaded. The choices are ordered by participants’ 

mean rankings from weakest evidence to strongest evidence of a preference for attribute X.
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Figure 3. 
Experiment 1 results. The plots show mean human and model rankings of the choices in 

Figure 2 from weakest evidence to strongest evidence of a preference for X for (a) positive 

attributes and (b) negative attributes. Error bars indicate standard errors and the number 

labels refer to the choices in Figure 2. The diagonal lines indicate perfect correspondence 

between model rankings and mean human rankings. The ρs are Spearman rank correlation 

coefficients.
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Figure 4. 
Residual plots for the inverse decision-making model predictions for (a) the positive-

attributes and (b) negative-attributes conditions of Experiment 1.
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Figure 5. 
The minimum number of features from Table 5 needed by the weighted feature model to 

match the predictive accuracy of the inverse decision-making model for (a) the positive-

attributes and (b) the negative-attributes conditions of Experiment 1.
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Figure 6. 
Experiment 2 results. The bars show mean human ratings and inverse decision-making 

model predictions for the pairs of observed choices in each row. The bars point toward the 

choice that provides stronger evidence of a preference for X. Error bars indicate 95% 

confidence intervals. The first six pairs of choices differ with respect to one feature, 

identified by the labels in the “Features Varied” column. The last two pairs differ with 

respect to two features.
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Figure 7. 
Experiment 3 results. The bars show mean human ratings and inverse decision-making 

model predictions for the pairs of observed choices in each row. The bars point toward the 

choice that provides stronger evidence of a preference for X. Error bars indicate 95% 

confidence intervals. Predictions for the maximizing model (not shown) are 0 for every 

comparison.
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Table 1

Posterior probabilities for utility assignments after observing Choice 38.

ua ub ux p(u|c,A)

1 1 1 0.2160

1 1 2 0.2489

1 2 1 0.0916

1 2 2 0.1216

2 1 1 0.0916

2 1 2 0.1216

2 2 1 0.0447

2 2 2 0.0640
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Table 3

Model predictions for two choices, assuming utilities are negative.

Absolute utility Relative utility

Choice E(ux|c,A) p(ux is greatest|c,A)

16 −1.24 0.79

38 −1.25 0.81
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Table 4

Spearman rank correlation coefficients between model predictions and data from Experiment 1.

Model Positive-attributes Negative-attributes

Logit 0.98 0.90

Probit 0.97 0.90

Linear 0.96 0.71
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Table 5

Features used by our weighted feature model. The last two columns indicate the direction of the feature that 

would indicate a stronger preference for X when attributes are positive or negative. The two features that 

include the phrase “max/min” were treated differently for positive and negative attributes. For positive 

attributes, these features refer to maximums; for negative attributes, these features refer to minimums.

Feature Type Positive attributes Negative attributes

Number of chosen attributes Integer − +

Number of forgone attributes Integer + +

Number of forgone options Integer + +

Number of forgone options containing X Integer − −

Max/min number of attributes in a forgone option Integer + −

X in every option? Binary − −

Chose only option containing X? Binary + +

X the only difference between options? Binary + +

All options have same number of attributes? Binary + +

Chose option with max/min number of attributes? Binary − −
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Table 6

Statistically significant predictors in a linear regression on the prediction errors in Figure 4.

Condition Feature β p

Positive-attributes X in every option? 3.9 0.004

Negative-attributes Number of chosen attributes −2.4 0.001

Number of forgone attributes 4.0 0.004

Number of forgone options −4.5 0.002

X in every option? 7.0 < 0.001
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