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Abstract

Aging increases the risk of cardiovascular disease and metabolic syndrome. Alterations in
epicardial fat play an important pathophysiological role in coronary artery disease and
hypertension. We investigated the impact of normal aging on obesity-related genes in epicardial
fat. Sex-specific changes in obesity-related genes with aging in epicardial fat (EF) were
determined in young (6 months) and old (30/36 months) female and male, Fischer 344 x Brown
Norway hybrid (FBN) rats, using a rat obesity RT2 PCR Array. Circulating sex hormone levels,
body and heart weights were determined. Statistical significance was determined using two-tailed
Student’s ttest and Pearson’s correlation. Our results revealed sex-specific differences in obesity-
related genes with aging. Dramatic changes in the expression profile of obesity-related genes in EF
with aging in female, but not in male, FBN rats were observed. The older (30 months) female rats
had more significant variations in the abundance of obesity-related genes in the EF compared to
that seen in younger female rats or both age groups in male rats. A correlation of changes in
obesity-related genes in EF to heart weights was observed in female rats, but not in male rats with
aging. No correlation was observed to circulating sex hormone levels. Our findings indicate a
dysfunctional EF in female rats with aging compared to male rats. These findings, with further
functional validation, might help explain the sex differences in cardiovascular risk and mortality
associated with aging observed in humans.
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Introduction

Although the risk factors for cardiovascular disease (CVD) such as aging, smoking, diet/
alcohol, physical inactivity, and metabolic syndrome are similar between men and women,
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there still is higher mortality rates in women compared to men [33]. Obesity rates are
increasing alarmingly in the USA. The prevalence of extreme obesity is much higher in
women compared to men (35 vs 7%) [26].

The mass, distribution, and function of adipose tissue undergo dramatic changes throughout
life [4]. Adipose-derived factors are key mediators of the alterations in body mass that is
observed during aging [39]. Changes in visceral fat mass and function are known to play an
important role in promotion of insulin resistance, obesity, and cardiovascular diseases
through its secretion of adipocytokines (secretome) [23]. Epicardial or perivascular fat, the
fat surrounding the heart and its major arteries, has recently gained importance in playing a
role in CVD. Epicardial fat (EF) covers about 80% of the heart’s surface and represents 20%
of the heart’s weight. Due to its close proximity to the heart and surrounding arteries, and a
lack of fascia support, this fat participates directly in the physiology of the underlying
cardiac and arterial tissues in a paracrine manner [17, 32, 34]. EF differs from other fat
depots (omental, visceral/abdominal, or subcutaneous) by having significantly larger number
of smaller adipocytes, a different fatty acid and protein composition, as well as different
lipid metabolism (increased fatty acid synthesis and fatty acid breakdown) [17]. Several
recent human studies have shown an association between obesity and increases in EF mass
[37, 38]. Clinical studies have also shown that EF expresses increased inflammatory
cytokines (TNFa and IL6) compared to other adipose depots in patients with coronary artery
disease and other diseases [2, 18].

Changes in EF mass and function result in enhanced coronary calcification in
postmenopausal women [7], alterations in lipid metabolism [29], enhanced risk of
developing atherosclerosis with obesity and coronary artery disease [21], as well as
correlation with other CVD risk factors [1]. Very little is known about changes in EF
function during aging. We have earlier shown increased changes in EF adipokines in female
rats during aging compared to male rats [9]. In the present study, we investigated if aging
results in sex-specific changes in the expression profile of obesity-related genes in the EF,
using an established rodent aging model, Fischer 344 x Brown Norway hybrid rats (FBN).
Our studies showed significant changes in EF gene expression profile that correlated to
changes in heart weight in female aging rats.

Materials and methods

Animals

Twenty-five Fischer 344 x Brown Norway hybrid (FBN) rats was obtained from the animal
colony maintained by the National Institutes on Aging, USA. There were 16 female (young,
6 months old, 7= 8, and aged, 30 months old, /7= 8; body weights = 230 + 14 and 320 + 20
g, respectively) and 9 male (young, 6 months old, 7= 5 and aged, 36 months old, 7= 4;
body weights = 422 + 42 and 450 + 35 g, respectively) FBN rats. Marshall University’s
Institutional Animal Care and Use Committee (IACUC) approved all protocols, and the
animals were treated in compliance with Marshall University IACUC Committee
regulations. Probability of survival curves provided for the FBN hybrid rats by the National
Institute on Aging were employed to select age groups corresponding roughly to humans in
their third (6-month rats) and eighth (30/36-month rats; female/male, respectively) decade of
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life [44]. The differences in the advanced age groups chosen between the two sexes are due
to differences in the survivability of male versus female FBN rats. The female FBN rats
generally do not survive over the age of 30—32 months; however, the male FBN rats can
reach the maximum age of 36 months. This phenomenon is very different from humans. We
chose this latter time points in view of the fact that cardiovascular dysfunction in humans
accelerates in this interval and because this age group represents one of the fastest growing
segments of the aging population in the USA [24].

The animals were acclimated for 2 weeks in our animal facility. During this time, the
animals were fed a standard laboratory diet (Laboratory Rodent Diet 5001;
www.labdiet.com which consisted of protein min % = 23; crude fat min % = 4.5 and crude
fiber max % = 6.0) and water ad libitum. Rats were kept under standard conditions:
temperature 21.0 £ 2.0 °C, humidity 55.0 + 5.0% with a 12:12-h light/dark cycle (07:00-
19:00). Rats were carefully monitored, and weekly weights were taken to monitor signs of
stress and weight loss. After 2 weeks of acclimation, the rats (not fasting) were sacrificed.
Care was taken that all surgeries were performed at similar times of the day in order to
minimize circadian changes. Rats from each group were sacrificed on the same day. The
body and heart weights of all rats were recorded. EF was excised after anesthetizing using
ketamine-xylazine (45:5 mg/kg i.p) and euthanizing by exsanguinations via a cardiac
puncture. Epicardial fat isolation from the rats was performed under a stereotactic
microscope. During the EF collection, care was taken to prevent any cross-contamination
with the cardiac or fibrotic tissue. The samples were immediately collected in Tri-reagent
(Sigma) and stored at —80 °C for RNA isolation.

RNA extraction

The RNA was extracted by homogenization of the adipose tissue under cold conditions in
Tri-reagent (100 mg adipose tissue in 1mlTri-reagent), following the manufacturer’s
protocol (T9424, Sigma). The isolated RNA concentration and purity were analyzed by
Nanodrop model 1000 (Thermo Scientific, Nanodrop Technologies Inc), and its integrity
was determined on a 1.2% agarose gel electrophoresis. Only RNA with a RIN number >7
(Agilent Bioanalyzer) was used for the PCR array analyses.

Rat obesity RT2 Profiler PCR array

The rat obesity RTZ Profiler PCR array was performed on RNA extracted from EF obtained
from young (6 months) and aged (30/36 months) female/male FBN rats. The genes assayed
in 6-month rats for both sexes were defined as control (CTRL). One microgram of purified
RNA was used for amplification to cDNA using RT? First Strand Kit (C-03, Superarray
BioScience Corporation). The rat obesity PCR Array (PARN-017A, Superarray BioScience
Corporation) that profiles the expression of 84 genes related to obesity was performed on all
samples (EF from 25 rats). The obesity array included 17 orexigenic genes, 54 anorectic
genes, and 13 genes involved in energy expenditure (http://www.sabiosciences.com/
rt_pcr_product/HTML/PARN-017A.html) (Superarray BioScience Corporation). The 96-
well plate array was performed using the MyiQ Bio-Rad Real Time PCR system (Bio-Rad)
following the manufacturer’s instructions. The data obtained was interpreted using the
Superarray PCR Array data analysis Web portal (http://www.superarray.com/
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pcrarraydataanalysis.php). Quality control of all the PCR arrays was measured by assessing
the quality of internal controls such as reverse transcription control (RTC) and genomic
DNA contamination control (GPC). An array with the RTC value <5 and GPC value >35
passes the quality control. All the arrays that were performed passed the quality control test.
The array design and final data processing were consistent with the requirements of
Minimum Information about a Microarray Experiment (MIAME 2.0) (http://www.mged.org/
Workgroups/MIAME/miame.html). The variations between groups were defined as fold
changes in gene expression in aged animals compared to gene expression in the younger (6
months) animals in the two sexes.

Validation of PCR array data with quantitative RT-qPCR

Statistics

Real-time reverse transcriptase polymerase chain reaction (RT-gPCR) of selected genes was
performed to validate their changes in gene expression observed in PCR array analysis. The
levels of four candidate genes representing the three major groups (orexigenic, anorectic,
and energy expenditure pathways) were randomly selected for validation using RT-qPCR
(Ghsr: orexigenic gene; Lepand Sstr1: for anorectic genes and 7/rb for energy expenditure
genes). Purified RNA (1 ug) was utilized for the synthesis of complementary DNA (cDNA)
using iScript cDNA synthesis kit (170-8890, Bio-Rad). Real-time PCR was carried out in 25
ul of a SYBR green reaction mixture containing 1 pl of cDNA iQSYBR Green Supermix
(170-8882, Bio-Rad), and the respective primers in triplicates. The following primers were
used: growth hormone secretagogue receptor (Ghsr) (NM_032075): 5'-
ccatcgcteattgetctaca-3’, 3”-ctgeccatctggetctactc-5"; leptin (Lep) (NM_013076): 5”-
tgacaccaaaaccctcatca-3”, 3’ -atgaagtccaaaccggtgac-5"; somatostatin receptor 1 (Sstrl)
(NM_012719): 5’ -cttatgcaccctggtgtgtg-3’, 3’ -tgtcactggaacaggagetg-5"; thyroid hormone
receptor beta ( 7/r6) (NM_012672): 5’-gaggaatgggagctcatcaa-3”, 3”-gggtgcttgtccaatgtett-5;
18s was used as the housekeeping gene; 18 s (M11188): 5’-gcaattattccccatgaacg-3”, 3'-
ggcctcactaaaccatccaa-5’.

For the rat obesity RT2 Profiler PCR array, the statistical significance in fold changes
between young (6 months) and aged animals (30/36 months) for each sex was automatically
generated by the PCR array online data analysis data portal (http://www.superarray.com/
pcrarraydataanalysis.php). Fold changes >3.0 or <0.3 were defined as fold increase or
decrease and used for statistical analysis. The significant differences between the ACt values
between groups were analyzed using two-tailed Student’s ¢test. For the validation studies
using RT-gPCR analysis, one-way ANOVA was performed at the level of ACt, in order to
exclude potential bias due to averaging of data transformed through the Pfaffl equation
2-(AACY [30]. Significance was confirmed using post hoc analysis with Fisher’s least
significant difference (Fisher’s LSD) test.

The correlation between obesity-related genes and the body weight or heart weights of aged
group of rats was calculated by performing the Pearson’s correlation. For this, the average
ACt value of individual genes from the array was correlated to the body or heart weights of
the group. Pearson’s correlation coefficient (/) was first obtained. This value was then used
to calculate the #statistic, by dividing the coefficient by standard error. Finally, the
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significance p value was calculated from the #table. A two-tailed value of p < 0.05 indicated
statistical significance.

Results

Expression profiling of epicardial fat reveals sex differences in obesity-related genes with

aging
Expression profiling of obesity-related genes in EF was performed using RT2 Obesity PCR
array in tissues obtained from both young (6 months old) and aged (30/36 months old)
female and male FBN rats. Overall changes in the expression levels of all genes (84 genes)
in EF of each age group and the two sexes are shown in the heat map (Fig. 1a—d). Detailed
analysis of the heat map revealed that the differences in the gene expression were sex
specific. In the female EF, from the total 84 genes detected in the array, the expression levels
of 30 genes (35%) were upregulated, 21 genes (25%) were downregulated, and there was no
change in 33 genes (40%). In contrast, in the EF obtained from the male rats, the expression
levels of 14 genes (17%) were upregulated, 10 genes (12%) were downregulated, and 60
genes (71%) had no change (Fig. 1e, f).

Sex differences in the expression of orexigenic genes with aging in epicardial fat

Figure 1c, d represents the heat map of the expression levels of all genes that reached
statistical significance in female and male EF. Further evaluation of the heat map revealed
unique age-dependent changes in specific obesity-related genes that were generally
classified as orexigenic, anoroxigenic, and energy-expenditure genes. Table 1 shows that the
expression levels of CNS-derived genes, such as adrenergic, alpha-2B-, receptor (Adra2b),
cannabinoid receptor 1 (brain) (Cnr), melanin-concentrating hormone receptor 1 (Mchrl),
hypocretin (HcR), hypocretin (orexin) receptor 1 (Hcertrl) (o < 0.05), and gut-derived genes,
Ghsr (p < 0.005), were significantly increased in aged female EF. However, the expression
levels of nuclear receptor subfamily 3, group C, member 1 (Nr3ci) and opioid receptor,
sigma 1 (OprsI) significantly decreased in aged female EF (0<0.05). No such changes were
observed in male EF with aging.

Sex differences in the expression of anorectic genes with aging in epicardial fat

Figure 1c, d and Table 2 depict changes in the expression levels of anorectic genes in EF of
both sexes. The female EF bombesin-like receptor 3 (Brs3), corticotropin-releasing hormone
(Crh), corticotropin-releasing hormone receptor 1 (Crfirl), dopamine receptor D1A (Drd1a),
dopamine receptor D2 (Drd2), growth hormone 1 (GhI), glucagon-like peptide 1 receptor
(Grpn), histamine receptor H 1 (HrA11), 5-hydroxytryptamine (serotonin) receptor 2C (Htr2c),
melanocortin 3 receptor (Mc3r), neuromedin B receptor (Nmbr), neurotrophic tyrosine
kinase, receptor kinase 1 (NVtrkI), prolactin-releasing hormone receptor (Pr/hr), thyrotropin-
releasing hormone receptor ( 774r), urocortin (Ucn)) was also significantly (p < 0.05)
upregulated during aging in female EF. However, several pancreatic and gut-derived
anorectic genes, such as insulin receptor (/nsr) (0 < 0.05) and Lep (p < 0.05), and the
neuropeptides, such as calcitonin/calcitonin-related polypeptide, alpha (Calca), ciliary
neurotrophic factor receptor (Cntfr), interleukin 1 alpha (/L 14), interleukin 1 beta (/L10),
interleukin 6 receptor, alpha (//6ra), neuromedin B (Nmb), proopiomelanocortin (Pomc),
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and sortilin 1 (Sortl) (p < 0.05), were significantly downregulated. In contrast, in male EF,
the expression levels of only few genes like Drd2, Grpr, leptin receptor (Lepr), and
neurotensin receptor 1 (Nesrl) (p < 0.05) were upregulated, whereas Calca, IL1a,
neuromedin U receptor 1 (MmurI), and somatostatin (Ssf) (p < 0.05) were downregulated.

Sex differences in the expression of energy expenditure genes with aging in epicardial fat

Sex-dependent changes in the expression of genes related to energy expenditure pathway
were also observed in EF of aging rats (Fig. 1c, d and Table 3). The expression of CNS-
derived genes such as adenylate cyclase activating polypeptide 1 (pituitary) (Adcyapl) and
adrenergic, beta-1-, receptor (AdrB1) significantly increased in aged female EF. However,
the expression of adiponectin, C1Q, and collagen domain (Adipog), (complement
component 3 (C3) (p< 0.05), protein tyrosine phosphatase, nonreceptor type 1 (Ptpni), and
thyroid hormone receptor beta (7/rb) (p < 0.05) were significantly decreased in aged female
EF. In the male rats, the expression of Adcyap1rland Adipogwere significantly increased
(0 <0.05) in aging EF compared to younger controls.

Validation of genes altered in PCR array using RT-qPCR

The quantitative real-time PCR confirmed the variation in levels of genes that were shown to
be altered in the PCR array analyses. As seen in Fig. 2, similar to PCR array analysis, RT-
gPCR also showed that the expression levels of Ghsr(p < 0.01) and Sstr1 (p < 0.05) were
upregulated in female EF and not in males with aging. In contrast, the expression levels of
Thrb (p < 0.05) and Lep were decreased in female but not in male EF with aging.

Correlation of expression levels of obesity genes from EF to changes in heart and body
weights with aging and not to circulating sex hormone levels

We had previously shown an increase in both body and heart weights with age in female rats
but an increase in heart weight with minimal increase in body weight in male rats with age
[9]. We investigated if the expression levels of obesity-related genes that were significantly
altered in the EF correlated to the changes in heart and body weights in young and aged rats
of both sexes. As shown in Table 4, /L1aand /L 1bexpression levels in EF had a significant
negative association with the changes in body weight in young (6 months) female rats but
not upon aging (30 months). AdrB1, Cs Cnrl, Pomc, Sortl, and Thrb expression levels in
EF were all negatively correlated to the heart weight in the young (6 months) female rats.
The expression levels of Adcyapl, Apoad, Crh, Mchrl, Hertrl, Il1a, Nmb, Nmbr, Trh, Trhr,
and Ucn was positively correlated to heart weight in the aged (30 months) female rats.

In male rats, no significant correlation was found between the expression levels of the
obesity-related genes in EF and body weight in young rats, but Adcyap1ri, Grpr, /l1a, and
Nmurl expression levels in EF were negatively correlated to the body weights in aged rats.
Drd2was the only EF gene whose expression was positively correlated to the heart weight in
young rats, but not in aged, male rats.

Circulating testosterone and estradiol levels were measured in the young (6 months) and
aged (30/36 months) female and male FBN rats using the Immulite 2000 Immunoassay
system (Siemens, Deerfield, IL). Though the testosterone levels decreased in male rats with
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aging (2.2 vs. 0.5 ng/ml; 6 vs 36 months), there was no change in estradiol levels with aging
in female rats (33.3 vs 29.3 pg/ml; 6 vs 30 months). No correlation was observed between
circulating sex hormone levels and obesity-related genes.

Discussion

Aging is associated with both fat mass redistribution and changes in fat function. There is an
increased accumulation of fat in ectopic sites such as the liver, muscle, and heart with
aging[28, 46]. This increased fat mass results in changes in gene expression in the various
fat depots, with some depots more vulnerable to aging than others [41]. Abdominal adiposity
is the hallmark of obesity [11]. Though genome-wide studies have shown a unique loci for
visceral fat distribution in women compared to men [10], this fat remains unaltered during
aging [16]. Recent studies have described the importance of EF in the pathophysiology of
heart and vascular function [5, 27]. Not much is known about changes in EF during aging.
We have earlier shown sex-specific changes in EF adipokine expression with aging in FBN
rats [9]. In the present study, we compared the expression profile of obesity-related genes in
EF from old and young FBN rats. We observed sex-specific changes in these genes with
aging. These changes were more predominant in the EF from older female rats compared to
males of similar ages.

An in-depth assessment of the significantly altered genes revealed changes in the expression
of several CNS-derived genes (Adcyapl, Banf, Brs3, Crh, Crhrl, Drdla, Drd2, Grpr, Hrhl,
HtrZe, Mc3r, Ntrkl1, Prihr, Trhr, Ucn, Nmbr), whose immediate relevance to EF function can
only presently be speculated. However, given the role of adipose tissue in endocrinology and
metabolism and it being directly regulated by the CNS, it is plausible that these genes might
also exist in peripheral adipose tissues. Among the genes that were upregulated, the
adrenergic receptor alpha (Adra2) initiates prolipolytic effects and has been shown to be
increased during aging [6, 22], in contrast to Adr51, has been shown to decrease with aging
[13]. Our results showed an increased expression of both Adra2band AdrB1in aged female
rats. These differences in adrenergic receptor changes with aging suggest that female EF
expresses a more enhanced prolipolytic function than in male rats with aging. The reduction
in growth hormone (Gh) production correlates with aging and results in a decline of the
somatotrophic axis (somatopause) associated with a decrease in muscle mass and increase in
adiposity [20]. Ghsris implicated in the Gh secretion, orexigenic and fat lipolytic effects in a
ligand-dependent manner [42]. Besides the CNS, Ghsrhas been found to exist in a large
variety of peripheral tissues including adipose tissue [42]. Somatostatin is a known Gh
inhibitor [15], and its receptors (Sstr) are found to be expressed in adipose tissue [36]. Our
data showed that both GAZand Ghsrwere upregulated in both male and female EF. An
increase in the Gh axis was accompanied with an increase in the levels of its inhibitor
(Sstrl). This might indicate a compensatory reaction by the adipose tissue in response to the
decline in the levels of Gh during aging [25]. This effect was also most likely a result of the
imbalance between the levels of somatostatin and its receptor.

Among the downregulated genes, the expression level of Nr3cI was decreased in aged
female EF but exhibited a moderate increase in male rats with aging. Defects in AMr3cI are
associated with obesity, hyperinsulinemia, hypertension, and coronary artery disease [12].
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Obesity is associated with chronic low-grade inflammation with an increase in factors such
as IL1 and IL6 [31, 40]. We found a significant decrease in /L1a, /IL1b, and /L6ra in female
EF. On the contrary, we observed a dramatic increase in melanocortin 3 receptor (Mc3r) in
female EF (30-fold). The knockout of Mc3rshowed increased fat mass [3] but also exhibited
maintenance of adiponectin levels and delayed inflammation in response to a high-fat diet
[43]. The significant higher levels of Mc3rin EF of aged female rats might also be
responsible for the lower expression of inflammatory factors in this fat depot. /nsris another
gene that is linked to the aging process. For example, a mutation in insulin signaling
pathway (insulin/IGF-1) is often used to increase the lifespan in animal models [14].
Moreover, a mutation of /nsrcould also ameliorate the age-related decrease in cardiac
function [47]. We observed a decline in /nsrin EF of both sexes, especially in female rats.
There was also a decrease in the expression of Sort1, another key factor that mediates insulin
signaling pathway in adipose tissue [19], and Pipnl, which inhibits the insulin pathway [45]
with aging. This reflects a protective response to aging-related decline in insulin signaling
which seems more prominent in EF. With a reduction in body weight, Lep gene was highly
expressed in females compared to male rats [35]. We also observed a more dramatic decline
in Lep gene in EF of female rats than in males.

The physiological significance of the observed differences in obesity-related genes in EF of
females than in males does need further investigation. However, the stronger correlation of
genes in EF to heart weight supports the postulated paracrine function of EF on the heart.
The inflammatory genes in EF were more likely regulated by body weight at least in
younger rats. As shown in Table 4, in female rats, some of the obesity-related genes were
negatively associated with heart weight in younger rats, but others were positively associated
to heart weight with increasing age. This probably might suggest an age-dependent
alteration in EF function. Prior studies have indicated that lipogenesis and lipid
incorporation in EF is higher than in other fat depots [17]; however, it is not known if this
function is altered with aging. Our data did show that the lipid regulatory genes such as
AdrB1and Thrbexhibit an association with heart weight in younger but not in older rats.
Similarly, there were sex differences in correlation of EF genes to body weight with aging.
Though no conclusive correlation was seen between circulating sex hormone levels and the
significantly altered obesity-related genes, the sex hormonal influence on these genes cannot
be completely ruled out. This observation might be species related. In the FBN rats, there
was no much change in estradiol levels with aging, and hence no correlation with EF-related
genes. In humans, however, the investigators of the SWAN Cardiovascular fat ancillary study
recently showed an increase in cardiac fat (which included epicardial, paracardial,
perivascular, and total heart fat) after menopause, and this increase was correlated to a
decrease in estradiol levels, but not with androgen levels [8]. However, it should be noted
that these were only association studies and not causality, which still needs to be determined.
Our results support the assumption that alterations in EF function result in increased risk of
heart disease with aging. The sexual dimorphism observed in EF from male and female rats
with aging might be beyond just differences in the levels of sex hormones.
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Conclusions

In
of

conclusion, our results indicate that the aging process resulted in a dramatic perturbation
obesity-related genes in female EF compared to males. These findings might be helpful in

understanding the differences in pathophysiological role of this fat depot in cardiac and
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Fig. 1.
Heat map of the RT2 Obesity PCR array in EF of young and old rats: RT2 Obesity PCR

array was performed in EF obtained from young (6 months) (female, 7= 8, male n=5) and
old (30/36 months) (female 7= 8, male n=4) FBN rats. The array consisted of 84 genes
belonging to orexigenic (17 genes), anorectic (54 genes), and energy expenditure (13 genes)
pathways. Heat map of all genes whose expression levels were altered in old rats compared
to young rats were obtained after analyses: a female EF, b male EF. Heat map of
significantly altered genes in EF of old rats compared to young rats were obtained after
analyses: ¢ female EF, d male EF. The percent changes in genes that were either upregulated
(>3.0-fold), downregulated (<0.3-fold) or had no change in EF (g, f) in both sexes. 1
Upregulation, ¢ downregulation, — no change. Significance was analyzed using two-tailed
Student’s ¢test exhibited increased expression of pancreatic and gut-derived anorectic genes
such as calcitonin receptor (Calcr), colipase, pancreatic (C/ps), somatostatin receptor 1
(Sstri), and apolipoprotein A-1V (Apoa4d) (p < 0.01) in aging rats compared to younger
controls. Moreover, the expression of several neuropeptides (brain-derived neurotrophic
factor (Ban,
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Validation of PCR array data using RT-qPCR in EF: real-time quantitative PCR was used to
validate the changes observed in genes altered in the PCR array analysis. Expression levels
of selected genes belonging to orexigenic (Ghsr), anorectic (Lep, Sstrl) and energy
expenditure ( 7/hrb) pathways were measured by RT-qPCR in triplicates in the EF of young
and old FBN rats of both sexes: female EF (6 months, 7= 8; 30 months, /7= 8), male EF (6
months, 7= 5; 36 months, 7= 4). The data were expressed as relative expression + standard
error of the mean (SEM). The white bars represent 6 months (female and male), and the
black bars represent 30-month (female) or 36-month (male) FBN rats, respectively. One-way
ANOVA followed by the Fisher’s LSD test was used for calculating significance. *p < 0.05;

**< 0.01
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