Skip to main content
. Author manuscript; available in PMC: 2017 Aug 28.
Published in final edited form as: IEEE Trans Med Imaging. 2016 Jan 5;35(6):1463–1474. doi: 10.1109/TMI.2016.2515021

TABLE III.

Comparison With Existing Studies Using MRI Data of ADNI for AD vs. NC Classification

Method Feature Classifier Subjects Template ACC (%) SEN (%) SPE (%)
Cuingnet et al. [15] Voxel-direct-D GM SVM 137 AD + 162 NC Single 88.58 81.00 95.00
Zhang et al. [16] 93 ROI GM SVM 51 AD + 52 NC Single 86.20 86.00 86.30
Zhang et al. [14] 93 ROI GM SVM 91 MCI + 50 NC Single 84.80
Liu et al. [50] Voxel-wise GM SRC ensemble 198 AD + 229 NC Single 90.80 86.32 94.76
Liu et al. [13] Voxel-wise GM SVM ensemble 198 AD + 229 NC Single 92.00 91.00 93.00
Eskildsen et al. [58] ROI-wise cortical thickness LDA 194AD + 226NC Single 84.50 79.40 88.90
Cho et al. [59] Cortical thickness PCA-LDA 128 AD + 160 NC Single 82.00 93.00
Coupé et al. [60] Hippocampus and entorhinal cortex volume and grading QDA 60 AD + 60 NC Single 90.00 88.00 92.00
Duchesne et al. [10] Tensor-based morphometry SVM 75 AD + 75 NC Single 92.00
Koikkalainen et al. [18] Tensor-based morphometry Linear regression 88AD + 115NC Multiple 86.00 81.00 91.00
Wolz et al. [30] Four MR features LDA 198 AD + 231 NC Multiple 89.00 93.00 85.00
Min et al. [17] Data-driven ROI GM SVM 97AD + 128 NC Multiple 91.64 88.56 93.85
Min et al. [29] Data-driven ROI GM SVM 97AD + 128NC Multiple 90.69 87.56 93.01
Liu et al. [28] Data-driven ROI GM SVM ensemble 97AD + 128NC Multiple 92.51 92.89 88.33
Proposed Data-driven ROI GM SVM ensemble 97AD + 128NC Multiple 93.06 94.85 90.49

Note: SVM means Support Vector Machine; SRC denotes Sparse Regression Classifier; LDA represents Linear Discriminant Analysis; PCA-LDA denotes Principal Component Analysis-Linear Discriminant Analysis; QDA denotes Quadratic Discriminant Analysis.