TABLE III.
Method | Feature | Classifier | Subjects | Template | ACC (%) | SEN (%) | SPE (%) |
---|---|---|---|---|---|---|---|
Cuingnet et al. [15] | Voxel-direct-D GM | SVM | 137 AD + 162 NC | Single | 88.58 | 81.00 | 95.00 |
Zhang et al. [16] | 93 ROI GM | SVM | 51 AD + 52 NC | Single | 86.20 | 86.00 | 86.30 |
Zhang et al. [14] | 93 ROI GM | SVM | 91 MCI + 50 NC | Single | 84.80 | – | – |
Liu et al. [50] | Voxel-wise GM | SRC ensemble | 198 AD + 229 NC | Single | 90.80 | 86.32 | 94.76 |
Liu et al. [13] | Voxel-wise GM | SVM ensemble | 198 AD + 229 NC | Single | 92.00 | 91.00 | 93.00 |
Eskildsen et al. [58] | ROI-wise cortical thickness | LDA | 194AD + 226NC | Single | 84.50 | 79.40 | 88.90 |
Cho et al. [59] | Cortical thickness | PCA-LDA | 128 AD + 160 NC | Single | – | 82.00 | 93.00 |
Coupé et al. [60] | Hippocampus and entorhinal cortex volume and grading | QDA | 60 AD + 60 NC | Single | 90.00 | 88.00 | 92.00 |
Duchesne et al. [10] | Tensor-based morphometry | SVM | 75 AD + 75 NC | Single | 92.00 | – | – |
Koikkalainen et al. [18] | Tensor-based morphometry | Linear regression | 88AD + 115NC | Multiple | 86.00 | 81.00 | 91.00 |
Wolz et al. [30] | Four MR features | LDA | 198 AD + 231 NC | Multiple | 89.00 | 93.00 | 85.00 |
Min et al. [17] | Data-driven ROI GM | SVM | 97AD + 128 NC | Multiple | 91.64 | 88.56 | 93.85 |
Min et al. [29] | Data-driven ROI GM | SVM | 97AD + 128NC | Multiple | 90.69 | 87.56 | 93.01 |
Liu et al. [28] | Data-driven ROI GM | SVM ensemble | 97AD + 128NC | Multiple | 92.51 | 92.89 | 88.33 |
Proposed | Data-driven ROI GM | SVM ensemble | 97AD + 128NC | Multiple | 93.06 | 94.85 | 90.49 |
Note: SVM means Support Vector Machine; SRC denotes Sparse Regression Classifier; LDA represents Linear Discriminant Analysis; PCA-LDA denotes Principal Component Analysis-Linear Discriminant Analysis; QDA denotes Quadratic Discriminant Analysis.