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Precise estimates of disease transmission rates are critical for epidemiological simulation models. Most
often these rates must be estimated from longitudinal field data, which are costly and time-consuming
to conduct. Consequently, measures to reduce cost like increased sampling intervals or subsampling of
the population are implemented. To assess the impact of such measures we implement two different
SIS models to simulate disease transmission: A simple closed population model and a realistic dairy
herd including population dynamics. We analyze the accuracy of different methods for estimating

the transmission rate. We use data from the two simulation models and vary the sampling intervals
and the size of the population sampled. We devise two new methods to determine transmission

rate, and compare these to the frequently used Poisson regression method in both epidemic and
endemic situations. For most tested scenarios these new methods perform similar or better than
Poisson regression, especially in the case of long sampling intervals. We conclude that transmission
rate estimates are easily biased, which is important to take into account when using these rates in
simulation models.

Simulation models are widely used to model spread and control of many different infectious diseases in both
human and veterinary medicine’, for instance malaria?, SARS®, STDs, influenza’, MRSAS, Ebola’, rabies®, scra-
pie’ and mastitis'®. In these models, transmission rates are used to describe the flow of individuals in a popu-
lation going from a susceptible state to an infected state, and it is important to obtain a realistic estimate of the
transmission rates in order to create a useful and realistic simulation models for decision support'~'%. Accurate
estimation of this rate is important because it can have a major influence on model predictions and conclusions
(e.g. refs'™1*). The rate may have different names depending on the specific mathematical representation of trans-
fer between susceptible and disease states, e.g. infection rate, transmission coeflicient and transmission rate. This
key parameter is difficult to estimate for most host-pathogen models because natural processes are stochastic, and
transmission events are influenced by other parameters than what can be included in a transmission model®°.
Thus, large datasets are often needed to reach a good estimate.

Experiments that can be used to estimate the transmission rate are often both difficult and time-consuming to
conduct'. A means to obtain longitudinal data for estimation of the transmission rate can be to sample a subpop-
ulation instead of the whole population, as for instance the study of Backer et al.'® where field data were used to
estimate transmission rate of hepatitis E virus in pigs, subsampling down to 5% of the population. This can be the
case for instance if animals must be caught prior to sampling, if the population is large, or if the test for disease is

. expensive'. In such situations subsampling can be a convenient method, but the precision of the estimate can be
. jeopardized by sampling fewer individuals. We wanted to quantify this in the present study.

In longitudinal studies of disease transmission, a short sampling interval is often desired because it provides
precise data on the incidence. Ideally, the period between sampling points should be the average time between
the infection of one individual and the infection of the next individual that is infected from the first individual'®.
However, it is often not practical to sample with very short sampling intervals. For instance, Caley and Ramsey'?
used a sampling scheme with three samplings per year, and Zadoks et al.! sampled every three weeks. If the time
between sampling points is long, some individuals may be infected and recovered between sampling points and
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Figure 1. The transmission frameworks in the SISsim (A) and the SIScom (B) models. S = Susceptible,

I=Infected, Iy=Infected and subclinical, I-=Infected and clinical. The transmission parameters for (B) are
explained in Table 1 in the supplementary material.

therefore not recorded. Hence, the transmission rate will be underestimated. On top of that, data from biological
systems most often contains noise that may impact the estimated rate. Numerous studies have estimated the trans-
mission rate from field data!>'¢1°. However, few studies have evaluated how precise the estimated transmission
rates actually are. O’Dea et al.”® recently used Poisson regression to estimate the transmission rate and showed
that the precision of the estimate increased with the number of outbreaks used for estimation. Cook et al.?!
used Bayesian inference to show that it is important to take spatial population heterogeneity into account when
estimating transmission rates. To our knowledge, no previous studies have explored the precision of the estimated
transmission rate in relation to a known simulated transmission rate, the sampling interval and the subsampling
percentage.

In the present study we wanted to estimate the precision of transmission rates estimated from population
data, and chose a dairy herd as the study population. Modern dairy cattle herds constitute a good example of a
population where many data are available on the individual level. Furthermore, they represent a controlled system
mostly with free-stall systems that invoke homogeneous mixing between the lactating cows. These facts, com-
bined with a fair number of diseases that can be present in a dairy herd, makes it a good study unit for estimating
disease transmission rates.

A few studies have recently been conducted to estimate the transmission parameter from data in cattle herds
considering infections with salmonella'® and mastitis'**?2-24, Most of these studies have used Poisson regression
to estimate the transmission rate from real life data, although a few also used negative binomial regression. A
challenge of estimating transmission rates is that a low rate can result in very low numbers of or no new infections
per time period, which can prevent the use of regression procedures with a log-link. We therefore developed two
new methods to estimate the transmission rate, which are robust to these challenges.

The advantage of simulated data is that we can measure exactly how precise the estimated transmission rates
are. In this study we wanted to use two models with known transmission rate, a simple SIS model (SISsim) with
only two disease states (Susceptible and Infected), and a complex SIS model (SIScom) with three disease states
(Susceptible, Infected - subclinical, and Infected - clinical) reflecting a realistic system where external factors such
as death and treatments of infected individuals influence the disease dynamics within the system.

The objectives of this study were to explore the effect of sampling interval, subsampling of the population and
the size of the transmission rate itself, on the estimated transmission rate. Furthermore, we wanted to assess the
precision and robustness of the Poisson regression to extract disease transmission rates, because this method
is often used. We also present two new methods for estimating the transmission rate that are simpler and more
robust. These methods have, to our knowledge, not been used to estimate transmission rates before. We compare
the three methods to assess which method estimate the transmission rate to be closest to the known transmission
rate.

Methods

All simulations were run in R?. We used two stochastic discrete-time simulation models to model disease
spread, namely a SIS model (SISsim) and a SIScom model, described below (see Fig. 1). We simulated contagious
frequency-dependent transmission of a disease in daily time steps in both models'?. This approach allowed us to
compare a simple model (SISsim) with a model with natural noise (SIScom).

We combined the two simulation models (SISsim and SIScom) with two situations, namely an epidemic and
an endemic situation, resulting in four different scenarios. These four scenarios were analyzed with three different
methods: Poisson regression and two new methods (described below). Using these methods, we varied the trans-
mission rate, the sampling interval and the subsampling fraction of the population. For all simulations the time
span sampled was one year, so if sampling interval was one day there would be 365 data points, but if sampling
interval was 30 days there would only be 12 data points per simulation. The three different methods were given
the same data points to estimate the transmission rates.

The new methods rest on an assumption of the simulated system being in equilibrium. However, the deriva-
tions show that the bias of the equilibrium assumption is sometimes of a smaller order compared to the overall
estimate. To estimate the bias introduced by this assumption, we chose to simulate both epidemic and endemic
situations of disease. In comparison, the Poisson regression relies on an estimate of average number of infected
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and susceptible units between sampling times, which is not the case for the new methods. Thus the Poisson
method introduces another type of bias.

SISsim simulation model.  The first model was a SIS model (SISsim) with a population with 1000 indi-
viduals®®. The individuals in the SISsim models had no extra attributes (e.g. age, pregnancy, production status,
etc.). We assumed homogenous mixing of individuals with the probability of infection being proportional to the
fraction of infected individuals in the population. The method is analogue to the system of differential equations:

ds SI

LR S |

i (1)
dl SI

Y5
i @)

where 3 is the disease transmission coefficient (transmission rate), « is the recovery rate, S is the number of sus-
ceptible individuals, I is the number of infected individuals and N is the total number of individuals. The rates
and 3 are given in Table 1 in the supplementary material. However, we model in discrete time steps of one day
therefore the daily probability of infection, P, for each susceptible individual* becomes:

P =1 — exp(pI/N) (3)

whether an individual would become infectious was decided by daily Bernoulli draws using P as probability. Data
collection ran for 365 days and the number of individuals in S, T and N were recorded for each time step, as well
as the number of newly infected individuals. We repeated the simulations 50 times to increase the robustness of
the estimated rates.

We then simulated disease testing in intervals, mimicking a field study where sampling is conducted in differ-
ent time intervals.

SIScom simulation model. We also created a realistic SIS model (SIScom) to test how the methods would
perform in a realistic setting with fluctuating population dynamics. The SIScom model is a complete individual
based model of a cow herd, were cows can be culled based on low milk yield or high somatic cell count, and can
befall ill and slaughtered, there is also separation between cows in different production stages (lactating, drying
off, giving birth). The SIScom model was created by merging the transmission framework for intramammary
infection created by Halasa et al.'* with the iCull simulation model described by Kirkeby et al.?®. Briefly, the iCull
model simulates a dairy herd with 200 cows and after a 3 year burn in period the SIScom model is started. We
recorded data during a single simulated year. In the model, all cows are simulated realistically where they typically
calve and lactate for around 350 days. Then they are dried off in about 56 days and then they calve again. The
farmer takes weekly decisions on culling, choosing the lowest producing cows for slaughter. Individuals can also
be culled due to diseases like infection. Individuals are only culled when new heifers, raised in the herd, enter
the lactation stage. Thus the number of individuals is kept fairly stable. The transmission framework was adopted
from Halasa et al.', simulating intramammary infections (IMI). Susceptible individuals can be infected with IMI
and enter a subclinical or a clinical stage. Infections in subclinical individuals can flare up, and the infection in
clinical individuals can be subclinical again (remission). Finally, infected individuals can recover from disease
and be susceptible again. The disease spread is analogue to the differential equations:

ds L+ I,
— = —[=>—=8 + agls + nacle — pS + pN
T B N sls = Nacle — p e (4)
dlg I+ I
— = pf=—=8 — a5l + (1 — n)acly — vy — pl
at pB N sls + ( nacle — Ysls — pls (5)
dig kI

e 1 —=p)s N S = acle + yls — ple (6)
where § is the number of susceptible individuals, I is the number of subclinically infected individuals, I is the
number of clinically infected individuals, and any other parameters are given in Table 1 in the supplementary
material. Infections occur on quarter level, independently of other quarters on the same cow. Hence, there are
essentially 800 units exposed to infection. The initial prevalence in the model was 10% on quarter level in the
epidemic scenarios. We ran 30 simulations in the SIScom model framework which was deemed enough to reach
convergence (data not shown).

Individuals entering the clinical state are given a fixed duration of three days and are then healed, going to the
susceptible state, or remission can occur so they go to the subclinical state again.

In the both models we know the true status of each individual, thus leaving out noise from the test procedure.

Subsampling procedure. In the SISsim model, the population subsampling was performed by initially and
randomly choosing a given number of individuals for testing at each test day. These individuals were followed
over the simulations. Similarly, in the SIScom model we first randomly chose a given number of individuals
for testing. If these individuals were in dry off on a given test day, and therefore did not have a test result, they
were not included in the test day recording. After dry off they were included again. If a cow in the subsample
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population was culled, it was replaced by another cow. Replacement cows were the youngest lactating cows, which
have a higher survival rate than older cows. We ran different sampling scenarios in which 100%, 75%, 50% or 25%
of the population was sampled.

Estimation methods. We used three different methods to estimate the transmission parameters: Poisson
regression and two new methods.

Poisson.  The poisson regression method estimates the transmission rate using Poisson regression with a log-link
as described in Zadoks et al.'":

log(Iy) = log(B) + log [&]

Nint (7)
where log/’(_ly) is the expected log number of new infections per sampling interval. S, is the number of susceptible
individuals in each sampling interval multiplied with the sampling interval, plus half of the new infections per
sampling interval multiplied with the sampling interval. Thus, S,,, is the estimated number of individual days at
risk based on the average number of susceptible in the sampling period. I, is the number of continuously infected
individuals in each sampling interval multiplied with the sampling interval, plus half of the new infections per
sampling interval multiplied with the sampling interval. N,,, is the total number of individuals in each sampling
interval multiplied with the sampling interval. The term log (S;,.J;../N;,;) was used as an offset. Using the offset we
fix the slope of the regression to 1, thereby obtaining the transmission rate, 3. In the SIScom model, the same
Poisson model was used units were not cows but quarters (teats).

Finding S,,, and I;,, from field studies so they can be used in a Poisson regression analysis can be complicated
given that there can be many introductions and exits of animals between samplings. Therefore we derived two
other methods for estimating the transmission rate, which use only the number of animals in the different cate-
gories (I, I, N, and S).

Method 1. 'The estimate for the transmission rate in Method 1 is given by:
_ —log(1 — Ly/I)
TSIN ®)

where (3 is the mean estimated transmission rate, Iy is the number of new infections since the previous sampling,
I'is the number of infected individuals, S is the number of susceptible individuals, and T is the sampling interval.

g

Method 2. The estimate for the transmission rate in Method 2 is given by:

’= _%1‘%[1 B IN[% * é]] ©)

with the same parameters as described for Method 1.
Derivations. Both new methods are based on the assumption that the system is in equilibrium (endemic state),

however, we shall show that this assumption introduces bias that is often small. First we note that the equations
describing the SIScom model can be rewritten to:

ds IS
i -301 + 6)% + agdle + nacle + (1 + &I (10)
~I:S
= <X +al
N e (1)

where §=1Iy/I, f = 3(1 + 6),and& = agd + nag + (1 + ) under the assumption that we are at the equilib-
rium, so that § is a constant. This amounts to reducing the system to two processes going only between the sus-
ceptible and infectious individuals. For the remainder of the manuscript « and (3 can thus be thought of either as
the original o and 3 from the SISsim model or & and 3 from the SIScom model.

Equilibrium is defined as dS/dt=0, and therefore:

S_a
N B (12)

when in equilibrium there will still be new infections as some are replaced and some recover which is included in
the o parameter. Therefore, the number of new infections can be described as:

d, IS
N _ 32 ol
dt ﬂN N

Being in equilibrium S and I are constants and the solution to the differential equation is:

(13)
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_ b _
Iy(t) = N + cexp(—at) (14)

= I(1 — exp(—at)) (15)

using the properties of the equilibrium as described by equation (12), and setting ¢, such that Iy(0) =0 and
I(00) =1. Solving for o, where an explicit sampling time interval ¢t = T'is used:

_log(1 = Ly/D)
T (16)
Inserting this into eq. (12) and rearranging, gives method 1, eq. 8:
—log(1 — Iy/I)
TSIN

Method 1 functions if all new infections are observed. However, this is not always the case when sampling in
reality. Especially, individuals that recover and become reinfected should be counted as new infections, which
is most often not possible. Therefore, a second method that only counts individuals susceptible at the previous
sampling as new infections was developed:

8=

dly _ IS -1y
dt b N Iv (17)

Again being in equilibrium S and I are constants and the solution to this differential equation is:

ES
Iy(t) = 7 N__ 4+ cexp(—(a + BI/N)t)
F (0%
1
= | —— | (1 — exp(—a(1 + I/S)t))
[S’1 + I’l] P (18)
and isolating for a:
_ log(1 —Ly(ST'+17Y)
T(1 + 1/S) (19)

Inserting this into eq. (12) and rearranging while noting that S/N(1 +1/S) = 1, gives method 2, eq. 9:

=il )

Note that o for both methods describes a combined recovery and replacement rate. The «v derived is not the
recovery rate and can be heavily biased if the system is out of equilibrium.

Bias. Both new methods rely on the assumption of the disease being in equilibrium, but in reality this state is
practically impossible to obtain due to population dynamics and stochastic events. In a simulation model, there
are also many factors that drives a system away from equilibrium, e.g. the fact that we are counting integer num-
ber of individuals in principle prohibits the system from being in exact equilibrium if the ratio of a//3 is not pre-
cisely so that it could be S/N for integers. To estimate this error, let € represent the bias so that S is the observed
number of susceptible, where S is the number of susceptible in equilibrium. The observed number of susceptible
is substituted into eq. (14) so that it becomes:

Iy(t) = é(l — exp(—at))

(20)
and inserting into the estimate for 3
5o —og(1 — ely/)  ely/T (ely/1)? R ey/n®
TS/IN TeSIN  2TeS/IN TS/IN  2TSIN (21)

where the local approximation is done by Taylor expansion. Notice that the bias disappears in the first order term.
A similar exercise can be done for method 2, where the bias does not disappear.

- 1°g(1 ~ I+ i)) YR (5 + )1

T%G N LS) ~ TeSIN 2T<S/N
=

6=
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Figure 2. The best methods for each scenario and combinations of transmission rate and test interval.
P=Poisson regression, 1 =Method 1, 2=Method 2. In cases where more than one method is indicated, no
significant difference was found between the methods. Colors are specific to each combination.

Simulated data. The two new methods derived above are theoretically for use primarily in an equilibrium
situation. However, data is not always obtained during equilibrium. Therefore we simulated both epidemic and
endemic scenarios with both simulation models to estimate the error made by the methods.

The epidemic scenarios were simulated by initially infecting 10 of 1000 individuals in the SISsim model, and
10 of 800 quarters (units) in the SIScom model. The endemic scenarios were simulated in both models by starting
in equilibrium. After estimating the transmission rates from both data sets, we calculated the variation in the
estimate over the number of simulations, using 2 to 50 random samples from the SISsim model data and 2 to 30
samples from the SIScom model data. We divided the estimated rate by the simulated rate to obtain a precision
measure, and then took the standard deviation of this number. We then evaluated if the model had converged.

Data availability statement. The data sets used can be acquired from the corresponding author upon
request.

Comparison of Methods

We compared the performance of the three models in all modelled scenarios and combinations of test interval
and transmission rate. For each situation we found the best method, which was the one that estimated the trans-
mission rate to be closest to the known true rate. Then we calculated if the mean estimate of the other two meth-
ods overlapped with mean £ 1.96 - sd of the best method. If this was the case, there was no significant difference
between the methods.

Results
In the SISsim model, 50 repetitions were enough to reach convergence, and in the SIScom model, 30 repetitions
were enough to reach convergence (data not shown).

The best methods for each scenario and combinations of transmission rate and sampling interval are shown
in Fig. 2. In all four scenarios, all three methods perform equally when the sampling interval is large and trans-
mission rate is low, and also when the transmission rate is high and the sampling interval small (Fig. 2). For
the SISsim model in the endemic scenario, Method 2 was significantly better than the other two. For the same
model with the epidemic scenario, model 1 and 2 performed equally well and significantly better than the Poisson
method, but they alternate when the transmission rate and the test interval are high (Fig. 2).
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Figure 3. SISsim model results: Heatmaps show the estimated transmission rates as percentage of the simulated
transmission rate. The endemic scenario is shown above and the epidemic below. Values in each cell show the
relative standard deviation of the estimated rate divided by the simulated rate.

Sampling interval

For the SIScom model in the endemic scenario, the Poisson method and Method 1 performed significantly
better than Method 2 when the sampling interval is 3 or 7 days and the transmission rate is high. When the
sampling interval was 14 days, all three methods performed equally. At larger sampling intervals Method 1 and
Method 2 performed better than Poisson. Likewise, for the SIScom model in the epidemic scenario, Method 1
and Method 2 performed better for large intervals and high transmission rates. For the SIScom model, Method 2
generally performed better than the other two at large sampling intervals and transmission rates.

SISsim model. From the SISsim model data we see that the Poisson regression method underestimates the
transmission rate, more pronounced with larger sampling intervals and higher transmission rates (Fig. 3). The
Poisson regression performed better in the epidemic situation than in the endemic situation. There is almost no
change in the estimate when subsampling the population down to 25%. The highest and lowest estimated rates
were 106% and 58% of the actual rate in the epidemic scenario, and 100% and 41% in the endemic scenario. The
relative standard deviation in the estimated rates is generally very low, with increasing variation when the test
interval and transmission rates used are small (Fig. 3).

Method 1 performed better than Poisson in the epidemic scenarios. The estimated rate was between 100% and
79% in the epidemic scenario and between 100% and 55% of the simulated rate in the endemic scenario (Fig. 3).
Like the Poisson model, it showed an underestimation that was more pronounced with larger sampling intervals
and transmission rates. Subsampling the population had very little impact on the estimated rates, although it did
increase the relative standard deviation a little (Fig. 3).

Method 2 yielded a slight overestimation with increasing sampling interval and transmission rate, rang-
ing between 96% and 138% of the simulated rate in the epidemic scenario and between 100% and 114% in
the endemic scenario (Fig. 3). Thus it performed better in the endemic scenario than the epidemic scenario.
Subsampling the population affected the estimate similarly to the other two methods (Figs 1-16 in supplementary
material).

The variation between results was generally much larger in the epidemic scenarios than in the endemic sce-
narios. In the endemic scenario, the lowest variation was in the results of the Poisson regression method. The
highest variation was in the results from Method 2. In the epidemic scenario we see the same pattern where the
Poisson regression method results in the lowest variation and Method 2 shows the highest variation.
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Figure 4. SIScom model results: Heatmaps show the estimated transmission rates as percentage of the
simulated transmission rate. The endemic scenario is shown above and the epidemic below. Values in each cell
show the relative standard deviation of the estimated rate divided by the simulated rate.

SIScom model. In the epidemic scenario, all three methods underestimated the transmission rate (Fig. 4).
For Poisson and Method 1 the underestimation was worst at large sampling intervals. Method 2 performed better
at long sampling intervals. Subsampling did not noticeably change the estimate, but did increased the relative
standard deviation of the estimate (Figs 5-16 in supplementary material).

The endemic scenarios show both over- and underestimation. The Poisson regression and Method 1 overes-
timates the rate when the sampling interval is one or three days (Fig. 4). When the sampling interval was seven
days, they were mostly correct. When the sampling interval is between 14 and 30 days, the Poisson method
underestimated the rate. Both the overestimation at small sampling intervals and the underestimation at large
sampling intervals becomes more pronounced with higher transmission rates. The relative standard deviation
seems to be negatively correlated with the sampling interval. We see the same pattern for Method 1 as for the
Poisson regression (Fig. 4). Using Method 2 in the endemic scenario mostly results in an overestimation of the
rate, highest when the sampling interval was small and the transmission rate is high.

When the transmission rate becomes very low, at 0.010, in the endemic scenario, none of the methods were
able to estimate a transmission rate because the disease had died out (Fig. 4). When the rate is 0.015, all three
methods underestimate the rate.

Discussion
We here used a dairy herd as an example of a realistic study population and showed that a good estimate of the
disease transmission rate can be difficult to obtain, supporting the recent findings of Jacobs et al.?>. We found
considerable over- and underestimation in the results, both between the used models, and the used methods. The
estimation error increased with large sampling intervals and high transmission rates. Moreover, if the transmis-
sion rate gets close to the recovery rate, the estimated transmission rate can be imprecise due to stochastic events
and the probability of disease fadeout. Subsampling only reduces the precision of the estimates, although the
impact was found to be very small in this study (Figs 5-16). Based on these findings, we recommend that simu-
lation models of disease spread use transmission rates from stochastic distributions rather than fixed values or fit
the transmission rate to represent different situations, to study whether conclusions may change given different
transmission rate values.

The results show that the three methods have different strengths and weaknesses. Generally, Method 2 per-
formed best in most situations (Fig. 2) In the SISsim model with the epidemic scenario Method 1 performed best
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in the investigated range of sampling intervals and transmission rates (Fig. 3). In the endemic scenario of the
SISsim model, Method 2 was the most precise (Fig. 4). For the SIScom model in the epidemic scenario, Method
2 was found to be preferable, although it still underestimated the rate (Fig. 4). In the endemic scenario with the
SIScom model, none of the methods performed optimally, but Method 2 performed overall better (Fig. 4). All
methods perform similarly when the sampling interval is one day.

The transmission rate itself consists of different parameters: contact rate, susceptibility of individuals and force
of infection’. In this study we did not separate the rate into these parameters, as this is practically impossible.
Furthermore, the estimated transmission rate is biased because biological systems are practically never in per-
fect equilibrium, which is an underlying assumption in all the estimation methods described here. The two new
methods assume that the system is close to an endemic equilibrium, while the Poisson method assumes that the
number of susceptible and infected animals is stable between sampling points. Thus the estimation method itself
inevitably introduces a bias to the estimate. It is more desirable to have random bias rather than systematic bias,
because random bias can be cancelled out using multiple data points.

Homogenous mixing is an underlying assumption in our simulations and theoretical framework, but this is
most likely not the case in real life. Other factors can also create temporal variations in disease transmission. For
instance, physiological susceptibility in the individuals can be heterogeneously distributed, meaning that the most
susceptible individuals can acquire the infection first, causing the transmission rate to be high in the beginning
of an outbreak and then drop'. The infectivity could also be heterogeneously distributed within the population,
adding to the complexity in real populations®.. A further assumption of this study is that the status of individuals
are only registered at sampling times (i.e. An individual that become infectious and return to susceptible within a
sampling period is not recorded as a new infection).

Nielsen et al.!® mention that the time between sampling points should preferably be as short as the average
infective period to optimally estimate the transmission parameters, because all transmission events are registered
that way. This is true for the Poisson regression method and Method 1 used here. However, Method 2 presented
here takes the possibility of transmission events between samplings into account. This means that Method 2 is not
as sensitive to large sampling intervals as the two other methods. In concordance with this, we used a mean infec-
tive period of 125 days (1/0.008) in the SISsim model, and could detect the transmission rate with high precision
even when sampling intervals were as large as 150 days (results not shown).

We also investigated the impact of changing the recovery rate in the SISsim model and the flare-up rate in the
SIScom model. This affects the period of infection, but had a negligible effect on the estimate of transmission rate
and thus the results are not shown.

The results of the SISsim and the SIScom model are not similar. The SISsim model is a simple representation
of the transmission framework, from which the rate estimation methods are derived. The noise in this model only
comes from stochasticity in the infection events and the subsampling. In the SIScom model, additional noise
comes from the natural flow of individuals that are not sampled at all sampling points (cows that are being dried
off or replaced during the study period). This represents a more realistic biological system, and the errors become
more complex.

The results presented here assume that the true status of the individuals is known in both the SISsim and the
SIScom model. The noise in the SIScom model comes from the natural fluctuations in a dairy herd where cows
are dried off and eventually culled. However, in a more realistic setting the status of the individuals can only be
known through testing, which will add the noise from the test specificity and sensitivity. We did not include this
in the current study. These measures will vary with the test used, therefore we wanted to keep this out of this
study, in order to focus on the precision of the used methods. This study assumes that the true transmission mode
is known. If, for instance, infections were caused by mass action', the estimated rate will likely be further off.
However, this is beyond the scope of this study.

It is not practically possible to study the precision of the estimated transmission rate on data from a real popu-
lation because this implies that the real transmission rate is known. Therefore we here used the second best solu-
tion and used a realistic dataset. The results reported here are specific to the model and data, and hence should
not be generally used to make adjustments to obtained results from other studies. The best possible estimate of
transmission rate will be achieved by building a simulation model closely resembling the observed case, and fit
this to data.

Here we take the mean of 30 or 50 simulated datasets. In studies where the transmission rate is estimated,
there is most likely only one dataset. Thus, such an estimate will not be as precise as when taking the mean of
a number of datasets. Poisson and Method 1 generally have similar standard deviation in the estimates, while
Method 2 typically is a factor of two higher. This means that Method 2 has a higher variance, and the estimated
transmission rate can differ from the true rate. However, it is often the best method, or among the best methods
in the scenarios presented here, so it is still a robust method.

If there are no new infections between sampling points, the Poisson regression analysis will give an error as the
log-link returns a negative infinite value. The two new methods proposed here do not have similar problems and
hence they are superior to the Poisson method when no new infections exist.

In this study, we have explored regression and analytical approaches. Another approach could be Bayesian
inference!®?*, or estimating time-varying transmission rates®'. Arguably, the transmission rate does not remain
constant over time?!. For instance, Zadoks et al.?? distinguished between an endemic and an outbreak (epidemic)
period of S. uberis in the studied data. Cook et al.?! used Bayesian inference to estimate transmission rates var-
ying in time in a heterogeneous population. Thus, it can be beneficial to estimate the transmission rate for each
sampling interval. This is not possible to do with the Poisson regression model, but it is contained in both Method
1 and Method 2 described here. For simplicity, we chose to use the mean of the entire study period in this study,
since there will be large variations in the estimates from small systems.
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The SISsim system of differential equations can be solved analytically, and in principle the epidemic curve
can be fitted to this solution. However, this requires fitting of three parameters (initial value, , and (), and when
equilibrium has been reached only the ratio between «, and 3 is well defined. To achieve a good fit there must be
some points in the epidemic part of the disease. This is often not achievable especially if the sampling interval is
long. The two new methods that we have presented here are robust towards long sampling and are designed for
optimal function in the endemic situation.

We also conducted negative binomial regression to estimate transmission rates in this study, but the results
with this method were very similar to those with poisson regression (data not shown). Furthermore, it failed
to estimate rates for many simulations with sparse transmission events, i.e. when no new infections occurred
between samplings.

To conclude, our results showed that the true transmission rate is rarely obtained, and the estimated rate can
be both over- and underestimated. The error in the estimate increases when sampling intervals are large and
transmission rates are high. Subsampling the populations down to 25% only slightly affected the estimated rate.
The presented new methods, Method 1 and Method 2, were found to be superior or equal to Poisson regression
in most scenarios explored in this study.
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