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Abstract

Intracellular compartmentalization and trafficking of molecules plays a critical role in complex
and essential cellular processes. In lung cancer and other malignancies, aberrant
nucleocytoplasmic transport of tumor suppressor proteins and cell cycle regulators results in
tumorigenesis and inactivation of apoptosis. Pharmacologic targeting of this process, termed
selective inhibition of nuclear export (SINE), has demonstrated anti-tumor efficacy in preclinical
models and human clinical trials. Exportin-1 (XPOZ1)—which serves as the sole exporter of several
tumor suppressor proteins and cell cycle regulators, including retinoblastoma (Rb), adenomatous
polyposis coli (APC), p53, p73, p21, p27, FOXO, STAT3, IKB, topoisomerase Il and PAR-4—is
the principal focus of SINE drug development. The most extensively studied SINE to date, the
XPO1 inhibitor selinexor (KPT-330; Karyopharm Therapeutics, Inc., Newton, MA), has
demonstrated single-agent anticancer activity and synergistic effects in combination regimens
against multiple cancer types, with principal toxicities of low-grade cytopenias and gastrointestinal
effects. SINE may have particular relevance in KRAS-driven tumors, for which this treatment
strategy demonstrates significant synthetic lethality. A multi-center phase 1/2 clinical trial of
selinexor in previously treated advanced KRAS mutant non-small cell lung cancer is underway.
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Intracellular compartmentalization and trafficking of molecules plays a critical role in
complex and essential cellular processes. Aberrant nucleocytoplasmic transport of tumor
suppressor proteins and cell cycle regulators—mediated by importins and exportins—can
result in tumorigenesis and inactivation of apoptosis. Several malignancies, including lung
cancer, feature over-expression of these nuclear transport receptors. Pharmacologic targeting
of this process has demonstrated anti-tumor efficacy. In this review, we describe the
mechanism, function, and therapeutic targeting of nuclear transport, with particular focus on
application in lung cancer.

Nuclear export machinery

The nuclear envelope, comprising an inner and outer membrane, prevents the unrestricted
diffusion of molecules larger than 40 kilodalton between the nucleus and the cytoplasm.
This regulated nuclear-cytolasmic transport of proteins and other molecules plays a key role
in cell functioning.> Within the nuclear envelope, nuclear pore complexes provide an
aqueous channel for the active transport of molecules. The karyopherin-B protein family,
which includes both importins and exportins, facilitates transport across these nuclear
pores.2 Cargo proteins destined for nuclear export have specific leucine-rich amino acid
sequences known as nuclear export signals (NES), which are recognized by exportin
proteins.3 Nuclear-cytoplasmic transport is an active process, requiring energy provided by
RanGTP. A complex between the cargo protein, the exportin molecule, and RanGTP is
formed and transported across the nuclear pore complex to the cytoplasm.? In the cytoplasm,
RanGTPase causes hydrolysis of the RanGTP, releasing and the cargo (which remains in the
cytoplasm) and exportin protein (which is recycled back to the nucleus) (Figure 1A).% At
least 7 eukaryotic exportins have been identified (Table 1). While most of these are
responsible for transport,® Exportin-1 (XPO1, also known as chromosomal region
maintenance 1, or CRM1) is a more ubiquitous receptor protein responsible for transporting
approximately 220 proteins.”-8

Role of nuclear export functions in normal cell physiology and cancer

XPOL1 is the sole exporter of several tumor suppressor proteins and cell cycle regulators,
including retinoblastoma (Rb), adenomatous polyposis coli (APC), p53, p73, p21, p27,
FOXO, STAT3, IKB, topoisomerase Il and PAR-4.° Under physiological conditions, the
regulated export of these molecules prevents their over-activity in the nucleus in the absence
of oncogenic stimuli or DNA damage. In multiple cancer types, XPO1 overexpression leads
to dysregulated export of these tumor suppressor proteins into the cytoplasm where they are
unable to exercise their effects, thereby resulting in aberrant growth signaling, inactivation of
apoptosis, and tumor initiation and growth (Figure 1B). XPO1 overexpression is also
associated with drug resistance due to export of drug targets such as topoisomerase Il and
galectin-3.10.11

Nuclear export targeting

Given the critical role of nuclear export in cell cycle regulation and tumorigenesis, efforts to
inhibit XPO1 pharmacologically have been undertaken. First generation XPOL1 inhibitors
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include natural products such as leptomycin B (Table 1). Leptomycin B irreversibly
alkylates an XPO1 cysteine residue (cysteine 528), preventing XPO1 binding to cargo
protein nuclear export signals. This in turn leads to inhibition of export complex formation,
as well as nuclear retention of tumor suppressor proteins (Figure 1C).12 Despite promising
preclinical studies, strong dose-limiting toxicities (anorexia, nausea) and minimal clinical
benefit in early studies limited development of leptomycin B.13 Newer pharmacological
agents, termed selective inhibitors of nuclear export (SINE), reversibly bind the XPO1
cysteine 528 residue. To date, the most extensively studied SINE is selinexor (KPT-330;
Karyopharm Therapeutics, Inc., Newton, MA). In multiple /n vitro and in vivo models,
selinexor has demonstrated single-agent anticancer activity and synergistic effects in
combination regimens (Table 2). Globally, selinexor has been administered to more than
2,100 patients. Common adverse events include low-grade nausea (62%), fatigue (60%),
anorexia (51%), thrombocytopenia (42%), and vomiting (37%), which have generally been
readily managed with standard supportive care measures.

As monotherapy, selinexor has induced responses in hematologic malignancies and yielded
disease control in solid tumors.14-16 In one study, 31% of evaluable patients had an objective
response with use of selinexor across a spectrum of non-Hodgkin’s lymphoma subtypes,
with a median duration of response exceeding 10 months.1® In another study, among 157
evaluable patients with advanced or metastatic solid tumors, single-agent selinexor resulted
in an objective response rate of 4%, and a stable disease rate of 43%.17

Preclinical studies and clinical trials in lung cancer

XPO1 is overexpressed in lung cancer cells, particularly those arising in the setting of
Nicotine-derived nitrosamine ketone (NNK, a tobacco carcinogen) exposure.18 Preclinical
studies have demonstrated antitumor activity of SINEs in non-small cell lung cancer
(NSCLC) cell lines and xenografts.1920 SINEs have shown efficacy against epidermal
growth factor receptor (EGFR) inhibitor-resistant NSCLC cell lines in a time- and dose-
dependent manner.29 Synergism with chemotherapy and radiation therapy has been
demonstrated in the presence of diverse molecular alterations, including EGFR, p53, RAS,
and PIK3CA mutations.19-21

Efficacy against KRAS mutant lung adenocarcinoma, a disease setting lacking specific
targeted therapies to date, appears particularly promising. In a multi-genomic screen of
4,700 biological processes in more than 100 human NSCLC cell lines, nuclear transport
machinery emerged as the sole process exhibiting synthetic-lethal interactions in KRAS-
driven cancers.22 In this study, the primary mechanism of cell kill was intolerance to nuclear
accumulation of 1B with consequent inhibition of NFkB transcription activity. Rare cases
(<20%) of intrinsic resistance were associated with FS7L5 mutations and attributed to YAP1
activation. With few exceptions, nuclear export inhibition had limited efficacy against KRAS
wild type cell lines.

In summary, the broad genomic landscape in lung cancer makes it an attractive clinical
setting for SINEs. To date, selinexor trials in advanced squamous cell lung cancer
(NCT02536495) and relapsed small cell lung cancer (NCT02351505) have been initiated.1”
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A phase 1/2 trial in previously treated advanced KRAS mutant NSCLC is underway
(NCTO03095612).
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Figure 1. Export through the nuclear pore complex
(A) Physiologic state. Export complexes containing Exportin-1, a cargo protein, and

RanGTP are transported across the nuclear pore due to the RanGTP: RanGDP gradient.
RanGTPase hydrolyzes RanGTP in the cytoplasm, leading to dissociation of the complex in
the cytoplasm. (B) Cancer. Up-regulation of Exportin-1 results in dysregulated cytoplasmic
transport of cell-cycle regulators, leading to their accumulation in the cytoplasm and
inability to exert their effects. In turn, this state leads to aberrant growth signaling,
inactivation of apoptosis, and tumor initiation and growth. (C) Pharmacologic inhibition.
Selective Inhibitors of Nuclear Export (SINE) bind to Exportin-1 (XPO1) and prevent its
interaction with cargo proteins, thereby inhibiting nuclear export. Cell-cycle regulators are
retained in the nucleus, leading to growth inhibition.
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