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Abstract

Objective—To assess if the reduction in HIV-1 RNA in CD4+ T cells is correlated with the 

persistence of immune activation following early antiretroviral therapy (ART)

Design—Clinical trial (NCT01285050).

Methods—Next-generation sequencing was used to study total RNA from activated CD4+ T 

cells (CD38 and HLA-DR expressing) collected from 19 treatment-naïve HIV-1/HCV infected 

patients before and early after ART initiation (≥12 weeks after plasma HIV RNA < 50 c/ml). To 

validate comparisons, pre- and post-ART measures were adjusted for input RNA and overall read 

number.

Results—As expected, ART use was associated with a median (IQR) 4.3 (2.2–8.3) reduction in 

the proportion of activated CD4+ T cells (P=0.0008). Whereas in those activated CD4+ T cells no 

consistent differences in overall gene expression were detected, interferon stimulated gene 

expression declined (P<2×10−16). Pre-ART, sorted activated CD4+ T cells contained a median 

(IQR) of 959 (252–1614) HIV-1 reads/107 reads compared to 72 (55–152) HIV-1 reads/107 reads 

after ≥12 weeks of suppressive ART (P=8×10−5). The decrease in HIV-1 reads in activated CD4+ 

T cells was associated with the change in plasma HIV-1 RNA levels (r=0.77, P=2×10−4) and the 

change in the proportion of activated CD4+ T cells (r=0.70, P=0.0016).
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Conclusions—Months of ART led to a marked decrease in cell-associated HIV-1 RNA and ISG 

expression in activated CD4+ T cells that were strongly associated with the reduction in the 

proportion of activated CD4+ T cells.
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INTRODUCTION

Antiretroviral therapy (ART) durably suppresses HIV-1, prevents progression to acquired 

immunodeficiency syndrome, and reduces mortality. However, even with ART HIV-1 

infected adults remain at higher risk of cardiovascular disease, dyslipidemia, insulin 

resistance, liver, kidney and bone dysfunction, neurocognitive disorders, accelerated 

biological aging, and cancer [1, 2]. Although the precise pathophysiology of many of these 

disorders is poorly understood, a syndrome of chronic immune activation and inflammation 

is a common feature [3, 4].

With initial HIV-1 infection, there is activation of innate and adaptive immunity that alters T 

cell homeostasis as characterized by elevated HLA-DR+/CD38+, CD57, PD-1 and CTLA-4 

expression, and lower expression of CD28 [5–13], as well as enhanced expression of many 

cytokines and chemokines including IFNα, IFNγ, TNF, IL-6, IL-8, and CXCL10 [14, 15]. 

Cellular activation of CD4+ and CD8+ T cells, defined by co-expression of the surface 

markers HLA-DR and CD38, has been most closely associated with disease pathogenesis [7, 

8, 11, 16]. Even when HIV-1 viremia has been suppressed for years, the proportion of HLA-

DR+/CD38+ T cells remains higher than in uninfected persons and is correlated with failure 

to restore circulating CD4+ T cells and development of disease [2, 7, 17].

A dominant mechanism for HIV-1 persistence is the generation of a ‘silent’ provirus in 

resting memory CD4+ T cells that is unaffected by ART or host-immune responses [18–22]. 

Some non-induced pro-viruses are capable of replicating if ART is stopped [23, 24]. 

However, the functional consequences of persistent intracellular viral RNAs remain unclear. 

It is plausible that cell-associated viral RNA, even in the absence of virion production and 

infection of new cells, could sustain host innate immune responses and contribute to immune 

activation [25, 26]. Here we show that, even after more than 12 weeks of undetectable 

viremia following ART, HIV-1 RNA persists in activated CD4+ T cells, and that HIV-1 

transcription is associated with the reduction in CD4+ T cell activation and expression of 

host interferon-stimulated genes (ISG).

METHODS

Human subjects

Persons with HIV-1/HCV co-infection were enrolled in a prospective study designed to test 

the effect HIV-1 control on HCV that is extensively described elsewhere [27]. Persons with 

untreated chronic HIV-1 and HCV infections were recruited from the Johns Hopkins HIV-1 

Clinic, the Baltimore City Sexually Transmitted Diseases Clinic, and other area clinics. 
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HIV-1 infection was established by detection of HIV-1 antibodies and an HIV-1 RNA level 

>400 c/mL; chronic HCV infection was determined by detection of HCV antibodies and 

HCV RNA >100,000 IU/mL for >6 months. Subjects had received <24 months of ART over 

their entire lives and none within 6 months of enrollment. Subjects also were excluded if 

HBsAg was detected in plasma; they were pregnant; there was a history of severe depression 

or any uncontrolled disease; platelet count was <50,000/mm3; or if there was a 

contraindication to use of raltegravir, tenofovir disoproxil fumarate (TDF), or emtricitabine. 

Because therapy was judged too urgent to wait for study procedures as per current treatment 

guidelines for HIV-1 and HCV, persons at screening whose CD4+ T cell counts were 

<200/mm3 or who had cirrhosis were excluded. A total of 32 patients were screened to 

identify 20 study subjects, and 19 completed the study. All subjects gave written informed 

consent to the protocol as approved by the Johns Hopkins University School of Medicine 

Institutional Review Board.

All subjects had received a single injection of peginterferon alpha 2b (IFN) two weeks prior 

to ART initiation to study the response of HIV-1 and HCV to IFN prior to ART. Two weeks 

following IFN administration, after plasma HIV-1 RNA levels normalized, ART consisting 

of raltegravir, TDF, and emtricitabine was initiated. Participants were followed until their 

plasma HIV-1 RNA levels had been undetectable for ≥12 weeks after ART initiation. 

Peripheral blood mononuclear cells (PBMCs) were collected prior to ART initiation and at 

regular intervals for ≥12 weeks after ART initiation. The first specimen collected for 

sequencing (“Pre-Treatment”) was acquired before the first peginterferon injection and the 

second specimen (“ART”) was collected after ≥12 weeks of continuous suppressed viremia, 

HIV-1 RNA <50 cp/mL), more than 4 months later. All subjects gave informed consent for 

participation in the study, which was approved by The Johns Hopkins University School of 

Medicine Institutional Review Board.

HIV-1 RNA quantitative PCR (qPCR) testing was performed using the Abbott RealTime 

HIV-1 Assay (No. 02631–090). CD4+ T cell count was measured by flow cytometry of 

whole blood that was delivered to the Johns Hopkins Hospital clinical laboratory.

Isolation of activated T cells

PBMCs were separated from whole blood and frozen. Freshly thawed cells were washed and 

incubated with CD3-FITC (Biolegend), CD4-PECy7 (Biolegend), CD8-APC (BD 

Biosciences), HLA-DR-PE (Biolegend), and CD38-BV421 (Biolegend) for 40 minutes at 

4°C per the manufacturer’s recommendation. Immediately before sorting, plasma membrane 

compromised cells were labeled with propidium iodide (Sigma). Fluorescence-activated cell 

sorting (FACS) was performed on a MoFlo Legacy Sorter (Beckman-Coulter) at the Johns 

Hopkins School of Public Health Flow Cytometry Core Facility. Gates were set using 

fluorescence minus one plus isotype control. Because flow and sorting had to be performed 

over several sessions, the gates were set each session using a reference participant’s PBMCs 

(selected based on availability of cells). The population of interest was sorted directly into 

≥4 volumes of Quick-RNA® MicroPrep lysis buffer (Zymo Research) per the 

manufacturer’s recommendation. Sorting was stopped when the number of sorted cells 

reached 125,000 cells, although many samples did not reach this number. Flow cytometry 
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analysis on two randomly selected post-sort samples revealed >95% purity. Sorted samples 

were vortexed, incubated for 10 minutes at room temperature, vortexed again, and frozen at 

−80°C until isolation.

RNA preparation and sequencing

Isolation was performed using the Quick-RNA® MicroPrep kit (Zymo Research) according 

the manufacturer’s protocol without the on-column DNAase treatment. The eluate was 

treated with DNAse-I (Qiagen) according to the manufacturer’s protocol, then purified and 

concentrated using the RNA Clean-up and Concentrator kit (Zymo Research) according the 

manufacturer. The high-sensitivity assay for RNA or DNA was performed on RNA 

isolations and cDNA libraries respectively using a 2100 Biolanalyzer (Agilent).

Complementary DNA (cDNA) libraries were produced using the Ovation® Single-cell 

RNAseq kit (NuGEN) according to the manufacturer’s specifications. Briefly, reverse 

transcription was carried out using a random hexamer to oligo dT ratio of 50:1 and unique 

barcodes for each individual’s samples were ligated to ~250bp enzymatically fragmented 

molecules. All samples were linearly amplified with 19 cycles of PCR using primer 

annealing sites contained within the adapters. All sequencing was performed on a 

HiSeq2500 (Illumina) at the Johns Hopkins Genetics Research Core Facility. All sequencing 

data are deposited in the National Center for Biotechnology Information (NCBI) Sequence 

Read Archive (accession number SRP068424).

Human Sequence Mapping and Differential Expression Calculation

Reads were aligned to the hg19 reference genome and annotated transcripts with RSEM 

(version 1.2.9) [28]. Differential expression of genes and isoforms was calculated using 

EBseq (version 1.11.0) [29], an empirical Bayes hierarchical model for expression analysis 

of RNAseq data.30 The human sequence mapping and differential expression calculation 

was performed at the Johns Hopkins University Sidney Kimmel Comprehensive Cancer 

Center Next Generation Sequencing core.

HIV-1 Genome Sequence Mapping

The reads were first quality-trimmed using the Phred algorithm with seqtk trimfq (version 

1.0, error rate threshold 0.05, https://github.com/lh3/seqtk), and sequences shorter than 31 

base pairs, after quality trimming, were discarded. The remaining reads were mapped to the 

human genome (build hg19) with bowtie2 (version 2.2.6) [30] using local alignment as a 

filter. All reads that did not align to the human genome were then mapped against a pool of 

2,153 validated HIV-1 genomes, plus the HIV-1 reference genome, that were listed in the 

NCBI Viral Genome Resource [31] as of July 18, 2016 (Table S1). The reads were extracted 

using samtools (version 1.3) [32] and aligned to an index compiled from the HIV genomes 

with bowtie2. The resulting alignments were cleaned of PCR duplicates using Picard 

MarkDuplicates (version 1.119, http://broadinstitute.github.io/picard). Percent identity and 

alignment length for the HIV reads were calculated from SAM tags, and only reads with at 

least 80% identity over the aligned sequence, and alignment length of 31 base pairs, were 

kept. The genome coverage was calculated with samtools mpileup. The data was loaded in R 

version 3.3.1 [33] and visualized using ggplot2 version 2.20 [34].
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Statistical Analyses

Comparison values, including post-correction fold-change, post-correction probability of 

differential expression (PPDE), and post-correction probability of equal expression (PPEE) 

values, were further analyzed using ‘stats’ in R version 3.1.2. Measurements for which 

neither the PPDE nor PPEE were ≥0.95 were discarded as being of low confidence. In the 

determination of significance of the gene’s change across the cohort after ART, all fold-

change calculations with PPEE ≥ 0.95 were set to 0, reflecting the certainty of the PPEE. If 

there were remaining measurements for a gene in >10 of the individuals, a two-sided one-

sample T-test was performed on log2 transformed fold-change values. The resulting P-values 

were adjusted for multiple comparisons using the Benjamani-Hochberg method. Spearman 

rank-correlations were performed between fold-changes of the observed ISGs and 

intracellular HIV-1 RNA decline; with fold-changes with PPEE ≥ 0.95 retained as their 

original values.

RESULTS

We collected samples from nineteen patients with HIV-1 and chronic HCV co-infection who 

completed the study (Table 1). The median (range) log plasma HIV-1 RNA and CD4+ T cell 

counts at baseline were 4.27 log c/ml (2.91–5.44 log c/ml) and 376 cells/mm3 (203–759 

cells/mm3), respectively. ART resulted in suppressed viremia in all participants and a 

median (IQR) increase in CD4+ T cell count of 90 cells/mm3 (28 – 151 cells/mm3)[27]. 

Populations of activated CD4+ and CD8+ cells from total CD3+ T cells in PBMCs of 

patients before and after ART are shown in Fig. 1A. Prior to ART, CD4+/CD38+/HLA-DR+ 

cells constituted a median (IQR) of 11.3% (7.7%-14.5%) of total CD4+ T cells, while 

CD8+/CD38+/HLA-DR+ cells constituted 32.4% (26.90%-41.6%) of total CD8+ T cells. 

After ART initiation, CD4+ and CD8+ T cell activation decreased by a median (IQR) 4.3% 

(2.2–8.3) and 19.1% (14.1–22.5), respectively (Figs. 1B and C; P<0.001 for both), consistent 

with what has been seen previously [35–37]. In addition, CD4+ and CD8+ T cell activation 

were closely associated with each other (Fig. 1D and E).

PBMCs were sorted before treatment was initiated and ≥12 weeks after plasma HIV-1 RNA 

was suppressed to isolate purified populations of activated CD4+ T cells, defined as CD3+/

CD4+/CD38+/HLA-DR+. cDNA libraries were prepared from purified cells and a median 

(IQR) of 90.5 (85.4–107.6) million and 86.2 (83.5–99.6) million 100bp paired-end 

sequences were obtained before and following ART initiation, respectively (Table S2). We 

examined the change in the expression of a median (IQR) of 11,840 (10,080 – 13,180) genes 

following ART initiation in each individual’s activated CD4+ T cells (Fig. S1). After 

adjustment for multiple comparisons, no single gene was consistently differentially 

expressed pre- vs post-ART across the 19 individuals in the cohort. We considered 

interferon-stimulated genes (ISGs) as a separate group of genes whose expression is 

triggered in response to viral infections (Table S3). Of the 18 individuals in the cohort for 

whom cells were available, 17 had a significant change in ISGs (P-value range = 3×10−40 to 

0.006). Fifteen of the individuals had a significant decrease in ISG expression while only 2 

had an increase in ISG expression (Fig. 2). When the median fold-changes across the cohort 

were considered, ISGs were decreased compared to all other genes. Of the 96 ISGs 
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examined, 84.4% were downregulated post-ART (P<2×10−16, for comparison with fold 

change of non-ISGs) and the median (IQR) magnitude of the changes among ISGs was 

−0.244 log2 fold (−0.438 to −0.0396) (Fig. S2).

We next quantified HIV-1 RNA in activated CD4+ T cells by aligning RNA sequences to a 

reference panel of 2,153 HIV-1 genome sequences (Fig. 3A). Cell-associated HIV-1 RNA 

was detected both before and after ART initiation, but was less abundant during ART. A 

median (IQR) of 959 (252–1614) reads/107 reads and 72 (55–152) reads/107 reads mapped 

to HIV-1 before and after ART initiation, respectively (Fig. 3B) (P=8×10−5). In addition, 

pre-ART cell-associated HIV-1 RNAs were strongly associated with contemporaneous 

plasma HIV-1 RNA levels (R=0.79, P=5×10−5), and the decrease in cell-associated HIV-1 

RNAs was associated with the suppression of plasma viremia (R=0.77, P=2×10−4)(Fig. 3C).

At baseline, cell-associated HIV-1 RNA and global CD4+ T cell activation were not 

correlated (Fig. 4A). However, the decrease in the proportion of CD3+/CD4+/CD38+/HLA-

DR+ T cells after ART initiation was strongly associated with the decrease in intracellular 

HIV-1 RNA in the same activated cells (R=0.70, P=0.002; Fig. 4B). In contrast, the change 

in proportion of CD3+/CD4+/CD38+/HLA-DR+ T cells after ART initiation was weakly 

associated with the change in plasma HIV-1 RNA levels (R=.43 P=.076; Fig. 4C).

DISCUSSION

Despite the success of ART in improving clinical outcomes in patients with HIV-1, 

increasing non-AIDS morbidity and mortality have prompted efforts to understand the 

association between ART-suppressed virus persistence and host immunity. We found that the 

change in plasma and cell-associated HIV-1 RNA abundance following ART were strongly 

correlated, and that the decrease in cell-associated HIV-1 RNA was strongly associated with 

the reduction in CD38+ and DR+ CD4+ T cells. In addition, ART use was strongly 

associated with diminished expression of a panel of ISGs in activated CD4+ T cells. These 

findings are consistent with previous reports of decreases in cell-associated HIV-1 RNA in 

unsorted PBMCs [11]; however, in the present manuscript we measured cell-associated 

HIV-1 RNA strictly in activated CD4+ T cells, and linked this finding with the proportion of 

activated CD4+ T cells and ISG expression in those cells.

As in the case with all viral infections, ISGs are rapidly induced as a first line of host 

defenses in HIV-1 infected cells. ISGs are induced by type 1 interferons, which in turn are 

generated by the detection of viral nucleic acids and structural components by host cytosolic 

pattern recognition receptors. Proteins encoded by ISGs act in an autocrine and paracrine 

manner to promote an anti-viral state and the onset of adaptive immunity. Expression of 

ISGs in CD4+ T cells is one of the hallmarks of immune activation [38]. We found that the 

levels of 96 established ISGs in activated CD4+ T cells (Table S3) were significantly 

reduced en masse in patients on ART when compared to all evaluated genes (Fig. 2).

The finding of a correlation between the reduction in intracellular HIV RNA and activated 

CD4+ T cell change on ART is interesting in light of emerging data that suggest the virus 

itself may contribute to immune activation even in persons taking ART. While production of 
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new, replication-competent virus appears to be aborted by ART, HIV-1 RNA has been 

previously identified in CD4+ T cells in patients taking ART [39]. Low copy numbers of 

HIV-1 RNA, as well as an excess of short abortive transcripts have been identified in latently 

infected resting memory CD4+ T cells in patients on therapy [24, 39]. Although the 

functional consequence of these nonproductive or dead RNAs remains unclear, our data 

could support that persistent inactive viral RNAs in activated cells may lead to innate 

immune signaling. However, because plasma HIV-1 changes were strongly correlated with 

cell-associated HIV-1 RNA changes, an alternative explanation is that those with the largest 

plasma HIV-1 reductions had the greatest restoration in CD4+ T cells not expressing DR or 

CD38. In light of findings by Murray et al. that ART leads to a biphasic decrease in CD4+/

CD38+/HLA-DR+ T cells with a corresponding decline in total proviral DNA, we speculate 

that our findings may be related to the slow kinetics of turnover of the HIV-1 reservoir [40].

There were several challenges in our study. Because we employed a sorting strategy of 

activated CD4+ T cells, we were limited in the total amount of RNA that was available for 

individually targeted assays. Consequently, we did not fully characterize the HIV-1 RNAs or 

establish if they could propagate infection. Fortunately, on ART few/no of the RNAs would 

have been expected to propagate infection, and those limitations should not have affected 

our within-person comparisons. Another potential challenge was in our choice to study 

activated CD4+ T cells exclusively. Since activation itself promotes HIV-1 transcription, an 

expected but overgeneralized result would be to find less intracellular HIV-1 RNA during 

ART. However, while this would be true in a study of global CD4+ T cells, we specifically 

studied activated CD4+ T cells and adjusted for total transcription in those same cells. 

Another limitation is that we provide no mechanism explaining how CD8+ T cells would 

become activated, even though that cell type is strongly associated with the clinical immune 

activation outcomes. We note, however, that CD4+ and CD8+ T cell activation were closely 

related (Fig. 1D and E). Moreover, several studies have reported that CD4+ T cell activation 

also is associated with clinical outcomes [11, 16]. We also note that all participants in the 

present study were chronically co-infected with HCV, as is common among HIV-1 infected 

people who inject drugs in Baltimore [41]. It is possible other HIV-1 infected populations, 

including those without chronic HCV, infection might respond differently. However, our 

findings of a decrease in CD4+ and CD8+ T cell activation are consistent with previous 

studies in which HCV status was not presented [42].

All participants were treated with a single injection of pegylated interferon alpha 2b after 

acquisition of the ‘Pre-treatment’ samples and ≥12 weeks prior to the ‘ART’ specimen 

collection. While this could have led to an interferon refractory period, it would be 

unexpected for such a phenomenon to be present more than 4 months later. Indeed, ISG 

expression was observed to decrease to baseline values in rhesus macaques after 4 weeks 

despite weekly administration of exogenous pegylated interferon alpha [43].

We investigated the impact of 3 months of ART on HIV-1 cell-associated RNA activated 

CD4+ T cells. The reduction in activated CD4+ T cells was associated with the reduction in 

HIV-1 cell-associated RNAs and ISG expression. These findings provide new insights into 

the early effects of ART on a critical CD4+ T cell compartment.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. The proportion of activated T cells declines following ART
(A) Flow cytometry data and sorting algorithm for isolation of activated CD4+ and CD8+ T 

cells from total PBMCs at baseline (Pre-ART, blue) and after ≥12 weeks of undetectable 

plasma HIV-1 RNA during ART (green). Boxplots showing the proportion of (B) CD4+ and 

(C) CD8+ T cells expressing both CD38 and HLA-DR. (D) Scatterplot comparing the 

degree of CD4+ and CD8+ activation by participant before and (E) after ART.
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FIGURE 2. Activated CD4+ T cells of patients following ART initiation have decreased 
expression of interferon stimulated genes (ISGs) compared to pre-ART
Boxplots comparing the log2 fold-changes (y-axis) of all genes (unfilled) with ISGs (red) for 

each of the 19 subjects in the study. P-value shown is a Wilcoxon rank-sum test of the fold-

changes of ISGs compared to the fold-changes of all other genes per individual.
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FIGURE 3. Intracellular HIV-1 reads in activated CD4+ T cells pre- and following ART 
initiation
(A) Histograms displaying the HIV-1 read density (y axis) of each participant (designated at 

the far right, Y2, labels as A to S) for each position on the HIV-1 reference genome (x axis). 

(B) Boxplot with overlaid values comparing HIV-1 read quantitation pre- and following 

ART initiation. Lines connect values from the same individual. (C) Scatterplot comparing 

the change in the normalized number of reads mapping to HIV-1 from activated CD4+ T 

cells with ART and the change in plasma HIV RNA (with undetectable values while on ART 

set to zero).
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FIGURE 4. The change in intracellular HIV-1 RNA is associated with the change in proportion 
of activated CD4+ T cells
(A) pre-ART HIV-1 RNA is not associated with the proportion of DR+/CD38+/CD4+ T 

cells as shown by scatter plot comparing the two values. (B) Scatterplot comparing the 

change in intracellular HIV-1 RNA and the change in the proportion of HLA-DR+/CD38+/

CD4+ T cells. (C) Scatterplot comparing the change in plasma HIV-1 RNA (with 

undetectable values on ART set to zero) and the change in the proportion of HLA-DR+/

CD38+/CD4+ T cells.
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Table 1

Participant characteristics*

Characteristic N = 19 (100%)

Age,*

 median (range) 49.2 (20.8–60.6)

Sex

 Male, n (%) 15 (78.9)

Race

 Black, n (%) 12 (63.2)

BMI, kg/m2*

 median (range) 23.3 (17.7–39.0)

Plasma HIV-1 RNA, log10 copies/mL*

 median (range) 4.27 (2.91–5.44)

CD4+ T-cell count, cells/mm3*

 median (range) 376 (203–759)

Median ART duration (range), days 175 (112–217)

*
at baseline unless otherwise indicated
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