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Summary

To clarify the organization of motor representations in posterior parietal cortex, we test how three 

motor variables (body side, body part, cognitive strategy) are coded in the human anterior 

intraparietal cortex. All tested movements were encoded, arguing against strict anatomical 

segregation of effectors. Single units coded for diverse conjunctions of variables, with different 

dimensions anatomically overlapping. Consistent with recent studies, neurons encoding body parts 

exhibited mixed selectivity. This mixed selectivity resulted in largely orthogonal coding of body 

parts, which “functionally segregate” the effector responses despite the high degree of anatomical 

overlap. Body side and strategy were not coded in a mixed manner as effector determined their 

organization. Mixed-coding of some variables over others, what we term “partially mixed coding”, 

argues that the type of functional encoding depends on the compared dimensions. This structure is 

advantageous for neuroprosthetics, allowing a single array to decode movements of a large extent 

of the body.

eTOC Blurb

Zhang and Aflalo et al. study how body part, body side, and cognitive motor strategy are 

represented in human anterior intraparietal area (AIP). They find hierarchical coding determined 
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by body part, in contrast to pure mixed selectivity, identifying a novel functional network 

organization.
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Introduction

The posterior parietal cortex (PPC) of humans has historically been viewed as an association 

area that receives diverse inputs from sensory cortex, “associates” these inputs for 

processing more cognitive functions such as spatial awareness, attention and action 

planning, and delivers the outcomes of the associative process to more motor regions of the 

frontal cortex (Balint, 1909; Holmes, 1918; Mountcastle, 1975; Ungerleider and Mishkin, 

1982). However, subsequent single neuron recording experiments with behaving non-human 

primates (NHPs) point to a systematic organization of functions in PPC (Andersen and 

Buneo, 2002). Of particular interest to the current investigation, separate cortical areas 

around the intraparietal sulcus (IPS) have concentrations of neurons selective for saccades 

(lateral intraparietal area, LIP) (Andersen et al., 1987), reach (parietal reach region, PRR) 

(Snyder et al., 1997) and grasping (anterior intraparietal area, AIP) (Murata, 2000). These 

data suggest that this part of the PPC, rather than being one large association region, is rather 

composed of a number of anatomically separated cortical fields that are specialized for 

intended movements that are effector-specific (eye, arm, hand).

More recent functional magnetic resonance imaging (fMRI) studies in humans have 

presented a mixed picture with some studies finding similar segregation for the types of 

intended movement in areas around the IPS (Astafiev, 2003; Connolly et al., 2003; Culham, 

2003; Gallivan et al., 2011; Prado, 2005) and other studies finding largely an intermixing of 

effectors (Beurze, 2009; Heed et al., 2011a; Hinkley, 2009; Levy, 2007) as well as bimanual 

representation (Gallivan, 2013). These findings provide evidence for a degree of distributed 

and overlapping representation of effectors on both sides of the body within PPC.

With the first chronic single neuron recordings of PPC in humans, we found similarities with 

the NHP studies. Neurons in human AIP are highly selective for different imagined grasp 

shapes while neurons in nearby Brodmann area (BA) 5 are not (Klaes, 2015). However, the 

human neural recordings also pointed to some degree of distributed representation, with AIP 

neurons also selective for reach direction and with AIP and BA5 neurons being selective for 

reaches with either the left or the right limb or both (Aflalo et al., 2015). While we have 

found evidence that multiple effectors are encoded in the same anatomical region of cortex, 

these studies were carried out in separate sessions and thus the functional organization of 

multiple effectors within the same population of neurons remains unclear.

Pertinent to how different effectors are coded within PPC are recent results that address 

encoding strategies for multiple dimensions of representations and their computational 

advantages in association cortices more generally. Neurons in prefrontal cortex and PPC 
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(Raposo et al., 2014; Rigotti et al., 2013) exhibit what has been termed mixed selectivity 

(Fusi et al., 2016), a neural encoding scheme in which different task variables and behavioral 

choices are combined indiscriminately in a non-linear fashion within the same population of 

neurons. This scheme generates a high-dimensional non-linear representational code that 

allows for a simple linear readout of multiple variables from the same network of neurons 

(Fusi et al., 2016). A basic question is whether such an organization of functional variables 

is universal or, rather, is in part due to the types of functional variables that were compared 

or the cortical subregions selected for study.

In the current study, we examine the anatomical and functional organization of different 

types of motor variables within a 4×4 mm patch of human AIP. We varied movements along 

three dimensions: the body part used to perform the movement (hand versus shoulder), the 

body side (ipsilateral/left versus contralateral/right), and the cognitive strategy (attempted 

versus imagined movements). Each of these variables has been shown to modulate PPC 

activity (Andersen and Cui, 2009; Gallivan, 2013; Gerardin et al., 2000; Heed et al., 2011a). 

Thus we are able to look at how different dimensions of motor variables are encoded, and 

whether different variable types are treated in an equivalent manner (e.g. all variables 

exhibiting mixed-selectivity) or whether different functional organizations are found for 

different types of variables. Finally, we compare the hand and shoulder movements to 

speech movements, a very different type of motor behavior.

We find that movements of the hand and shoulder are well represented in human AIP, 

whether they are imagined or attempted, or performed with the right or left side. Single units 

were heterogeneous and coded for diverse conjunctions of different variables: there was no 

evidence for specialized subpopulations of cells that selectively coded one movement type. 

However, the different motor dimensions were not indiscriminately mixed, as body side and 

cognitive strategy were fundamentally different from body part at the level of neural coding. 

There was a high-degree of correlation between movement representations of the right and 

left side, within, but not between body parts. The same was true for cognitive strategy. Thus, 

body part acted as a superordinate variable that determined the structure of how the other 

variables were encoded. Mixed-coding of some movement variables, but not others, argues 

in favor of PPC having a partially-mixed encoding strategy. Finally, while AIP lacks 

anatomical segregation of body parts, the mixed-coding between body parts leads to what 

we call functional segregation of body parts. Such segregation is hypothesized to enable 

multiple body parts to be coded in the same population with minimal interference.

Results

Recording from AIP of a female, C3/C4 tetraplegic participant 7 years post-injury (N.S.), we 

compared neural responses of attempted and imagined actions of the hand or shoulder on the 

right and left side of the body. Hand movements involved squeezing the hand into a fist and 

shoulder movements involved shrugging the shoulder. Shoulder shrugs are a staple of the 

participant’s behavioral repertoire being a primary method to operate her motorized 

wheelchair. For imagined movements, we instructed N.S. to visualize her limb performing 

the instructed action, while for attempted movements, she was instructed to send the 

appropriate motor command to move the instructed limb. In the case of shoulder 
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movements, attempted movement resulted in overt motor execution, while for the hand, 

there was no resulting movement because of paralysis. For the shoulder, we confirmed 

behavioral compliance by measuring the presence of trapezius EMG activity during 

attempted but not imagined movement.

We used a delayed movement paradigm (Figure 1A). Following an inter-trial interval (ITI), 

N.S. was instructed to attempt or imagine movement of the left or right hand or shoulder. 

This instruction was extinguished during a delay period. A generic “Go” cue, visually 

identical across trial conditions, prompted movement. From initial pilot data we knew that 

all hand and shoulder movements evoked activity in the population, however, we were 

unsure how the different conditions mapped onto individual neurons. Shoulder and hand 

movements are frequently performed together opening the possibility that hand and shoulder 

movements would frequently be localized to the same neural population. We therefore 

introduced speech as a fundamentally different action that could provide an additional 

movement for comparison. During the speech conditions, N.S. simply said “left” or “right” 

as instructed. Eight repetitions of each trial type were pseudorandomly inter-leaved such that 

one repetition of each condition was performed before repeating a condition.

Figures 1B–E show several well-tuned example units that highlight how neurons commonly 

coded for a complex assortment of different condition types. For instance, Example B codes 

for movements of the right hand, whether or not the movement was imagined or attempted. 

Example C codes exclusively for attempted movements of the left hand. Example D 

responds similarly for imagined actions of the left or right hand, but not attempted actions. 

Example E codes for when N.S. spoke “left.”

To better understand the strength of tuning in the population to each condition, we fit a 

linear model to each neuron that explained firing rate relative to baseline (taken as the firing 

rate during the ITI) as a function of each task condition for both the Go and Delay phases. 

All 8 primary movement conditions as well as speaking were represented in the neural 

population (Figure 2A). We also examined the magnitude of information content for 

recorded units by computing the area under the receiver operating characteristic curve 

(AUC) generated when comparing the Go/Delay period activity to ITI activity for each 

condition separately (Figure 2B). While there were significant differences between specific 

pairwise comparisons (Figure S3), results across these measures were comparable overall.

We performed a second type of linear analysis, fitting a linear model that explained the firing 

rate relative to baseline as a function of the three motor variables of strategy, body side, and 

body part (Figure 2C). This analysis revealed an asymmetry in how body part is represented 

compared to body side or strategy. In particular, relatively larger non-linear interactions of 

strategy and body side with body part indicate that body part may in some way structure the 

functional responses to the other variables, a point we directly address below.

We found significant differences in mean firing rates between hand and shoulder movements 

(hand greater than shoulder, MANOVA p=5.614e-8) and attempted and imagined 

movements (attempt greater than imagine, p=0.0020), and no significant differences in mean 

firing rates between left- and right-sided movements (p=0.2951). Comparing the firing rates 
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of all 8 movement conditions (pooled together) with the firing rates of the speech conditions, 

we found a significant bias towards hand and shoulder movements over speaking (t-test 

p=4.7048e-8).

How are these different motor representations coded with respect to each other in the same 

region of cortex? Figure 3 shows five possibilities: One, the 8 movement condition 

representations could be anatomically segregated from each other, with a highly specialized 

sub-population of neurons dedicated to each (sparse mixed selectivity, Figure 3A); Two, an 

organization similar to one, save that some variables are subordinate to others. For instance, 

imagined movements may be a subset or suppressed version of attempted movements 

(Figure 3B); Three, highly specialized sub-populations are tuned to each motor variable 

class exclusively (body part, body side, strategy) (pure selectivity, Figure 3C); Four, each 

motor variable class could be randomly mixed together (Churchland and Cunningham, 2015; 

Fusi et al., 2016) (all mixed, Figure 3D); Five, some variables may be randomly mixed while 

others are organized with more structure (partially mixed, Figure 3E).

We first performed a degree of specificity analysis (Figure 4) to determine: one, whether 

highly specialized sub-populations of neurons are dedicated to each movement type, and, 

two, whether some variables exist as subsets or suppressed versions of other variables. A 

specificity index was computed as the normalized difference in beta values between motor 

variables for each neuron (taken from the linear models described above). Values near zero 

indicate equivalent neural responses to the two conditions being compared while values near 

1 (or −1) indicate exclusive neural responses for one condition. By proposition one, we 

would expect values to be clustered near 1 (or −1) as e.g. either a neuron is tuned to the right 

side or the left side. By proposition two, we would expect strong biases such that values 

would be clustered on one side of the range (between 0 and 1 or 0 and −1) as e.g. a neuron 

tuned to imagine movement should be better (or equivalently) tuned to attempted movement. 

Inconsistent with these proposals, we found that specificity values were distributed over the 

full range (Figure 4A–F). For instance, despite a small population bias for attempted 

movements, a sizable proportion of neurons were exclusively, or more strongly activated for 

imagined movements (Figure 4AB; see Figure 1D). The neural representation of motor 

imagery is thus not a subset, or less strongly represented version, of motor execution. 

Likewise, many neurons showed preferential coding for the left hand (Figure 4CD) even 

with a population bias for the right hand. There was a strong specificity bias towards the 

movement conditions (imagined or attempted movements of the hand or shoulder) over the 

speech conditions (Figure 4GH). This is expected given that speech tuning is found in a 

smaller proportion of neurons in a weaker fashion (Figure 2). Of special note, the results 

here are very similar for both movements of the shoulder (above the level of injury) and 

movements of the hand (below the level of injury). Thus, movements below and above the 

level of injury are coded in a similar manner.

We failed to find complete specialization of function across the population for single units, 

and the distributed and overlapping nature of responses makes it difficult to find structure in 

the responses of individual neurons. We therefore turned to population-based analyses to 

more readily identify how the different conditions are encoded with respect to each other. 

We measured all pairwise correlations between population responses for each of the eight 
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movement conditions and looked for systematic structure in how the different motor 

variables (body part, body side, cognitive strategy) were coded (Figure 5). Correlation was 

used as a measure of similarity over other distance measures such as Euclidean or 

Mahalanobis distance because the sign of the correlation is potentially informative of the 

underlying structure. For example, two conditions represented by distinct neural populations 

(e.g. sparse mixed selectivity) would manifest as a negative correlation between the two 

conditions, while a positive correlation would indicate a degree of overlap between the 

populations. Asymmetric relationships between the different variables were immediately 

apparent.

Correlations between conditions that differed in body side or cognitive strategy were high if 

the comparisons were made within a body part. In stark contrast, correlations between 

conditions that differed in body part were low even if cognitive strategy and body side were 

held constant (Figures 5A and 6A). Low correlation between body parts was also apparent 

when comparing speech with shoulder or hand (Figure 5B). Such low correlations despite 

activating overlapping neural populations are a signature of network responses that occupy 

distinct neural subspaces thus minimizing crosstalk during planning and execution epochs 

(Churchland and Cunningham, 2015; Kaufman et al., 2014). Here the same principal may be 

at play for cortical representations of different effectors in an overlapping neural population. 

We term this “functional segregation” of body parts. That the functional organization is 

based around effector is especially apparent when the distances between conditions were 

hierarchically clustered (Figure 5C), with body part being the primary differentiating 

variable. Further, for a given body part, movements with more shared traits are coded more 

similarly than movements with fewer shared traits (Figure 6B). For instance, a neuron tuned 

to imagined left hand movements was more likely tuned to imagined right hand movements 

(but not attempted right hand movements). Likewise, a neuron tuned to right hand imagined 

movements was likely to be tuned to right hand attempted movements (but not left hand 

attempted movements). This functional segregation likely accounts for the non-linear 

interaction terms of Figure 2C.

Neural differences between hand and shoulder movements may be driven by the fact that the 

hand is below the level of injury while the shoulder is above the level of injury: In this case, 

proprioceptive feedback or long-term effects from the injury might be the primary 

difference. To address this issue, we replaced shoulder shrugging movements with shoulder 

abduction movements (shoulder abduction resulted in no overt movement) and repeated the 

correlation analyses. The results are similar when both body parts are chosen to be below the 

level of injury (Figure 6CD). In particular, the largest degree of separation exists between 

body parts.

Functional segregation of body parts should lead to minimal shared information about other 

motor variables when compared across body parts. The motor dimensions can be thought of 

as categorical variables with two levels (e.g. body part has the levels of shoulder and hand). 

Given functional segregation, a classifier trained on one level (“Level A”) should fail to 

generalize to the other category (“Level B”) and vice versa (Figure 7A). Alternatively, for 

highly overlapping representations, a classifier trained on Level A should generalize to Level 

B and vice versa (Figure 7B). For example, given functional segregation between hand and 
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shoulder, the neural signature that differentiates right from left sided movements for the 

hand should fail to generalize to the shoulder. We tested for this possibility by looking at 

patterns of generalization across trained classifiers. The results of such an analysis are 

shown in Figure 7C–H. For Figure 7C, we trained a linear discriminant classifier on all 

shoulder movement trials to differentiate between left and right-sided movements, regardless 

of strategy. The decoder performed well within its own training data as expected (leave-one-

out cross-validation, Figure 7C, left blue bar), but performed at chance differentiating left 

from right-sided movements for hand trials (Figure 7C, right blue bar). The reverse was true 

when applying a classifier trained on hand trials to shoulder trials (Figure 7C, orange bars). 

Likewise, Figure 7D shows that a decoder trained to differentiate strategy using shoulder 

trials failed to generalize to hand trials, and vice versa. In contrast, decoders trained to 

differentiate strategy or body part were able to generalize and perform well across different 

body sides (Figures 7EF) and different strategies (Figures 7GH). Body part differences 

exhibit functional segregation while cognitive strategy and body side do not.

Given that some motor variables are similar in their neural encoding, is it possible to decode 

the body part, body side, and cognitive motor strategy from the neural population? We 

constructed a neural classifier to differentiate all conditions (Figure 8). Cross-validated 

classification performance was high. However, as expected, misclassification tended to occur 

between conditions with more variables in common. This is especially true between 

attempted and imagined movements as predictable from the high degree of similarity in the 

neural responses (Figure 6A).

Discussion

We tested how a variety of motor variables were coded at the level of single neurons in 

human AIP. This allowed us to address several questions about how intent is coded in human 

AIP and to better understand how the motor variables are coded with respect to each other.

Effector specificity in PPC

Classically, the regions around the IPS have been viewed as organizing around the control of 

different effectors such as the eye, hand, and arm. In a recent challenge to the centrality of 

an effector-based organization, Medendorp and colleagues have found that effector-

specificity in the BOLD response of fMRI is much more pronounced between the hand and 

eye than the hand and other body parts arguing that effectors as such are not differentiated in 

the planning regions of PPC (Heed et al., 2011a). In line with these results, we found 

significant numbers of neurons tuned to movements of the hand and shoulder in a small 

patch of AIP. However, unlike the response at the level of voxels, the neural response to each 

effector was functionally segregated. Thus, while our results challenge the idea of strict 

anatomical segregation of effector representations across cortical areas, we do find local 

functional segregation of effectors within a cortical field. The current findings suggest that 

effector-specificity at the global anatomical scale could be thought of in terms of relative 

emphasis rather than strict specialization in humans.

In non-human primates (NHPs), a global organization for eye and arm movements is 

supported by greater planning activity of single neurons for reaches in the parietal reach 
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region (PRR) and saccades in the lateral intraparietal region (Cui and Andersen, 2007; 

Hwang et al., 2012; Quiroga et al., 2006; Snyder et al., 1997; Snyder et al., 1998). 

Reversible inactivation of PRR produces reach specific deficits and LIP a bias toward 

saccade deficits (Christopoulos et al., 2015; Kubanek and Snyder, 2015; Yttri et al., 2014). A 

grasp specific deficit has been reported for AIP (Gallese et al., 1994). These results indicate 

that, at a global level, there is functional specificity by effector in non-human primates, and 

fMRI studies in humans suggest a similar global specialization. However, these areas also 

communicate with one another. For instance, inactivation produces a reach deficit in PRR 

when reaches are made alone, but both reach and saccade deficits when combined hand-eye 

movements are made (Hwang et al., 2014). Thus, the degree of effector overlap in AIP in 

human may reflect the coordination of movement and communication between effector 

specific areas.

An advantage of our human study is that the participant can perform a large number of tasks 

by verbal instruction. In NHP studies, the animals must be trained for long periods and thus 

the number of tasks and task variables are generally limited per study. Interestingly, area LIP 

has been studied by a number of groups using a number of different tasks. As a result, LIP 

has been found to modulate activity for tasks examining movement planning, attention, 

categorization, and decision making resulting in a variety of proposals for its function 

(Andersen and Cui, 2009). It may be that the large number of variables to which human AIP 

is selective may be a reflection of the versatility of using different tasks and that both human 

and NHP PPC areas are modulated by a very large number of variables. Indeed, several NHP 

studies in AIP have reported overlapping populations of cells tuned to grasp type and reach 

target consistent with mixed selectivity between effectors as presented here (Asher et al., 

2007; Fattori et al., 2009; Lehmann and Scherberger, 2013, 2015).

Differences between effector segregation in human and NHP studies of PPC may be a result 

of possible lack of homologies between human AIP of the current study and AIP of NHPs. 

In fact, we do not know the extent or number of grasp related areas defined by single neuron 

recordings in human IPS and whether there are grasp regions in humans that do not exist in 

NHPs. Finally, the lack of strict anatomical segregation of effectors may point towards a 

global topographic organization governed around more behaviorally meaningful aspects of 

behavior such as manipulation, reaching, climbing, and defense (Graziano and Aflalo, 2007; 

Jastorff et al., 2010). Whichever possibilities outlined above account for the large number of 

variable encodings in human AIP, an exciting aspect of our results is that they open the 

possibility of decoding movements of many body parts from one small patch of cortex.

Asymmetric coding of motor variables and functional segregation of body parts

Recently there has been increased interest in not only the types of variables that are coded in 

a cortical region, but also how these variables are coded with respect to each other in an 

effort to understand the underlying logic of the computations performed within a cortical 

field (Fusi et al., 2016; Raposo et al., 2014). For instance, several papers have shown that 

higher cortical areas like PPC and prefrontal cortex may employ a computational strategy by 

which response variables are randomly mixed (Raposo et al., 2014; Rigotti et al., 2013). 

While such a coding scheme can give rise to complex and difficult to interpret 
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representations at the level of single neurons, the population code is information rich and 

enables simple linear classifiers to decode any variable of interest. In these papers, it was 

shown that response variables were randomly distributed across neurons, as illustrated in 

Figure 3D. Our data provides insights into understanding population coding by 

demonstrating that in human AIP certain response features can be seemingly randomly 

distributed across the population while others are not. In particular, we find that coding for 

body part is uncorrelated in the sense, that across the population, knowing that a neuron is 

tuned to shoulder movements provides little to no information about whether the neuron is 

tuned to hand movements (or speech; Figure 4). This is true even if you know other 

attributes of the movement, such as whether the movement was imagined or attempted or 

performed with the right or left side of the body. In contrast, when comparing within the 

same body part, knowing a neuron is tuned to movements of the right side makes it highly 

likely that the neuron will be tuned to the left side as well. The same is true for imagined and 

attempted movements. Thus while some variables seem to be randomly distributed across 

the population (e.g. body part) the relationship between other variables (e.g. body side, 

mental strategy) is organized in relationship to a third variable (body part). This effectively 

leads to functional segregation of body part at a population level. Such functional 

segregation between body parts is very similar in principal to the relationship between 

planning and execution related activity that has recently been described in frontal motor 

areas (Churchland et al., 2010; Kaufman et al., 2014) where planning activity fails to excite 

subspaces that are hypothesized to produce muscle output.

But why are some variables functionally overlapping while others are functionally 

segregated? One possible answer is computational savings. Overlapping activity at the level 

of the population may be rooted in shared computational resources. For example, many 

computations related to planning and executing grasps including object affordance 

processing as well as basic kinematic processing would be similar for the right and left hand. 

Motor imagery has also been hypothesized to engage internal models used for sensory 

estimation during overt execution (see below) and thus imagery and execution should rely on 

largely overlapping computations. Thus despite the potential computational benefits to 

random mixing of variables (Fusi et al., 2016), the computational savings of overlapping 

resources for certain classes of computations may outweigh losses in the total information 

the population encodes.

Another possibility is that the highly overlapping representations provides part of the neural 

substrate through which transfer of learning occurs. Motor skills learned with one hand 

frequently result in improvements in performance with the other hand (Amemiya et al., 

2010). Likewise, use of motor imagery is found to improve performance during motor 

execution (Dickstein, 2007). One possibility is that overlapping networks would be able to 

facilitate this sort of transfer of learning. For example, repeatedly imagining a movement 

with the right hand would recruit a similar network as executing a movement with the right 

hand, making any neural adaptation from learning the movement more likely to transfer 

between the strategies.

Despite the greater functional overlap between body side and strategy, it is important to note 

that all the tested movement conditions are still differentiable from each other (Figure 8). 
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Interestingly, this greater overlap for body side may explain why patients with motor deficits 

often “mirror” movements in a contralateral limb. In cerebral palsy, for example, patients 

making a grasp with their left hand often mirror the movements with their right hand (Kuhtz-

Buschbeck et al., 2000).

A point of note is that the movements selected in this study (hand squeezes and shoulder 

shrugs) are not necessarily the best exemplars of movements of the respective body parts. 

Different combinations of hand or shoulder movements may have slightly more or less 

overlap. Bilateral symmetric hand squeezes and shoulder shrugs occur more naturally than 

“squeeze-and-shrug” actions, which may not be part of the natural movement repertoire. The 

statistical frequency with which different body parts are moved together could also affect the 

degree of functional overlap between the body parts. A better understanding of how different 

exemplars of movements across different effectors relate will be important in understanding 

the functional organization of motor actions in AIP.

Attempted and imagined movements in human AIP after long-term injury

In this study, we looked at neural coding of imagined and attempted actions above and below 

the level of injury in a paralyzed individual. By current theory, imagined movements may 

represent the simulation of an internal model of the arm, a model that also forms the basis 

for sensory estimation during overt forms of behavior (Gail and Andersen, 2006; Jeannerod, 

1995; Mulliken et al., 2008). In broad strokes, this theory predicts that neural representations 

of imagined and overt movements should have a high degree of similarity given the shared 

neural substrate, but also be different given the absence of movement during imagery 

(Jeannerod, 1995; Munzert et al., 2009). Our results support this view insofar as we 

demonstrate the high degree of functional overlap between imagined and attempted 

movements. However, we also show neural differences between imagined and executed 

movements persist and are highly similar even after long-term injury and disuse (see Figures 

4 and 5). This observation that neural coding differences persist even despite injury 

preventing overt movement during attempted actions is inconsistent with the proposal that 

the primary difference between imagined and executed movements is the actual movement 

itself (Jeannerod, 1995). Further, the patterns of similarities and differences in how the 

population codes mental strategy and body side—for instance, the preference for attempted 

over imagined movements for the right but not left side of the body (Figure 4A versus 4B) 

— demonstrate that higher-order population structure is conserved following injury. This 

suggests that preservation of motor intention signals enables successful BMI functionality 

many years post-injury (Aflalo et al., 2015). A better understanding of how different cortical 

subregions maintain representations of motor intent post-injury may help inform choice of 

implant sites as a function of time post injury.

These results demonstrate for the first time that networks activated during attempted actions 

are highly overlapping with networks activated during imagined actions at the level of 

populations of individual neurons, and that the correspondence between actions is body part 

specific (hand and shoulder). However, there is a symmetry in our results such that networks 

activated during right hand actions are highly overlapping with networks activated for left 

hand actions, and the correspondence between right and left actions are strategy specific 

Zhang et al. Page 10

Neuron. Author manuscript; available in PMC 2018 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(e.g. right-side actions look more like left-side actions using the same strategy). In other 

words, the relationship between imagined and attempted actions is similar in basic form to 

the relationship between left and right sided actions although the degree of overlap is greater 

for strategy.

The current experiment was performed in the larger context of a brain-machine interface 

clinical (BMI) trial. We have previously shown that a paralyzed patient can use motor 

imagery to control a robotic limb (Aflalo et al., 2015). Is the use of motor imagery the best 

method for the user of a BMI to modulate their own neural activity? Alternatively, it is 

possible that attempted movements somehow better engage or otherwise enable the user to 

control an external device. Here we show that the distinction between imagined and 

attempted actions is preserved, even in limbs for which no movement is possible. Future 

work is needed to determine whether these differences translate into performance differences 

during closed-loop neural control.

Orofacial coding in human AIP

We included speech conditions in which N.S. spoke “left” and “right” as a third 

fundamentally different movement. A smaller proportion of neurons were tuned more 

weakly to speech acts, demonstrating that not all actions are coded in an equivalent manner 

in AIP (Figures 2 and 4). This task was not designed to understand the functional 

significance of “speech” tuned units, but one possibility is that these neurons code for 

orofacial movements and may form the building blocks for more complex coordinated 

movements of behavioral relevance such as coordinated movement of the hand to the mouth 

for feeding or tearing open a bag of chips with your mouth. It is also possible that such 

orofacial tuning coordinates “grasping” actions performed with the mouth (Jastorff et al., 

2010).

STAR Methods

Contact for Resource Sharing

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contacts, Carey Y. Zhang (cyzhang@caltech.edu) or Tyson Aflalo 

(taflalo@caltech.edu).

Experimental Model and Subject Details

Subject N.S. is a 59-year-old female tetraplegic 7 years post-injury and has a C3–C4 spinal 

lesion (motor complete), having lost control and sensation in her hands but retaining 

movements and sensations in her upper trapezius. In this paper we refer to contraction of the 

upper trapezius as “shoulder movements” as short-hand for the resulting shoulder shrugging 

movement. The studies were approved by the California Institute of Technology, University 

of California, Los Angeles, and Casa Colina Centers for Rehabilitation Internal Review 

Boards. Informed consent was obtained from the participant N.S. after the nature of the 

study and possible risks were explained. Study sessions occurred at Casa Colina Centers for 

Rehabilitation.
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Method Details

Behavioral setup—All tasks were performed with N.S. seated in her motorized wheel 

chair. Tasks were displayed on a 27-inch LCD monitor in a lit room. The monitor was 

positioned so that the screen occupied approximately 40 degrees of visual angle. Stimulus 

presentation was controlled using the Psychophysics Toolbox (Brainard, 1997) for 

MATLAB. No eye fixation was required or enforced.

Physiological recordings—Subject N.S. was implanted with two 96-channel Neuroport 

arrays (Blackrock Microsystems model numbers 4382 and 4383) in putative homologues of 

area AIP and Brodmann’s Area 5d. Array placement was determined based on preoperative 

fMRI (Aflalo et al., 2015) and the array was placed at Talairach coordinate [−36 lateral, 48 

posterior, 53 superior]. Neural activity was amplified, digitized, and recorded with the 

Neuroport neural signal processor (NSP). The Neuroport System, comprising the arrays and 

NSP, has received FDA clearance for <30 days acute recordings. We received FDA IDE 

clearance (IDE #G120096, G120287) to extend the duration of the implant for the purposes 

of a brain-machine interface clinical study using signals from posterior parietal cortex.

During recording, thresholds for action potential detection were set at −4.5 times the root-

mean-square after high pass filtering (250 Hz cut-off) the full-bandwidth signal sampled at 

30 kHz in the Central software suite (Blackrock Microsystems). Each waveform was 

composed of 48 samples (1.6 ms) with 10 samples prior to triggering 38 samples after. 

Single and multiunit activity was sorted by k-mediods clustering using the gap criteria to 

estimate the total number of clusters (Tibshirani et al., 2001). Clustering was performed on 

the first n principal components, where n was selected to account for 95% of waveform 

variance. Post-hoc review of sorted unit statistics showed that channels were sorted with 

between 2–4 principal components (see Figure S2A). Results of offline sorting were 

reviewed and adjusted if deemed necessary following standard practice (Harris et al., 2016). 

Only neurons recorded from the array implanted in putative AIP were analyzed. Pooling 

across all versions of the task, on average 93 sorted units were recorded from N.S. per 

session. Furthermore, to avoid bias, all spike sorting was performed prior to any analysis and 

blind to a unit or channel’s response during the task. We used several metrics to quantify sort 

quality (see Figure S2B–F) including 1) the percentage of interspike intervals (ISIs) shorter 

than 3ms, 2) the signal-to-noise ratio (SNR) of the mean waveform, 3) the between spike 

projection distance (Pouzat et al., 2002), 4) the modified coefficient of variation of the ISI 

(CV2), and 5) the cluster isolation distance (Harris et al., 2000) of each sorted cluster.

We recorded electromyogram (EMG) activity over the right trapezius muscle using B&L 

Engineering EMG electrodes. Raw analog EMG activity was fed into the NSP, aligned with 

neural signals, and sampled at 2 kHz. Signals were band-pass filtered (5th order Butterworth 

filter with cut-off frequencies of 10 and 250Hz), full-wave rectified, and smoothed (box-car, 

50ms window).

Task procedure—Several versions of a delayed movement task were constructed to 

determine the extent of tuning to control strategy within the neural populations recorded 

from AIP. In the primary task (Figure 1A), N.S. was cued for 2.5 seconds to what strategy 
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(imagine or attempt), side (left or right), and body part (hand or shoulder) to use, e.g. 

attempting to squeeze the right hand. In total there were eight possible actions which were 

pseudorandomly interleaved such that each condition was performed once before repetition. 

After a delay of 1.5 seconds, N.S. was cued to perform the cued action. Between each trial 

there was a 3 second inter-trial interval (ITI). Hand movements were hand squeezes while 

shoulder movements were shoulder shrugs (contraction of the trapezius). We ran 64 trials (8 

trials per condition) on each session. This task was run over the course of 4 non-consecutive 

days. In total 357 units were recorded across the four recording sessions. Unless otherwise 

indicated, all figures were generated from data collected from this version of the task.

In a separate set of sessions, we repeated the experiment with the modification that shoulder 

shrugging movements were replaced with shoulder abduction in the frontal plane. Attempted 

shoulder abduction resulted in no overt movement and thus allowed us to compare body part 

representations exclusively below the level of injury. Six sessions run over the course of 6 

non-consecutive days were recorded resulting in 629 recorded units. Each session contained 

64 trials (8 trials per condition).

Movements of the shoulder and hand are frequently made together during natural behavior. 

We modified the delayed movement task by adding “speak left” and “speak right” as two 

actions unrelated to any hand or shoulder movements. To avoid overly long data collection 

sessions (as determined by patient feedback), we minimized the number of conditions by 

splitting sessions into either hand or shoulder movements exclusively resulting in 6 

conditions pseudorandomly interleaved (Imagine Left, Imagine Right, Attempt Left, 

Attempt Right, Speak Left, Speak Right). Three sessions were recorded for the hand and the 

shoulder separately, with each session containing 72 trials (12 trials for each condition). In 

total 299 units were recorded for sessions using the hand while 228 units were recorded for 

sessions using the shoulder.

Quantification and Statistical Analysis

All analyses were performed using MATLAB 2016a.

Unit selection—Analyses were performed on all units regardless of sort quality for 

statistical power and ease of presentation. To ensure that such pooling did not bias the 

conclusions of this paper, we performed the analyses separately on well isolated versus 

potentially multi-unit activity and found the results to be similar (see Figure S1 for more 

details and also Unit quality classification below for how high-quality single units were 

identified). Units were pooled across days assuming independent populations across 

recording days. Analysis of separate days was also performed to demonstrate stability of 

results across sessions (Figure S5). Units with mean firing rates less than 1.5 Hz were 

excluded from the analysis so that low firing rate effects would be minimized.

Linear analysis 1—We used a linear regression analyses to quantify tuning to each 

condition (e.g. for experiment 1, 8 total conditions from the possible combinations of the 2 

strategies, 2 body parts, and 2 body sides). We created a design matrix consisting of 

indicator variables for each condition (e.g. the indicator for right attempted shoulder 

movements would consist of a vector where data points associated with right attempted 
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shoulder movements would be assigned a 1, while all other conditions and the baseline 

samples would be assigned a 0). We then estimated firing rate as a linear combination of 

these indicator variables:

where FR is the firing rate, Xc is the vector indicator variable for condition c, βc is the 

estimated scalar weighting coefficient for condition c, and β0 is a constant offset term. In 

such a model, the estimated beta coefficients represent the expected firing rate changes from 

baseline for each condition. Tuning to each condition (Fig. 2A) was based on the p-value of 

the t statistic for each associated beta coefficient. This definition of whether a unit is 

significantly tuned to a condition is used as an inclusion criterion for some analyses, with the 

significance level (e.g. p < 0.05, uncorrected or Bonferroni corrected) depending on the 

specific analysis. The significance level of the differences between the number of units tuned 

to each condition was calculated using a two-sided Wilcoxon rank sum test on the 

distribution of p-values for each pair of conditions (Figure S3).

AUC analysis—We performed a ROC analysis to quantify tuning strength for each 

condition. For each unit, strength of tuning was summarized as the area under the curve 

(AUC) when comparing each condition’s Go or Delay neural response to baseline. The AUC 

values can range from 0 to 1, with 1 indicating that every go/delay measurement is greater 
than every baseline measurement (excitatory response) and 0 indicating that every go/delay 

measurement is less than every baseline measurement (inhibitory response). To summarize 

the population (Figure 2B), we combined excitatory and inhibitory responses by reversing 

condition labels for AUC responses below 0.5. The separated responses are reported in 

Figure S4. Only units with significant AUC (p < 0.05, permutation test) are included in the 

population average and thus we answer the question “what is the average strength of tuning 

for each condition for units with significant tuning to the condition.” Hence this measure is 

descriptive and not a statistical assessment of significant tuning in the population. Pair-wise 

differences between the AUC for each condition were calculated using a two-sided 

Wilcoxon rank sum test on the significant AUC values (Figure S3).

Linear analysis 2—Above we performed a linear regression analyses where firing rate 

was modeled as a function of each condition response. Here we perform an additional linear 

analysis where firing rate is modeled as the linear combination of indicator variables for 

each motor variable (strategy, body side, and body part) and their interaction. All temporal 

epochs were identical, however the design matrix was updated to reflect the new model:

Each unit was classified as being tuned to a term if the p-value of the corresponding beta 

coefficient was significant (i.e. p < 0.05, uncorrected). To examine the effect of the different 
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motor variables on firing rate patterns across the population we performed a MANOVA test 

on the linear beta coefficients of the model. All units were used in the test (regardless of 

whether they showed tuning to a variable or not).

Test of population bias in representing motor variables—To examine whether 

there were systematic biases for the three different motor variables (strategy, body side, body 

part) across the population we performed a MANOVA test. The baseline firing rate of each 

neuron (taken during the intertrial interval) was subtracted from the firing rate of the neuron 

during the Go phase, and this baseline-subtracted firing rate was used in the test. All units 

were used in the test (regardless of whether they showed tuning to a variable or not).

In comparing between the 8 movement conditions and the speaking conditions, we 

performed a t-test on the baseline subtracted firing rates, with the 8 movement conditions 

pooled into one group and the 2 speaking conditions pooling into a second group. Once 

again, all units were used regardless of their tuning.

Degree of specificity—We used a degree of specificity analysis to begin to understand 

how the different movement attributes were encoded relative to each other in individual 

neurons. This allowed us to test for population level tendencies for e.g. exclusive activation 

for one effector versus the other or whether tuning tended to be overlapping. We computed 

the degree of specificity for each motor dimension (e.g. left vs right, imagine vs attempt, 

hand vs shoulder) as the normalized difference in beta values computed for each condition 

((|β1| − |β2|)/(|β1| + |β2|). Beta value extraction is described above (see Linear Model 1). The 

degree of specificity ranges from −1 to 1. A value of 1 indicates exclusive modulation for 

comparison variable 1, a value of −1 indicates exclusive modulation for comparison variable 

2, while a value of 0 indicates comparable activation to both variables. Degree of specificity 

was only computed if at least one beta coefficient in the comparison was significant (p < 

0.05, uncorrected). We used a Wilcoxon signed rank test to determine whether the median of 

the distribution of specificity values was significantly shifted from 0.

Correlation between representations—We used a population correlation analysis to 

measure the similarity between the neural representations of each condition. For each 

neuron, the beta coefficient for each condition (see Linear Model 1) was normalized by the 

corresponding 95% confidence interval to ensure a common scale proportional to signal-to-

noise. The normalized beta values for each unit and for each condition were used to create a 

vector summarizing the population response. We used the correlation between these vectors 

to measure the similarity in neural space between conditions. Only units with a significant 

beta coefficient for at least one condition (p < 0.05, Bonferroni corrected) were included in 

the analyses.

We used hierarchical clustering (agglomerative hierarchical cluster tree; using the built-in 

MATLAB 2016a linkage and dendrogram functions with unweighted average correlation as 

the measure) to summarize the structure in the patterns of correlation between the different 

conditions (McKenzie et al., 2014).
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Decoder analysis—Functional segregation of body parts should result in minimal shared 

representations of other motor variables across different body parts. Conversely, the lack of 

functional segregation between different body sides (or strategy) should lead to 

comparatively greater shared representation of the other motor variables across different 

body sides (or strategies). To test this, we trained a linear classifier (linear discriminant with 

equal diagonal covariance matrices) to differentiate between the two levels of one motor 

variable, restricting the training data to one level of a second motor variable and then 

applying the classifier to the other level. Cross-validated performance restricted to the first 

level was also computed as this provided an upper bound on classification accuracy given 

the signal to noise of our data. For instance, we trained a classifier to differentiate left from 

right movements on shoulder movement trials and tested it on hand movement trials, also 

computing cross-validated performance within shoulder trials (Figure 7C). For features, we 

used firing rates from the first 2 seconds of the “Go” phase for units with significant tuning 

to any of the eight movement conditions. Only units significantly tuned to at least one of the 

8 movement conditions (p < 0.05, Bonferroni corrected) were included in the analysis. 

Classifier performance was determined to be above chance if its performance was greater 

than 95% of decoders trained on randomly shuffled data (1000 shuffles).

Condition classification—We performed classification analyses using linear 

discriminant analysis with equal diagonal covariance matrices for each condition. 

Classification accuracy was estimated using stratified leave-one out cross-validation. 

Classification features were constructed using the first 2 seconds of the “Go” phase. Only 

units with significant tuning to any of the eight movement conditions were used (p < 0.05, 

Bonferroni corrected). Significant units were estimated from the training data and applied to 

the test data for each fold of the cross-validation routine to avoid peaking effects. Units were 

pooled across days for analyses. For each fold (1000 repetitions), one feature per condition 

was randomly sampled as the test data with all other samples used for training.

Unit quality classification—For the analysis in Figure S1, we needed to separate spike 

sorted units into high-quality single units and multi-units. This classification was done based 

on the cluster isolation distance (Harris et al., 2000) with a threshold of 101.6 dividing high-

quality single units and multi-units. This threshold was chosen based on visual inspection of 

the distribution of all cluster isolation distance values (see Figure S2).

Data and Software Availability

Data and MATLAB analysis scripts available upon request from Carey Y. Zhang 

(cyzhang@caltech.edu) and Tyson Aflalo (taflalo@caltech.edu)

Additional Resources

This study was conducted as part of NIH clinical trial NCT01958086.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A small patch of AIP encodes body parts, body sides, and cognitive strategies

• Multiple encoded effectors argues against strict anatomical segregation

• Orthogonal coding of different effectors may enable functional segregation

• Other variables are organized by body part (partially mixed coding)
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Figure 1. Neurons in PPC exhibit mixed selectivity to movement variables
(A) Delayed movement paradigm. N.S. was cued as to what kind of movement to perform 

(e.g. imagine/attempt left/right hand/shoulder) and then cued to perform the movement after 

a brief delay. See STAR Methods for more details. (B–E) Single unit example responses 

over time (mean ± SEM) demonstrating diverse coding to the different conditions.
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Figure 2. Significant tuning to each movement condition
(A) The fraction of units in the population tuned for each condition in the Delay and Go 

phases, separated by body part and body side (95% confidence interval). A unit was 

considered tuned to a condition if the beta value of the linear fit for the condition (Linear 

Analyses 1 STAR Methods) was statistically significant (p < 0.05, uncorrected). See also 

Figure S3 for pairwise comparisons between conditions and Figure S5 for results of 

individual sessions. (B) The magnitudes of the units’ tuning to each condition in the Delay 

and Go phases, as defined by the area under the receiver operating characteristic curve 

(AUC) between Delay/Go and ITI activity, separated by body parts (95% confidence 

interval). Only significant AUC values were included in analyses (shuffle test, p < 0.05 

uncorrected). See also Figure S4 for the AUC values of excitatory (positively tuned) and 

inhibitory (negatively tuned) units presented separately, as well as Figure S3 for pairwise 
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comparisons between conditions. (Att R = Attempt Right, Att L = Attempt Left, Imag R = 

Imagine Right, Imag L = Imagine Left, Spk R = Speak Right, Spk L = Speak Left). (C) 

Fraction of units with significant tuning to each motor variable and the interaction terms for 

both the Delay (blue) and Go (red) phases, as opposed to the 8 movement conditions in (A) 

(p < 0.05, uncorrected 95% confidence intervals, see also Linear analysis 2 in STAR 

Methods).
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Figure 3. Possible organizational models of neural representations
(A) The neurons coding for each condition are anatomically segregated, i.e. distinct, non-

overlapping networks. (ALH = Attempt Left Hand, ILH = Imagine Left Hand, ARH = 

Attempt Right Hand, IRH = Imagine Right Hand, ALS = Attempt Left Shoulder, ILS = 

Imagine Left Shoulder, ARS = Attempt Right Shoulder, IRS = Imagine Right Shoulder). (B) 

Conditions can be overlapping such that the responses to some conditions are subsets or 

weak versions of others, e.g. imagined movements being subsets of attempted movements. 

(C) Neurons coding each of the motor variables (body part, body side, and strategy) are 

anatomically segregated. (D) The neural population exhibits mixed selectivity, with 

Zhang et al. Page 24

Neuron. Author manuscript; available in PMC 2018 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



individual neurons showing tuning to various conjunctions of variables. (E) The neural 

population exhibits partially mixed selectivity, with the mixing of representations being 

dependent on the variables under investigation. Here, hand and shoulder are mixed leading 

to orthogonal coding of effectors (functional segregation), however, the other variables 

(body side and strategy) are mixed only within, but not between, effectors. This model is 

consistent with the results observed in this study. Note that solid lines in this diagram 

indicate anatomical boundaries of neural populations while the dotted line indicates 

functional boundaries/segregation.
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Figure 4. Specificity of coding for motor variables
Each panel (A–F) shows the degree to which neurons code one variable exclusively, its 

opposite, or respond similarly for both. Only units with significant modulation for at least 

one condition in the comparison are included in the analyses (p < 0.05, Bonferroni 

corrected). (A–B) Distribution of the degree of specificity to the imagine or attempt 

strategies in the population during trials using different sides, showing only units responsive 

to one or both strategies. (C–D) Distribution of the degree of specificity to the left or right 

side in the population for different strategies. (E–F) Distribution of the degree of specificity 

to the hand or shoulder in the population during trials using different sides. (G–H) 

Distribution of the degree of specificity to attempted/imagined movements compared to 

speaking.
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Figure 5. Functional relationships between movement conditions
(A) Similarity between population level neural responses for each movement condition. 

Pairwise comparisons are separated by the number of motor dimensions that differ in the 

comparison (left to right) and task phase (movement or delay). Similarity measured as the 

pairwise correlation between movement conditions. (ALH = Attempt Left Hand, ILH = 

Imagine Left Hand, ARH = Attempt Right Hand, IRH = Imagine Right Hand, ALS = 

Attempt Left Shoulder, ILS = Imagine Left Shoulder, ARS = Attempt Right Shoulder, IRS = 

Imagine Right Shoulder). See also Figure S5 for results of individual sessions. (B) 

Correlations between four movement types: left and right movements (averaged across both 

strategies), and speech. (SL = Speak Left, SR = Speak Right, ML = Movement Left, MR = 
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Movement Right). (C) Dendrogram summarizing the structure apparent in A, namely strong 

segregation by effector.
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Figure 6. Segregation by body part
(A) Average correlation between movement conditions differing by exactly one task variable 

and grouped by the differing conditions (e.g. for strategy, the average correlation of all 

movement condition pairs differing only by strategy). Intervals represent the 95% 

confidence intervals. (B) For movements above and below the level of injury, average 

correlation between movement conditions in the Delay and Go phases grouped by the 

number of differing traits (average of each cube, Figure 5A). Intervals represent the 95% 

confidence intervals in the correlations. (C–D) Same as (A–B) but with shoulder shrug 

movements replaced with shoulder abduction movements (a movement below the level of 

injury).
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Figure 7. Representations of variables generalizes across side and strategy but not body part
Schematic illustrating expected classifier behavior if variables are functionally segregated 

(A) versus overlapping (B). (A) Functional segregation within a variable (e.g. body part) 

implies that a classifier trained to differentiate the levels of one dimension (e.g. right from 

left) will not generalize across the levels of the dimension of interest (e.g. from shoulder to 

hand) resulting in chance performance. (B) In contrast, functional overlap implies 

generalization resulting in above chance performance when comparing classifier 

performance across levels. (C) Performance of decoders trained on data split by body part 
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for classifying the body side. Blue/orange bars represent the performance of the decoder 

trained on shoulder/hand movement data. Horizontal axis labels represent which body part’s 

data each decoder was tested on. Performance was measured as the fraction of trials 

accurately classified by the decoder, with in-sample performance determined by cross-

validation. Asterisks represent performance significantly different from chance, as 

determined by a rank shuffle test. The red line represents chance performance level (0.5) 

while the green line represents perfect performance (1.0). (D) Similar to (C) but decoding 

strategy instead of body side. (E–F) Similar to (C) but with data split by body side and 

decoding for body part and strategy, respectively. (G–H) Similar to (C) but with data split by 

strategy and decoding for body side and body part, respectively.
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Figure 8. All movement variables decodable from the population
Confusion matrix for cross-validated classification of the eight movement conditions. (ALH 

= Attempt Left Hand, ILH = Imagine Left Hand, ARH = Attempt Right Hand, IRH = 

Imagine Right Hand, ALS = Attempt Left Shoulder, ILS = Imagine Left Shoulder, ARS = 

Attempt Right Shoulder, IRS = Imagine Right Shoulder).
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