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Abstract

High dimensional data are commonly encountered in various scientific fields and pose great

challenges to modern statistical analysis. To address this issue different penalized regres-

sion procedures have been introduced in the litrature, but these methods cannot cope with

the problem of outliers and leverage points in the heavy tailed high dimensional data. For

this purppose, a new Robust Adaptive Lasso (RAL) method is proposed which is based on

pearson residuals weighting scheme. The weight function determines the compatibility of

each observations and downweight it if they are inconsistent with the assumed model. It is

observed that RAL estimator can correctly select the covariates with non-zero coefficients

and can estimate parameters, simultaneously, not only in the presence of influential obser-

vations, but also in the presence of high multicolliearity. We also discuss the model selection

oracle property and the asymptotic normality of the RAL. Simulations findings and real data

examples also demonstrate the better performance of the proposed penalized regression

approach.

1 Introduction

Variable selection plays a vital role in modern statistical modeling and machine learning, espe-

cially for models in which a large number of predictors and minimum observations, known as

high dimensionality. Introducing many predictors in the regression models will result in

reducing bias in model, but we wish to select a parsimonious set of important covariates for

the efficient prediction. Therefore, variable selection is, then, essential to identify important

variables, and produces more interpretable models with better prediction power.

The penalization methods are very useful in this field, and there are a large body of litera-

ture on this problems recently. The least absolute shrinkage and selector operator (LASSO),

which was introduced by [1], is one of the key steps in coefficient estimation and predictor

selection simultaneously, and was further studied by [2] and [3]. [4] proposed bridge regres-

sion that depends on Lq penalty. [5] proposed correlation based penalty to encourage a group-

ing effect, and also does well when there is high correlation among explanatory variables. It
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does not do as well when the correlation is perfect [6]. The smoothly clipped absolute deviation

(SCAD) penalty, proposed by [7], enjoys the oracle property, but this criterion is non-convex,

which is a drawback since it makes the computation much more difficult. [8] proposed the

adaptive LASSO which is convex and reduces the possible bias. Therefore, it consistently

selects the model. He also proved the oracle property of proposed method. Moreover, several

other penalized methods had been proposed, such as [9, 10].

Recently, many sparse learning and classification algorithms have been proposed. [11]

proposed weighted sparse representation based classification (WSRC) method which is

direct extention of SRC, integrates the locality to sparse coding. WSRC provides good

results in lower dimensional subspaces. [12], developed a new classification algorithm called

Representative Vector Machines (RVM’s). The comprehensive experimental evaluation

demonstrate the effectiveness of proposed method over other classifiers. [13] also presents a

comprehensive survey of various aspects of structured sparsity-inducing feature selection

(SSFC) methods on feature selection. [14] and [15] have proposed a new subspase learning

algorithm called discriminant sparse neihborhood preserving embedding(DSNPE) and a

robust feature extraction method for face recognition based on least squares regression,

respectively.

Robust penalized techniques, such as the least absolute deviation and quantile regression,

have been used for predictor selection in the case of fixed dimensionality, for instance, [16, 17,

18, 19]. [17] studied the L1-penalized LAD regression. The penalized composite likelihood

method was proposed in [20] for robust estimation in high-dimensions with focus on the effi-

ciency of the method. [21, 22] studied the L1-penalized quantile regression in high-dimen-

sional sparse models.

In this paper, we develop a robust penalized method for estimating regression coefficients

and predictor selection. We consider a weighted likelihood estimating equation with L1 pen-

alty of [8] which employs a re-weighting of the components of the likelihood score function.

The proposed approach is useful when the model is in doubt or when outliers are present in

the data. This work is based on a recent proposal by [23]. Their work requires to attaching

weights to score function values of each observation in such a way that the weights are close

to one when the residuals describe the match between the empirical and the true model dis-

tribution functions. On the other hand, for large residuals there is a mismatch, and the corre-

sponding likelihood function may require downweighting in order to obtain a robust

solution.

However, the [24] and [25] articles remain the pioneers in this particular area of research.

According to [24], this approach of downweighting points that are large residuals outliers and

as well as both residuals outliers and high leverage points.

In the present work, we evaluate the performance of the proposed technique with some

existing penalized methods including LASSO, elastic net, adaptive lasso and correlation based

adaptive lasso. In order to cover the effects of outliers in various situations, we have taken the

percentages of outliers as 0%, 10%, 20% and 30% from different distributions. The perfor-

mances are evaluated in respect to their median prediction error, variable selection and boot-

strap estimators.

The rest of the paper is organized as follows. Section 2, provides the background by briefly

reviewing the residual function and weight function. We introduce the proposed robust penal-

ized regression estimator in section 3. In section 4, we described the selection of the tuning

parameters. Section 5 presents the results of the simulation studies. In section 6, we illustrate

the performance of the proposed robust method on real data examples. Finally, section 7 offers

some concluding remarks.

Robust Adaptive Lasso method
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2 Background

Let y1, y2, . . ., yn be an i.i.d random sample from a distribution G, having the density g, is mod-

eled by the parametric functions Cθ = {Fθ: θ 2Θ� Rd; d� 1}. The maximum likelihood esti-

mator(MLE) of θ is obtained by maximizing the likelihood LðyÞ ¼
Qn
i¼1
gyðyiÞ. To obtain the

MLE of θ, we solve the equation

@

@y
logeLðyÞ ¼

Xn

i¼1

uyðyiÞ ð1Þ

In the present paper, we consider the solution to the weighted likelihood equation given by

Xn

i¼1

wyðyiÞuyðyiÞ ð2Þ

The weights wθ(yi) will be constrained to lies between 0 and 1. This approach is motivated by

the aim of generating estimators that are simultaneously robust and asymptotically fully effi-

cient [23]. This technique borders on the idea of minimum disparity estimation proposed by

[26] and [27].

[24] and [25] are considered the same approach that provide a quantification of the magni-

tude and sign of Pearson residuals, and are generally linked to a residual adjustment function

employed in minimum disparity estimation. We consider the [23] weighting scheme which is

downweighting of discrepant observations, where the strength of the downweighting increases

steadily with the degree of discrepancy, or extreme outliers obtain weights close to 1.

In the following subsections, we briefly describe the residual function and weight function.

2.1 The residual function

Let I(.) denote an indicator function. We define Fn and Sn as FnðYÞ ¼ 1

n

Pn
i¼1
IðY � yiÞ,

SnðYÞ ¼ 1

n

Pn
i¼1
IðY � ynÞ, these represent the empirical distribution function and survival

function of the data. Let Fθ(Y) = P(Y� y) and Sθ(Y) = P(Y� y) be corresponding theoretical

quantities. Now, the residual function τn(yi) proposed by [23] is given as:

tnðyiÞ ¼

FnðyiÞ
FyðyiÞ

� 1; if 0 < FyðyiÞ � q

0; if q < FyðyiÞ < 1 � q

SnðyiÞ
SyðyiÞ

� 1; if 1 � q � FyðyiÞ < 1

8
>>>>>>><

>>>>>>>:

Where q to choose is a suitable fraction q� 0.5. This tuning parameter will determine the pro-

portion of observations on either tail that will be subjected to possible downweighting. Accord-

ing to the above equation, it is clear that the consideration of the distribution function in the

left tail and the survival function in the right tail helps to highlight the mismatch of the data

and the model in the respective tails. Therefore, treat it as a case that requires downweighting.

2.2 The weight function

Now, we have our residual function, the next objective is to construct suitable weight function.

The weight function should have the following properties:

(a) 0� w(τn(y))� 1, w(0) = 1 (b) w(−1) is small, preferably close to 1.

Robust Adaptive Lasso method
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[23] define residual adjustment function for weight as follows:

HðyÞ ¼ e� ay2;

Where α is a positive constant. There may be different forms for the downweighting structure

represented by the function H(.). The role of this function has to be extensively studied in [24]

and [25]. In this paper, we have used the above defined function.

Now, the weight function according to [23], can be defined as:

wðtÞ ¼

1; if q < FyðyiÞ < 1 � q

H
FnðyÞ
FyðyÞ

� 1

� �

; if FyðyÞ � q

H
SnðyÞ
SyðyÞ

� 1

� �

; if FyðyÞ � 1 � q

8
>>>>>>><

>>>>>>>:

ð3Þ

3 Proposed Robust Adaptive Lasso: Penalizing the negative

weighted log-likelihood

Consider the linear regression model

y ¼ Xbþ ε ð4Þ

Where yn×1 is the response vector, Xn×p be the predictor matrix, β = (β1, . . ., βp)
T is the co-effi-

cient vector, and ε = (ε1, . . ., εn)
T is a vector of i.i.d random variables.

We consider the following regularization problem

minb2Rpf� n� 1
Xn

i¼1

wðtÞliðgðx
T
i bÞÞ þ ln

Xp

j¼1

pln
ðjbjjÞg ð5Þ

where w(τ) is the weight function in Eq (3), li(.) is the conditional log-likelihood, and pλ(.) is a

non-negative penalty function on [0,1] with a regularization parameter λn� 0.

The use of weight function in Eq (3) is overcome by the difficulty of heavy tails of the error

distribution. It is non-negative, bounded above 1 and twice differentiable with respect to τ.
The loss function for many models is convex, if the conditional distribution like li(.), is from a

class of the exponential family ([28]). The penalty function we will use is

pln
ð:Þ ¼ ln

Xp

j¼1

jbjj

jb̂ init;jj

where b̂ init is an initial estimator. In the present paper we get this from ridge regression estima-

tor when p� n, and in usual case (n> p) we used robust tukey bisquare M-estimator as initial

estimator.

3.1 Theoretical properties

Consider the constant weight vector w, the penalized weighted log-likelihood function based

on n samples is,

QnðbÞ ¼WnðbÞ � nln
Xp

j¼1

jbjj

jbinitj
ð6Þ
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WhereWn(β) represent the weighted likelihood function. We write the true parameter coeffi-

cient vector as b0 ¼ ðb
T
10
; b
T
20
Þ
T
, where β10 consists of all ‘s’ non-zero components and β20 con-

sists of the remaining ‘s-1’ zero components. We write the corresponding maximizer of Eq (6)

as b̂n ¼ ðb̂
T
1n; b̂

T
2nÞ
T
.

The Fisher Information matrix is

Iðb0Þ ¼W:Ef½
@lðb0Þ

@b0

�½
@lðb0Þ

@b0

�
T
g ð7Þ

WhereW = w.wT is (1 × n) positive definite matrix. Let I1(β10) = I11(β10, 0), where I11(β10, 0) is

the leading (s × s) submatrix of I(β0) with β20 = 0. We also assume that if
ffiffiffi
n
p

ln ¼ Opð1Þ, then

the adaptive Lasso type estimator satisfies jjb̂n � b0jj ¼ Op n�
1
n

� �
. It shows that b̂n is root n-

consistent if λn 7! 0 ([7]). Next we show that, when λn is chosen properly the proposed Robust

estimator has the oracle property under the same regularity conditions of [7].

Theorem: Assume that
ffiffiffi
n
p

ln 7! 0 and nλn 7! 1. Then under the some regularity condi-
tions, with probability tending to 1, the root n-consistent adaptive Lasso Robust estimator b̂n
must satisfy the following properties.

(i) Sparsity; b̂2n ¼ 0.

(ii) Asymptotic normality;
ffiffiffi
n
p
ðb̂1n � b10Þ 7! Nð0;W:I � 1

1
ðb10ÞÞ in distribution as n 7! 1.

The proofs of theorem follows the same steps of [7], under same regulaty conditions.

4 Selection of the tuning parameters

We now discuss an important issue of the tuning parameters selection regarding the construc-

tion of weight functions and in the different regularization methods. For the weight functions,

increasing the value of the parameter “α” leads to greater downweighting. To make balance

between the degree of robustness and efficiency, we need an extensive numerical studies. In

the present simulation study we keep it in the range of (0.05, 0.005). This appears to be a diffi-

cult problem, but solving this issue remains among our plan for future work.

On the other hand, in the different regularization methods described in this paper, we need

to choose an optimal tuning parameters l
0

ns. Intuitively, an optimals of these tuning parame-

ters be chosen through a variety of tools such as cross validation (CV), generalized CV and

Bayesian information criterion (BIC) approach.

There are well-established methods for choosing such parameters [29]. [17] and [30] used

BIC-type criterion, and [3] using 10-fold CV technique and proved that the resulting estimator

with such type of tuning parameters satisfies the good prediction accuracy and model selec-

tion. Following this idea, we apply 10-fold CV procedure for selection of tuning parameters.

5 Simulation studies

In this section, we introduced some numerical examples to illustrate the performance of

the Robust Adaptive Lasso method described in section (3) with other methods. We set two

scenarios in every example in terms of pairwise correlation between predictors, i.e, r = 0.5

and 0.85. Besides this, four levels of contamination were considered in error distribution

(δ = 0%, 10%, 20% and 30%) from two types of contamination, that is, scale and location

contamination.

The following four performance measures were calculated:

(a) Prediction Error- computed on the test data set.

Robust Adaptive Lasso method
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(b) Bootstrap Standard Error-by using the bootstrapp with B = 500 resamplings on the 1000

mean squared errors (in percentage).

(c) The average number of “0” estimated coefficients correctly, denoted by “C”.

(d) The average number of “0” estimated coefficients incorrectly, denoted by “I”.

We simulated 1000 data sets for each example from the linear regression model

yi ¼ xTi bþ εi

The predictors, Xi, . . ., Xp were generated from the multivariate normal distribution, N(0, S)

with S = (ρjk)p×p and ρjk = r|j−k|. For the distribution of the noise, εi, we considered N(0, 1) with

different levels of contamination from symmetric and asymmetric distribution.

Scenario-I: We let β = (3, 1.5, 0, 0, 2, 0, 0, 0). We consider two cases for sample size, i.e,

n = 50, and 100. Next, we took a scenario where an error distribution to be (1 − δ)N(0, 1) +

δN(−10, 1) which is contaminated by N(−10, 1) with different levels of percentages, δ.

Scenario-II: This scenario is the same as first, except that the error distribution to be

(1 − δ)N(0, 1) + δN(0, 25).

Scenario-III: In this case we consider the sample size n = 120 and covariates dimension

p = 400. We set the coefficient vector β in which first 15 components are non-zero and the

remaining are zero. Given is, β = {(3, . . ., 3)5, (1.5, . . ., 1.5)5, (2, . . ., 2)5, (0, . . ., 0)385}.

Scenario-IV: This scenario is same as scenario-I, except that the error distribution is expo-
nential(1) contaminated by an exponential(1/5).

Scenario-V: In this case, we demonstrate the p� n situation, when errors have non-nor-

mal distributions. We use n = 120 observations and p = 400 predictors. We sample �i from

exponential distribution, i.e, (1 − δ)exp(1) + δexp(1/5).

We fixed the true regression coefficients vector as, β = {(3, . . ., 3)5, (1.5, . . ., 1.5)5, (2, . . ., 2)5,

(0, . . ., 0)385}

Table 1 summarized the simulation results in scenario-I, for the different levels of contami-

nation, different sample sizes, and low and high pairwise correlation between predictors. To

measure the quality of the proposed technique, median test error, bootstrap standard error

and predictor selection performance were computed under each condition.

Effects of sample size

We observe that, across sample sizes, the median test error and bootstrap standard error

decreased with the increasing sample size from 50 to 100 in both cases of low and high correla-

tion among predictors. This pattern of decreasing holds for all regularization methods, but the

decrease in the proposed Robust adaptive Lasso is more than other competitors. On the other

hand, in terms of variable selection with the increase of sample size, the ratio of incorrectly “0”

selection of coefficients, denoted by “I”, decreases significantly. Table 1 also shows that for,

n = 100, the correct selection, denoted by “C”, is improved as compared for n = 50, but the pro-

posed Robust adaptive Lasso methods, defeated all other methods, in both cases, i.e, in “C”

and “I” and performs just like oracle estimator (i.e, C = 5 and I = 0).

Effects of level of contamination

Under ideal condition (unit normal error distribution, δ = 0%), the results in Table 1 indicate

that the “CBPR” and proposed method provides good results in terms of both prediction and

variable selection, particularly in r = 0.85, the predictor selection performance is the nearest to

oracle estimator, but in, n = 100, case, the test error of the proposed method is lower than all

other methods.

Robust Adaptive Lasso method
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For the 10% data contamination condition, the proposed Robust adaptive Lasso shows

strong performance in terms of both prediction accuracy and variable selection, but in only

one cell, i.e, for n = 50 and δ = 10%, the variable selection performance is not better than

CBPR.

Table 1. Simulation results for the location level of contamination in the model(1 − δ)N(0, 1) + δN(−10, 1).

(n, p) δ Method r = 0.5 r = 0.85

Med.PMSE C I Med.PMSE C I

(50,8) 0% Lasso 1.448(1.58) 4.384 0 1.361(1.76) 5 0

E.net 1.479(1.82) 2.388 0 1.387(1.71) 2.242 0

Alasso 1.335(1.83) 4.837 0 1.405(2.03) 3 1

CBPR 1.202(1.46) 3.593 0 1.311(1.68) 3.512 0

RAL 1.254(1.33) 4.713 0 1.430(1.72) 2.62 0

10% Lasso 1.187(1.53) 0.422 0 1.131(1.31) 4 0

E.net 1.198(1.60) 1.946 0 1.161(1.45) 1.532 0

Alasso 1.124(1.89) 4.568 0 1.208(2.05) 3 0.094

CBPR 1.100(1.30) 4.798 0 1.076(1.19) 4 0

RAL 1.001(1.02) 3.913 0 1.029(1.24) 4.837 0

20% Lasso 0.969(1.34) 3.084 0.02 0.930(1.16) 5 1

E.net 1.011(1.39) 2.189 0 0.939(1.20) 1 0

Alasso 0.983(2.62) 3.993 0 1.082(2.54) 2.386 1.756

CBPR 0.900(1.12) 3.268 0 0.920(1.11) 2.704 0

RAL 0.850(0.92) 4.735 0 0.823(0.89) 4.910 0

30% Lasso 0.801(0.95) 3.004 0 0.779(0.98) 3.296 0

E.net 0.837(1.13) 2.358 0 0.807(0.99) 1.935 0

Alasso 0.865(3.65) 3 0 1.001(3.42) 3.998 0.014

CBPR 0.753(0.96) 4.006 0 0.802(0.98) 4.113 0

RAL 0.704(0.80) 4.442 0 0.707(0.81) 5 0

(100,8) 0% Lasso 1.187(0.83) 3 0 1.169(0.79) 4.621 0

E.net 1.215(0.85) 1.576 0 1.179(0.77) 2.231 0

Alasso 1.140(0.87) 4.897 0 1.162(0.82) 4.003 0

CBPR 1.210(0.75) 3.457 0 1.139(0.78) 5 0

RAL 1.100(0.70) 4.365 0 1.121(0.73) 4.159 0

10% Lasso 0.964(0.69) 3 0 0.956(0.64) 4 0

E.net 0.981(0.67) 3.706 0 0.968(0.70) 3.714 0

Alasso 0.934(0.62) 3.232 0 0.937(0.71) 4.5 0.002

CBPR 0.932(0.61) 4 0 0.938(0.62) 3.602 0

RAL 0.895(0.60) 4.578 0 0.910(0.51) 4.330 0

20% Lasso 0.805(0.61) 3.065 0 0.791(0.56) 4 0

E.net 0.812(0.54) 2.498 0 0.793(0.53) 2.107 0

Alasso 0.773(0.60) 4.597 0 0.809(0.90) 3.084 0

CBPR 0.784(0.55) 3.616 0 0.775(0.50) 3.272 0

RAL 0.758(0.54) 5 0 0.745(0.50) 4.530 0

30% Lasso 0.678(0.45) 4 0 0.667(0.47) 3 0

E.net 0.697(0.54) 1.296 0 0.684(0.48) 3.98 0

Alasso 0.666(0.84) 4.483 0.01 0.740(1.13) 4.15 0.012

CBPR 0.664(0.46) 5 0 0.672(0.44) 4 0.09

RAL 0.649(0.40) 4.805 0 0.630(0.39) 5 0

https://doi.org/10.1371/journal.pone.0183518.t001
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From Table 1, it is clear that the proposed method shows superior performance under 20%

and 30% contamination conditions for both cases of sample sizes and correlations among

predictors, respectively. In this extreme location contamination, the proposed Robust method

has performed just like an oracle estimator and also has minimum bootstrap standard errors

with excellent predictor selection performance. Hence, the overall performance of proposed

the Robust adaptive Lasso method is better than other with the increase of location

contamination.

Effects of multicollinearity

In given scenario-I, we also consider two cases for correlation between predictors, i.e, r = 0.5

and 0.85. In both situations, the Robust adaptive Lasso method outperforms all other methods,

except CBPR which has a little better result in case of high correlation and clean data (δ = 0%),

particularly, in variable selection. But, the levels of contamination increases in both low and

high collinearity. The proposed method findings become better and better. From Table 1, we

can also see that the [8] gives very poor results in high correlation between predictors, espe-

cially, in variable selection.

Simulation results for scenario-II are summarized in Table 2, in which we consider scale

level of contamination scheme where N(0, 1) model is contaminated by N(0, 25). The details

are discussed as below.

Effects of sample size

From the findings given in Table 2, it is evident that the prediction errors and bootstrap stan-

dard errors of all regularization approaches blows up in the presence of scale contamination.

The results shows that when sample size doubled from 50 to 100, the test errors and as well as

bootstrap standard errors significantly decreases, for fixed contamination and correlation

among predictors. Among these five methods, the reduction in the proposed Robust method

is maximum. We can also observe that, the variable selection performance is also improved

when the sample size increases, particularly for the proposed method, in terms of both aspects

“C” and “I”. Generally speaking, the usual positive effect of sample size is on prediction accu-

racy and standard error.

Effects of level of contamination

It is clear form Table 2, that the proposed Robust regularization technique provides good

results in terms of model error in all cases of contamination. The variable selection perfor-

mance of Lasso and [8] are extremely poor when the contamination rate increases from% to

30%. The findings also indicate that the proposed method remains almost consistent in vari-

able selection under low and high contamination, as compared to other competitors.

Effects of multicollinearity

From Table 2, it can be shown that in both cases of correlation, i.e, r = 0.5 and r = 0.85, the pro-

posed Robust method is the best one overall. But it is very interesting to see that the Robust

RAL method in terms of test errors and bootstrap standard errors is relatively better when the

predictors are highly correlated, but in predictor selection in high correlation and extreme

contamination aspect (i.e, 20% and 30%) is worse than low correlation condition among pre-

dictors. For example, in case of fixed (n, p) = (50, 8) and δ = 30%, the proposed Robust method

estimated 4.639 predictors on the average, in “C” and in aspect of “I” is 0, when r = 0.5. But on

the other hand, in r = 0.85, the situation is 4.037 in aspect of “C” and 0.745 in “I”, respectively.
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In scenario-III, the predictors dimension is larger than sample observations, i.e, p = 400

and n = 120, but the dimension of the true model is fixed to be 15. The detailed results are

depicted in Table 3. To compare the performance of the Robust Adaptive Lasso estimator, we

did not report the results of the [8], because in case of, p� n, it is nontrivial to calculate reli-

able initial estimates (i.e, OLS estimators) for weights used in it. From Table 3, the results

Table 2. Simulation results for the scale level of contamination in the model(1 − δ)N(0, 1) + δN(0, 25).

(n, p) δ Method r = 0.5 r = 0.85

Med.PMSE C I Med.PMSE C I

(50,8) 0% Lasso 1.390(1.70) 3.411 0 1.372(1.62) 3.022 0

E.net 1.486(1.78) 1.990 0 1.390(1.72) 2.683 0

Alasso 1.357(1.91) 4.851 0 1.431(1.97) 4.543 0.07

CBPR 1.335(1.65) 3.751 0 1.325(1.37) 3.337 0

RAL 1.262(1.35) 4.658 0 1.262(1.33) 4.586 0

10% Lasso 10.246(13.64) 2.103 0 9.521(10.76) 3.938 0

E.net 9.986(12.59) 2.126 0 9.402(10.27) 2.587 0

Alasso 10.445(15.52) 2.839 0.447 10.037(11.99) 2 0.747

CBPR 10.262(12.79) 3.497 0 9.619(10.40) 2.940 0.424

RAL 9.215(11.76) 3.451 0 8.720(9.32) 4.07 0

20% Lasso 34.591(41.62) 2.191 0.382 32.384(35.41) 3.603 0

E.net 34.014(40.81) 0.976 0.776 32.458(38.22) 1.934 0.92

Alasso 37.373(52.49) 3.515 0.64 35.498(46.89) 0 1

CBPR 37.649(48.59) 1 0 31.654(33.38) 1.730 1.645

RAL 32.768(41.57) 3.972 0 30.902(33.21) 4.369 0.043

30% Lasso 73.419(82.02) 1.909 1 69.504(76.62) 3.213 0.921

E.net 73.889(90.57) 0.958 0 68.915(91.13) 0.870 1.793

Alasso 81.505(97.31) 4 1.749 76.578(96.12) 1.948 2.01

CBPR 74.194(98.32) 3.370 0.034 69.384(80.65) 3.265 2

RAL 72.284(93.72) 4.639 0 67.299(82.93) 4.037 0.745

(100,8) 0% Lasso 1.194(0.78) 3.07 0 1.162(0.79) 4.007 0

E.net 1.190(0.87) 2.488 0 1.199(0.83) 1 0

Alasso 1.150(0.78) 4.524 0 1.159(0.84) 4.012 0

CBPR 1.159(0.80) 3.752 0 1.161(0.80) 3.157 0

RAL 1.113(0.70) 4.866 0 1.102(0.68) 5 0

10% Lasso 8.487(5.71) 1.106 0 8.165(5.31) 4.795 0.02

E.net 8.547(6.11) 2.318 0 8.155(5.47) 3.340 0

Alasso 8.125(5.75) 3.759 0 8.431(5.56) 2.992 0

CBPR 8.294(5.65) 3.456 0 8.108(5.38) 3.335 0

RAL 8.012(5.45) 4.307 0 7.491(4.93) 4.267 0

20% Lasso 30.023(19.73) 1.086 0 29.266(19.08) 3.811 0.809

E.net 29.779(19.84) 2.259 0 29.768(18.34) 0.960 0

Alasso 30.922(21.29) 2 0.805 29.275(19.77) 2.99 1.982

CBPR 29.539(20.40) 2.82 0 29.056(19.04) 4.392 0.948

RAL 29.322(18.19) 4.72 0 28.592(18.94) 4.572 0.114

30% Lasso 66.129(44.12) 2.474 0.959 62.991(42.60) 1.749 1.808

E.net 64.387(41.11) 2.014 0 63.316(39.76) 3.268 0.230

Alasso 67.047(44.33) 3.011 2 65.929(43.11) 2.847 0.639

CBPR 65.303(43.02) 3.685 0 63.563(39.06) 3.506 0.715

RAL 63.560(44.96) 4.659 0 63.039(42.10) 4.078 0.039

https://doi.org/10.1371/journal.pone.0183518.t002
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confirm robustness of the proposed method with increasing the level of contamination, and

hence, the prediction error and bootstrap standard errors decrease slowly when δ increases

towards 30%.

In case of variable selection, from Table 3, it can be seen that the predictor selection results

of the other methods have a little more advantage than the proposed method in the aspect of

“C”, especially for low level of contamination and moderate correlation, i.e, r = 0.5, but in

extreme contamination condition, i.e, (δ = 30%) the performance of Robust proposed method

becomes better than others. On the other hand, in high correlation set up among predictors,

the proposed technique gives satisfactory results in both aspects of “C” and “I”, except for

clean data, i.e, (δ = 0%).

In scenario-IV, we consider the non-normal error distribution. The Table 4, presents the

prediction error, bootstrap standard error and predictor selection performance when the error

has heavy tailed an exponential(1) distribution, contaminated by an exponential (1/5) distribu-

tion. From Table 4, it may be seen that the contamination proportion tends to the level of 30%,

the prediction error of the proposed penalized regression method is stable and does not

increases as compared to others. In terms of predictor selection, the proposed robust method

remains better for higher level of contamination too, for fixed sample size and correlation

ammong predictors. Additionally, for the small sample size Table 4 reported that the test errors

for the different procedures are grater than in case of large sample size (i.e, n = 100), for all

fixed cases of conatmination and correlation.

Our simulation results for scenario-V are depicted in Table 5. For the exponential error dis-

tribution, the robust adaptive Lasso exhibits good prediction performance in both low and

high correlations among predictors when contamination tends to 30%. In terms of variable

selection, we observe that the performance of the proposed method tends to dominate the

other penalized regression procedures when the level of contamination increases towards 30%.

These findigs suggest that the proposed robust procedure, by utilizing weights proposed by

[23], is effective when the tails got heavier.

Table 3. Simulation results for the location level of contamination in the model(1 − δ)N(0, 1) + δN(−10, 1) in high-dimensional data set.

δ Method r = 0.5 r = 0.85

Med.PMSE C I Med.PMSE C I

0% Lasso 5.413(27.8) 379.001 1.003 2.017(2.00) 384.3 3.17

E.net 6.639(23.2) 379.003 0 1.957(1.98) 383.043 0.14

CBPR 2.410(2.20) 376.620 0 2.257(1.93) 366.941 0

RAL 2.054(1.50) 370.820 0 2.052(2.00) 373.156 0

10% Lasso 8.691(27.20) 372.002 2.005 1.640(1.66) 376.106 0

E.net 4.942(22.2) 379.995 0 1.576(1.63) 373.850 0

CBPR 1.687(1.50) 381.009 0 1.674(1.51) 363.644 0

RAL 1.894(1.01) 369.526 0 1.400(1.20) 379.245 0

20% Lasso 4.896(27.6) 379.002 2.001 1.369(1.49) 376.624 0

E.net 5.769(22.5) 379.001 0 1.357(1.35) 373.523 0

CBPR 1.975(1.80) 381.012 0 1.213(1.03) 375.590 0

RAL 1.678(1.20) 370.550 0 1.181(1.04) 377.505 0

30% Lasso 3.140(35.07) 364.230 0.005 1.178(1.23) 369.374 0

E.net 4.361(32.05) 357.672 0 1.150(1.33) 374.236 0

CBPR 2.273(1.63) 368.892 0 1.103(0.96) 369.537 0

RAL 1.297(1.66) 370.747 0 0.152(1.05) 381.078 0

https://doi.org/10.1371/journal.pone.0183518.t003
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6 Real data application

6.1 Prostate cancer data

The data set for this subsection comes from a study by [31] and analyzed by [29] for estimation

and variable selection. The data set consists of 97 observations and 9 variables. We used the

Table 4. Simulation results are based on 1000 replications and δ is the level of contamination in the model (1 − δ)exp(1) + δexp(0.2).

(n, p) δ Method r = 0.5 r = 0.85

Med.PMSE C I Med.PMSE C I

(50,8) 0% Lasso 1.354(2.73) 3.325 0 1.333(2.43) 2.660 1

E.net 1.336(2.41) 1.669 0 1.356(2.48) 1.795 0

Alasso 1.282(4.11) 3.648 0 1.389(3.22) 4.382 0

CBPR 1.375(2.60) 3.204 0.007 1.321(2.33) 3.179 0

RAL 1.192(2.21) 4.639 0 1.227(2.09) 4.575 0

10% Lasso 1.455(2.48) 1.554 0 1.414(2.10) 3.617 0

E.net 1.494(2.60) 0.540 0 1.394(2.22) 1.832 1

Alasso 1.385(3.13) 4.064 0 1.610(3.19) 3 0

CBPR 1.372(2.24) 4.590 0 1.375(2.34) 2.06 0

RAL 1.253(2.06) 4.892 0 1.243(2.00) 4.668 0

20% Lasso 2.226(3.68) 2.311 0 2.117(3.16) 2.323 1

E.net 2.305(4.05) 2.373 0 2.256(3.35) 2.829 0

Alasso 2.382(4.85) 4.249 0.021 2.480(4.58) 4.163 1

CBPR 2.134(3.36) 3.472 0.002 2.157(3.02) 3.619 0

RAL 1.953(2.89) 4.949 0 2.016(2.81) 4.888 0.001

30% Lasso 3.800(6.33) 2.393 0 3.567(5.71) 4.091 0.17

E.net 3.810(6.51) 1.522 0 3.508(6.24) 3.261 0

Alasso 3.941(8.40) 3.930 0.052 3.908(6.68) 3.599 0.233

CBPR 3.493(5.85) 3.719 0 3.527(6.40) 3.843 0

RAL 2.468(5.42) 4.221 0 2.469(5.32) 4.489 0.04

(100,8) 0% Lasso 1.135(1.27) 3.198 0 1.154(0.81) 3 0

E.net 1.133(1.28) 1.421 0 1.185(0.80) 1.62 0

Alasso 1.081(1.33) 4.859 0 1.158(0.78) 4.99 0

CBPR 1.103(1.29) 3.069 0 1.111(0.77) 4.73 0

RAL 1.173(1.44) 3.473 0 1.106(0.74) 5 0

10% Lasso 1.205(1.19) 3.117 0 1.222(0.90) 3 0

E.net 1.235(1.25) 0.388 0 1.235(0.92) 1.361 0

Alasso 1.176(1.14) 4.189 0 1.232(0.88) 2.943 1

CBPR 1.166(1.30) 3.683 0 1.220(0.85) 4 0

RAL 1.131(1.17) 4.228 0 1.181(0.81) 4.430 0

20% Lasso 1.925(1.98) 2.004 0 1.863(1.64) 3.329 0

E.net 1.935(1.88) 1.547 0 1.876(1.72) 3.564 0

Alasso 1.860(1.85) 3.007 0 1.898(1.82) 3.519 0

CBPR 1.786(1.69) 4.166 0 1.868(1.60) 2.015 0

RAL 1.062(1.68) 4.301 0 1.754(1.55) 4.865 0

30% Lasso 3.130(3.18) 2.418 0.031 3.091(3.09) 3.001 0

E.net 3.203(3.64) 1.883 0 3.090(3.03) 2.554 0

Alasso 3.148(3.56) 3.370 0.926 3.240(3.52) 1 0.001

CBPR 3.043(3.26) 4.392 0.012 3.075(3.21) 2.957 0

RAL 2.960(3.00) 4.768 0 2.939(2.98) 4.614 0

https://doi.org/10.1371/journal.pone.0183518.t004
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response variable which is “lcavol” and the rest are explanatory variables. The proposed Robust

penalized method was applied along with four other penalized approaches (i.e, given in

Table 6). The first 30 observations were used as training data set and the rest as testing data to

evaluate the prediction ability.

In Fig 1, the QQ-plot and boxplot shows that there are three distinct outliers in the response

variable. A normal model would provide a nice fit to response variable if the outliers are

deleted. We set our optimum tuning parameters values as q = 30, that is to determine the pro-

portion of observations on either tail that will be subjected to downweighting, and “α = 2.202”

for proposed approach. Beside this, the weights associated with these three identified outliers

are, 0.0380, 0.0092 and 0.0359, respectively.

The columns of Table 6 present the different penalized approaches with the proposed

robust method, their associated coefficient estimates and test errors. From the Table 6, we can

see that the proposed method produces more sparse solution and selects two covariates, i.e,

“lcp” and “lpsa”, corresponding to the smallest test error, i.e, 0.807.

Table 5. Simulation results for the location level of contamination in the model(1 − δ)exp(1) + δexp(0.2) in high-dimensional data set.

δ Method r = 0.5 r = 0.85

Med.PMSE C I Med.PMSE C I

0% Lasso 5.170(36.74) 354.096 2.143 2.057(2.12) 374.469 0

E.net 6.704(33.29) 352.160 1 1.982(1.81) 375.198 0

CBPR 2.684(3.97) 368.523 0 1.707(1.49) 376.233 0

RAL 2.878(4.37) 367.174 0 1.677(1.55) 380.644 0

10% Lasso 5.763(35.56) 363.011 0.034 2.160(2.26) 370.476 0.015

E.net 7.306(37.42) 354.849 0 2.072(2.18) 373.299 0

CBPR 3.919(5.57) 359.637 0 1.866(1.66) 372.595 0

RAL 3.881(5.10) 367.295 0 1.892(1.58) 381.919 0

20% Lasso 8.281(32.98) 364.791 0.122 3.300(3.63) 370.232 0

E.net 9.923(37.64) 356.168 0 3.116(3.48) 375.916 0

CBPR 3.682(5.37) 369.929 0 3.947(3.10) 366.586 0

RAL 2.551(4.43) 370.475 0 2.813(2.95) 380.964 0

30% Lasso 13.869(46.19) 361.1 0.233 5.369(6.33) 371.226 0

E.net 15.110(44.32) 347.852 0 5.092(5.55) 375.691 0.108

CBPR 5.566(8.13) 365.307 0 5.391(6.381) 363.874 0

RAL 4.659(7.91) 377.308 0 4.263(4.92) 379.011 0

https://doi.org/10.1371/journal.pone.0183518.t005

Table 6. Estimated coefficients and model error results, for various regularization procedures applied to the prostate data. The dashed entries corre-

spond to predictors that are estimated “0”.

Variable Lasso Elastic net Alasso CBPR RAL

Intercept 0.635 0.206 2.921 1.844 0.208

lweight −0.282 . . . −0.821 −0.425 . . .

age 0.027 0.008 . . . 0.029 . . .

lbph . . . . . . . . . . . . . . .

svi . . . . . . . . . . . . . . .

lcp 1.135 0.836 1.213 1.266 0.648

gleason 0.088 0.102 0.267 . . . . . .

pgg45 . . . . . . . . . . . . . . .

lpsa 0.094 0.05 0.374 . . . 0.342

Test Error 1.997 1.132 3.112 2.413 0.807

https://doi.org/10.1371/journal.pone.0183518.t006
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6.2 Microarray data-riboflavin production by bacillus subtilis

Here we analyze the high-dimensional real data set (S2 File) about riboflavin production by

bacillus subtilis which was analyzed by [32]. Here the continuous response variable Y which

measures the logarithm of the production rate of riboflavin, p = 4088, is the number of covari-

ates corresponding to the logarithms of expression levels of genes and n = 71 individuals of

genetically homogeneous sample.

Our main objective here is to test whether our method can effectively select covariates with

non-zero coefficients and estimate parameters simultaneously.

From Fig 2(a), it can be observed that the frequency distribution of the response variable is

somehow positively skewed and the boxplot in Fig 2(b) clearly shows that there are some

outlying observations present in the data. Since, the response variable is skewed, therefore,

gamma distribution was fitted on it after applying K-S test (i.e, p-value>0.05). For the purpose

of the proposed weights, we set our tuning parameters values as q = 0.5 and α = 0.312.

Percentage prediction/test errors were calculated for the five regularization regression tech-

niques, and were compared with percentage test error of the ridge regression (i.e, 0.0829). The

percentage errors were shown by a bar graph in Fig 3. It can be seen from Fig 3 that Lasso per-

forms very poorly with percentage test error which is 113.915%, and which is 13.915% more

than ridge regression. The prediction error of elastic net is 14.21%, (i.e, 85.79%) lower and

CBPR is 22.08%, (i.e, 77.92%) lower than ridge penalized regression. Among these methods

the maximum reduction in percentage test error is observed in the proposed penalized regres-

sion procedure with percentage test error is 64.29%, which is 35.71% lower than ridge method.

Fig 1. The Q-Q plot and boxplot of the response variable “lcavol”.

https://doi.org/10.1371/journal.pone.0183518.g001
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In terms of sparsity, the number of non-zero estimated predictors coefficients of Lasso, elas-

tic net, CBPR and RAL are 16, 32, 42 and 35, respectively, out of the total number of 4088 pre-

dictors. Since, the proposed RAL method selects 35 covariates with minimum prediction

error.

7 Conclusion

In this article we proposed a robust penalized regression model (RAL) using weighted log-like-

lihood with the adpative Lasso penalty function. We used the [23] proposed weight function

to downweights the points that are large residuals outliers and improved the effectiveness of

the proposed algorithm. Four penalization methods in addition to RAL, including Lasso, elas-

tic net, adaptive lasso and CBPR were compared. The numerical simulations shows that for

high percentages of contamination the RAL is more robust and outperforms the other penali-

zation procedures interms of prediction accuracy, bootstrapped standard errors and variable

selection.

We also illustrate the proposed method in an application to real data analysis. we consider

the prostate cancer data set and a high-dimensional data set about riboflavin (Vatamin B2)

production by bacillus subtilis. We have evaluated the performance of the different penalized

procedures based on training/testing sample partition. The real data comparison in section 6,

demonstrate that the proposed robust procedutre (RAL) improves over existing methods in

Fig 2. (a) Histogram and (b) Boxplot for production rate in riboflavin.

https://doi.org/10.1371/journal.pone.0183518.g002
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both prediction and varaible selection. Thus, RAL is more robust procedure than other meth-

ods to outliers or influential observations.
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Fig 3. Comparison of percentage test error.
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