
RESEARCH ARTICLE

Role of amygdala kisspeptin in pubertal timing

in female rats

Daniel A. Adekunbi1,2, Xiao Feng Li1, Shengyun Li1, Olufeyi A. Adegoke2, Bolanle

O. Iranloye2, Ayodele O. Morakinyo2, Stafford L. Lightman3, Paul D. Taylor1,

Lucilla Poston1, Kevin T. O’Byrne1*

1 Division of Women’s Health, Faculty of Life Sciences and Medicine, King’s College London, London, United

Kingdom, 2 Department of Physiology, College of Medicine, University of Lagos, Lagos, Nigeria, 3 Henry

Wellcome Laboratory for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, United

Kingdom

* kevin.obyrne@kcl.ac.uk

Abstract

To investigate the mechanism by which maternal obesity disrupts reproductive function in

offspring, we examined Kiss1 expression in the hypothalamic arcuate (ARC) and anteroven-

tral periventricular (AVPV) nuclei, and posterodorsal medial amygdala (MePD) of pre-puber-

tal and young adult offspring. Sprague-Dawley rats were fed either a standard or energy-

dense diet for six weeks prior to mating and throughout pregnancy and lactation. Male and

female offspring were weaned onto normal diet on postnatal day (pnd) 21. Brains were col-

lected on pnd 30 or 100 for qRT-PCR to determine Kiss1 mRNA levels. Maternal obesity

increased Kiss1 mRNA expression in the MePD of pre-pubertal male and female offspring,

whereas Kiss1 expression was not affected in the ARC or AVPV at this age. Maternal obe-

sity reduced Kiss1 expression in all three brain regions of 3 month old female offspring, but

only in MePD of males. The role of MePD kisspeptin on puberty, estrous cyclicity and pre-

ovulatory LH surges was assessed directly in a separate group of post-weanling and young

adult female rats exposed to a normal diet throughout their life course. Bilateral intra-MePD

cannulae connected to osmotic mini-pumps for delivery of kisspeptin receptor antagonist

(Peptide 234 for 14 days) were chronically implanted on pnd 21 or 100. Antagonism of

MePD kisspeptin delayed puberty onset, disrupted estrous cyclicity and reduced the inci-

dence of LH surges. These data show that the MePD plays a key role in pubertal timing and

ovulation and that maternal obesity may act via amygdala kisspeptin signaling to influence

reproductive function in the offspring.

Introduction

The role of the early life nutritional environment on reproductive development and function

has received considerable attention in light of growing concern over the increasing number of

women of reproductive age who start pregnancy overweight or obese and/or gain excess

weight during pregnancy [1]. Other than adverse influences on pregnancy outcome, maternal
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obesity has emerged as a risk factor for precocious puberty in girls [2,3] and boys [4] born to

obese women and this association between maternal obesity and age at menarche may be inde-

pendent of pre-pubertal or birth weight. Similarly, studies in rodents have shown that exposure

to maternal obesity accelerates sexual maturation in the offspring [5,6], which may have conse-

quences for reproductive function later in life. Impaired growth of ovarian follicles, prolonged

or persistent estrus, reduced sperm quality and fertility, lower levels of male reproductive hor-

mones and altered sexual behaviour have been reported in offspring exposed to maternal obe-

sity in early life [7–11].

Despite these observations, little is known of the underlying mechanism by which intrauter-

ine obesogenic environments influence reproductive function in the offspring. There is how-

ever substantial evidence for the role of kisspeptin as a potent neuroendocrine regulator of the

reproductive system [12,13]. Kisspeptin modulates the secretion of gonadotropin-releasing

hormone (GnRH) and mutations in the genes for kisspeptin (Kiss1) or kisspeptin receptor

(Kiss1r) cause impaired puberty progression and infertility [14]. Kisspeptin neurons are in syn-

aptic connection with a subgroup of GnRH neurons as early as embryonic day 16.5 in the

mouse [15], raising the possibility of kisspeptin signaling system being operational before

birth. Maternal obesity has been associated with elevated endogenous estradiol levels in the off-

spring at birth, through young adolescent age, and such early life estrogenic exposure may be

critical for altered reproductive function later in life [16]. We therefore hypothesized that

maternal obesity may modulate central drivers of the reproductive axis, specifically Kiss1
expression to influence reproductive function in the offspring.

The major focus of studies on kisspeptin signaling has been on the hypothalamus given the

abundance of kisspeptin neurons in the arcuate (ARC) and anteroventral periventricular

(AVPV) nuclei [17,18]. The expression of Kiss1 in the medial amygdala particularly in its pos-

terodorsal nucleus [19,20] has also generated interest in extra-hypothalamic roles of kisspep-

tin. The posterodorsal nucleus of the medial amygdala (MePD) is highly enriched with sex

steroid receptors [21,22] and MePD Kiss1 expression is steroid-dependent, analogous to Kiss1
expression in the AVPV and ARC [19]. Intra-medial amygdala injection of kisspeptin-10

dose-dependently increases luteinizing hormone (LH) secretion, while kisspeptin receptor

antagonism reduces LH pulse frequency [23], thus affirming the influence of this extra-hypo-

thalamic kisspeptin population on hypothalamic GnRH pulse generator activity. Additionally,

we have recently shown, through neurotoxic lesioning of the MePD, that this region is impli-

cated in puberty timing and reproductive cyclicity in female rats [24]. The present study exam-

ined the influence of maternal obesity on Kiss1 mRNA expression in the hypothalamus and

MePD of pre-pubertal and young adult rat offspring. We also determined the effects of kis-

speptin antagonism in the MePD on pubertal timing, estrous cyclicity and the preovulatory

LH surge in female rats exposed to a normal diet throughout their life course.

Materials and methods

Animals

All procedures were conducted in accordance with the United Kingdom Home Office Animals

(Scientific Procedures) Act 1986. The protocols were approved by the Committee on the Ethics

of Animal Experimentation of King’s College London. Adult female Sprague-Dawley rats

obtained from Charles River (Margate, UK) were used as breeders in our facility at King’s Col-

lege London; producing animals for study 1 and 2. A separate group of adult female Sprague-

Dawley rats (Charles River) fed a normal diet throughout their life course was used in study 3.

The rats were housed under controlled conditions (12 h light, 12 h dark cycle, lights on at 0700

h; temperature 22˚C ± 2˚C) with ad libitum access to food and water.
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Study 1: Effects of maternal diet-induced obesity on kisspeptin

expression in the offspring

Female Sprague-Dawley rats were fed either a standard chow diet (RM3, Special Dietary Ser-

vices, Essex, UK) or a highly palatable energy-dense obesogenic diet consisting of 20% animal

lard, 10% simple sugars, 28% polysaccharide, and 23% protein (w/w); energy 4.5 kcal/g (Spe-

cial Dietary Services) and supplemented ad libitum with sweetened condensed milk [*55%

simple sugars and 8% fat, 8% protein (w/w); Nestlé] and fortified with mineral and vitamin

mix (AIN 93G; Special Diets Services). The animals were maintained on these diets for 6

weeks before mating, during pregnancy and lactation. The effects of these diets on maternal

phenotype has been described previously [25]. Litter size was standardised to 8 pups (4 male, 4

female) 48 hours after birth. All offspring were weaned at postnatal day (pnd) 21 and subse-

quently fed RM1 diet ad libitum. In subsequent experimental groups, 2 males and 2 females

from each litter were used.

Tissue dissection and quantitative RT-PCR. Male and female offspring of control (Off-

Con) and obese (OffOb) dams were culled on pnd 30 (OffCon, n = 8 per sex; OffOb, n = 10

per sex) or 100 (OffCon, n = 8 per sex; OffOb, n = 10 per sex) for determination of Kiss1
mRNA expression in ARC, AVPV and MePD. These offspring were prepubertal and without

significant difference in body weight at pnd 30 as described previously [25]. Animals were

killed by decapitation and brains rapidly removed, snap frozen on dry ice and stored at -80˚C

until processing. Brains were cut into 300μm thick coronal sections using a cryostat (Bright

Ltd., Cambridgeshire, UK) and mounted on coated polysine slides (ThermoFisher Scientific,

Braunschweig, Germany). Brain punches were taken using the micropunch method [26,27]

with coordinates obtained from the rat brain atlas of Paxinos and Watson [28]. For both ARC

and AVPV nuclei, a single midline punch (1 mm diameter) was taken from bregma -1.7 to 3.9

and 0.26 to -1.3 respectively, while bilateral punches (0.6 mm diameter) from the MePD were

taken from bregma -2.2 to -3.6. The punched sections were fixed with formalin and stained

with crystal violet to confirm correct punch positioning under a microscope.

Total RNA was extracted from the punched ARC, AVPV and MePD tissues for each rat

using TRI reagent (Sigma-Aldrich, Poole, UK) and reverse transcribed using the reverse tran-

scriptase Superscript II (Invitrogen, Carlsbad, CA, USA) and random primer following the

manufacturer’s instructions. Hypoxanthine phosphoribosyltransferase 1 (Hprt1) mRNA was

used as a reference gene for normalization of target gene. The primers used for quantitative

real-time PCR are shown in Table 1. The primer pairs selected were designed to amplify across

at least one intron, ruling out the possibility of identical size bands resulting from genomic

DNA amplification. Reaction conditions for Kiss1 were optimized to give the best results for

the primer and for the different quantities of target in samples [29]. The sample cDNA pre-

pared as above was used as a template for the PCR using the Applied Biosystems1 ViiA™ 7

Real-Time PCR System. During PCR, the amplified cDNA products were detected after each

Table 1. Oligonucleotide primer pairs used for RT-PCR amplification of Kisspeptin (Kiss1) and hypoxanthine phosphoribosyltransferase 1

(Hprt1).

Oligonucleotide primers (5’-3’) Expected size (bp) Reference

Kiss1

Forward TGGCACCTGTGGTGAACCCTGAAC 202 NM181692.1

Reverse ATCAGGCGACTGCGGGTGGCACAC

Hprt1

Forward GCAGACTTTGCTTTCCTTGG 81 NM012583

Reverse CGAGAGGTCCTTTTCACCAG

https://doi.org/10.1371/journal.pone.0183596.t001
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annealing phase in real time using the QuantiTect fast SYBR Green kit (QIAGEN, Hilden,

Germany). Each reaction included 2 μl sample cDNA (optimized so that sample values of the

PCR product were within the standard curve), 0.8 μl each of 10 μM antisense and sense prim-

ers, 4 μl QuantiTect SYBR Green mix, and 0.4 μl water to give a total reaction volume of 8 μl.

The PCR cycling conditions for Kiss1 were initial denaturation and activation at 95˚C for 5

min, followed by 40 cycles of denaturation at 95˚C for 10 sec and annealing at 56˚C for 10 sec

and 72˚C for 10 sec. The Hprt1 reaction conditions were 5 min at 95˚C for one cycle, then 10

sec at 95˚C, 10 sec at 55˚C, and 10 sec at 72˚C for 40 cycles. Expression level of Kiss1 was deter-

mined by the threshold cycle (Ct) value in the exponential phase of the PCR reaction and nor-

malized to the respective Hprt1 Ct value using the comparative Ct method [30].

Study 2: Effect of kisspeptin antagonism in the MePD on puberty timing

Post-weanling female Sprague-Dawley rats fed a normal diet prior to pregnancy and during

pregnancy and lactation were used to determine the effect of MePD kisspeptin antagonism on

pubertal timing. All surgical procedures were carried out under a combination of ketamine

(Vetalar, 600 mg/kg, i.p.; Pfizer, Sandwich, UK) and xylazine (Rompun, 60 mg/kg, i.p.; Bayer,

Newbury, UK) anesthesia. On pnd 21, animals were anaesthetized and secured in a David

Kopf stereotaxic frame and small holes drilled into the skull at a location above the MePD after

a small incision of the scalp. A 28-gauge cannula (Plastics One, Roanoke, VA, USA) was fitted

bilaterally towards the MePD. The stereotaxic coordinates for implantation of the cannulae

previously optimized [24] were 2.5 mm posterior to bregma (AP), 3.2 mm lateral (ML), and

7.8 mm below the surface of the dura (DV) using the rat brain atlas of Paxinos and Watson

[28]. An osmotic mini-pump (Model 2002; Alza Corp, Mountain View, CA, USA) prefilled

with kisspeptin receptor antagonist (Peptide 234; Sigma Adrich) or artificial cerebrospinal

fluid (aCSF) was attached to the cannula with silicone tubing, and implanted subcutaneously

(s.c.) in the interscapular space. Rats received peptide 234 (2 nmol in 6 μl/d; n = 11) or aCSF

(n = 8) via the osmotic mini-pump at the rate of 0.25 μl/h for 14 days and were weighed every

3rd day. Recently, there has been a debate on the blockade of kisspeptin signaling by peptide

234 [31], nonetheless, we and others have repeatedly documented the effectiveness of this pep-

tide as a potent kisspeptin receptor antagonist in rats [23,32,33]. Rats were monitored daily for

vaginal opening and first estrous (markers of puberty onset). Correct cannula placement in the

MePD was confirmed by microscopic inspection of 30 μm brain sections. Only data from ani-

mals with correct cannula placement were analyzed.

Study 3: Effects of kisspeptin antagonism in the MePD on estrous

cyclicity and proestrus LH surge in adult females

Adult female rats (100 days old) obtained from Charles River were implanted with osmotic

mini-pumps for bilateral intra-MePD injection of Peptide 234 (2 nmol in 6 μl/d; n = 13) or

aCSF (n = 9) for a 14 day period as described above with stereotaxic coordinates being 3.14

mm posterior to bregma (AP), 3.4 mm lateral (ML) and 8.6 mm below the surface of dura

(DV). Estrous cycle was monitored daily through vaginal cytology for 22 days and normal

estrous cyclicity was defined as having at least 2 consecutive normal estrous cycles, which

lasted for 4–5 days with 1–2 days of estrus. The cycle length was determined by the number of

consecutive days from the last day of a cornified smear to the last day of an estrus smear in the

subsequent cycle. Each rat was also fitted with an indwelling cardiac catheter via the jugular

veins, to facilitate serial blood sampling for LH measurement. The catheters were exteriorized

at the back of the head and enclosed within a 30-cm metal spring tether (Instec Laboratories,

Boulder, CO, USA) secured to the slotted screw [34]. The distal end of the tether was attached
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to a fluid-filled swivel (Instec Laboratories), which allowed the rat to move freely around the

enclosure. On the day of experimentation, rats were attached via the cardiac catheter to a com-

puter-controlled automated blood sampling system for the intermittent withdrawal of 25 μl

blood samples without disturbing the animals [35]. Blood sampling commenced at 1300 h on

the day of proestrus and samples were collected every 30 min for 7 h to determine LH surges.

Correct cannula placement in the MePD was confirmed by microscopic inspection of 30 μm

brain sections. Only data from animals with correct cannula placement were analyzed.

Radioimmunoassay for LH measurement

A double-antibody RIA supplied by the National Hormone and Peptide Program (Torrance,

CA, USA) was used to determine LH concentrations in the 25-μl whole-blood samples. The

sensitivity of the assay was 0.093 ng/ml. The interassay variation was 6.8% and the intraassay

variations was 8.0%.

Statistical analysis

Comparison between groups were made by subjecting data to one-way analysis of variance

(ANOVA) and Dunnett’s test. Data are presented as the mean ± S.E.M. P< 0.05 was consid-

ered statistically significant.

Results

Study 1: Maternal obesity regulates kisspeptin expression in rat offspring

Maternal obesity increased Kiss1 mRNA expression in the MePD of pnd 30 male and female

offspring, but was without effect in the ARC or AVPV nuclei (Fig 1A–1F). In contrast, mater-

nal obesity reduced Kiss1 mRNA expression in the MePD of both males and females at pnd

100 (Fig 1A and 1D). Maternal obesity similarly reduced Kiss1 expression in the ARC and

AVPV of female offspring at pnd 100, but not in the males (Fig 1B, 1C, 1E and 1F).

Representative photomicrographs showing the position of the micro-punched MePD, ARC

and AVPV in the 300 μm thick coronal brain sections are shown in Fig 2.

Study 2: Antagonism of MePD kisspeptin delays puberty onset

Micro-infusion of the kisspeptin receptor antagonist (Peptide 234) into the MePD of post-

weanling female rats significantly delayed day of vaginal opening (aCSF; 38.3 ± 0.52 vs P-234;

40.3 ± 0.60) and first estrus (aCSF; 38.7 ± 0.44 vs P-234; 40.5 ± 0.65), both external markers

of puberty onset (Fig 3A and 3B). Body weight gain was comparable between both groups

(Fig 3C).

Representative photomicrograph of a 30 μm coronal brain section showing correct cannula

placement in the MePD is presented in Fig 4.

Study 3: MePD Kisspeptin antagonism disrupts estrous cycle and

reduces the incidence of LH surges in adult females

Antagonism of kisspeptin receptors in the MePD significantly disrupted estrous cyclicity

resulting in a reduced percentage of rats showing normal estrous cyclicity; 10% of antagonist

treated rats showing normal estrous cycle patterns compared with 71% of controls (Fig 5A–

5E). In addition, the incidence of proestrus LH surges in kisspeptin receptor antagonist-treated

rats was significantly reduced compared with vehicle. Only 1 out of 10 animals treated with

antagonist exhibited LH surge at proestrus, while 6 out of 7 showed LH surges in vehicle

treated animals (Fig 5F–5H).

Amygdala kisspeptin and puberty
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Discussion

Kisspeptin is essential for puberty initiation and coordination of reproductive function in

adulthood. In the present study, maternal obesity exerted a profound influence on MePD

Kiss1 expression in both pre-pubertal and young adult offspring. The functional significance

of which is inferred by antagonism of MePD kisspeptin signaling resulting in delayed puberty,

disruption of estrous cyclicity and reduced occurrence of preovulatory LH surges in normal

female offspring. The pattern of postnatal Kiss1 expression as a result of exposure to maternal

obesity, first an increase in expression in prepubertal life, followed by a decrease in adulthood,

parallels the reproductive phenotype of offspring of obese mothers, who first display puberty

advancement followed by disruption in reproductive function and behavior in adulthood

[8,11].

A causal relationship exists between maternal obesity and early onset of puberty in rats

[5,8]. Although the kisspeptinergic system of the offspring has been shown to be modified by

maternal undernutrition [36], there are as yet, no established report with respect to maternal

over-nutrition. In the present study, maternal obesity robustly upregulated MePD Kiss1
mRNA expression in pre-pubertal male and female offspring, whereas Kiss1 expression was

not affected in the ARC and AVPV at this age; an unexpected finding given the notable role of

hypothalamic kisspeptin in the control of puberty, given the established link between a pre-

pubertal increase in hypothalamic kisspeptin signaling and occurrence of puberty [37,38]. A

recent study has shown that maternal obesity raises endogenous estradiol level in postnatal day

30 offspring [16], opening the possibility of Kiss1 regulation by sex-steroid. However, it remain

a conundrum why in the present study AVPV Kiss1 wasn’t upregulated by maternal obesity

whereas MePD Kiss1 was, given that both kisspeptin population are regulated by estradiol in a

similar manner [39,40]. Perhaps differential neuroendocrine modulation of these brain areas

by maternal obesity may be a factor to consider. A similar experimental paradigm involving

Fig 1. Effect of maternal obesity on Kiss1 mRNA expression in MePD, ARC and AVPV on postnatal

day (pnd) 30 and 100. Both male and female offspring of obese dams (OffOb) showed a significant higher

level of Kiss1 mRNA in the posterodorsal medial amygdala (MePD) on pnd 30 compared with offspring of

control dams (OffCon) (A and D). No significant difference was observed in Kiss1 mRNA expression in the

hypothalamic arcuate (ARC) or anteroventral periventricular (AVPV) nuclei at this age (B, C, E, and F). In

contrast, by pnd 100, maternal obesity reduced Kiss1 mRNA expression in the MePD of both males and

females (A and D) and similarly reduced Kiss1 expression in the ARC and AVPV of female offspring (B and

C), but not in the males (E, F). *p<0.05 vs OffCon, (n = 8–10 per group). Values are expressed as a ratio of

Kiss1 to Hprt1 mRNA.

https://doi.org/10.1371/journal.pone.0183596.g001
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Fig 2. Representative photomicrograph of punched brain sections. Representative photomicrograph of

300 μm thick coronal brain sections stained with crystal violet showing the position of punched posterodorsal

medial amygdala (MePD) at approximately -3.14 from bregma (A), hypothalamic arcuate nucleus (ARC) at

-3.14 and -3.30 mm from bregma (A and B) and anteroventral periventricular nucleus (AVPV) taken at

approximately -0.46 mm from bregma (C). Arrows point to punched brain region. Lateral ventricles (LV), optic

tract (ot), third ventricle (3V), and the dorsal third ventricle (D3V) are also indicated. Scale bar; 3mm.

https://doi.org/10.1371/journal.pone.0183596.g002
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Fig 3. Day of vaginal opening, first estrus and body weight gain following intra-MePD infusion of

Kisspeptin receptor antagonist. Bilateral micro-infusion of a kisspeptin receptor antagonist (Peptide 234; 2

nmol in 6 μl/d for 14 days, starting on postnatal day 21) into the MePD via osmotic mini-pump resulted in a

significant delay in puberty onset, evidenced by day of vaginal opening (A), first estrus (B) without any

significant change in body weight (C). *p<0.05 vs control, (n = 6–8 per group). Results represent mean ± S.E.

M.

https://doi.org/10.1371/journal.pone.0183596.g003
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over-nutrition by litter size reduction also did not affect ARC and AVPV Kiss1 expression

[41]. In contrast, other reports showed increased Kiss1 expression in ARC in response to post-

natal over-nutrition [42,43]. These inconsistencies may derive from differences in study design

and dietary regimen. Notwithstanding these disparities in experimental outcome, the possibil-

ity of a time-dependent increase in hypothalamic Kiss1 expression [44] cannot be ruled out,

which may not be captured at postnatal day 30 when Kiss1 mRNA was quantified in the cur-

rent study.

The role of MePD as a neurobiological locus for puberty timing is not unprecedented; albeit

having previously been suggested to have an inhibitory influence. This is driven by the fact

that most neuronal projections from the MePD to the reproductive related hypothalamic

nuclei express gamma–aminobutyric acid (GABA) [45], which is inhibitory to puberty [46]. In

Fig 4. Confirmation of the cannula position within the MePD. Diagram from the rat brain atlas of Paxions

and Watson [28] showed the location of the MePD (marked) in relation to the optic tract (dot marked) (A).

Cresyl violet stained brain slice in a representative animal showed accurate cannula position within the MePD.

Arrow indicates the site corresponding to the tip of cannula (B).

https://doi.org/10.1371/journal.pone.0183596.g004

Fig 5. Effect of chronic intra-MePD administration of kisspeptin receptor antagonist on estrous

cyclicity and proestrous LH surge. Representative examples of estrous cycle pattern (A—D) and LH profile

(F and G) in rats treated with kisspeptin receptor antagonist (Peptide 234; 2 nmol in 6 μl/d for 14 days, starting

on day 1), or vehicle (aCSF, artificial cerebrospinal fluid). Kisspeptin antagonism in the MePD significantly

reduced the percentage of rats showing normal estrous cycles (E) as well as incidence of proestrus LH surges

(H). *p<0.05 vs control, (n = 7–10 per group).

https://doi.org/10.1371/journal.pone.0183596.g005
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addition, neurotoxic lesioning of the MePD advances puberty onset in female rats [24]. Micro-

infusion of GABA into the medial hypothalamic preoptic area (mPOA) or ARC has also been

shown to suppress pulsatile LH release [37,38]. However, the important interaction between

GABA and kisspeptin should be recognised; GABAergic neurotransmission in the mPOA of

female rats can be modulated by kisspeptin [47] and kisspeptin’s activation of its G protein-

coupled receptors attenuate the effect of GABA by desensitizing GABAB receptors on GnRH

neurons [48]. Kurian et al. [49] have also noted that kisspeptin signaling partly mediates the

reduction in the GABAergic tone that precedes the reactivation of GnRH neurons during

puberty onset in monkeys [48]. Therefore, the upregulation of MePD Kiss1 expression as a

result of exposure maternal obesity not only reflects the anatomical changes that occur in the

medial amygdala during puberty transition [50], but may functionally imply that kisspeptin

mediates reduction in GABAergic tone crucial for puberty onset.

Understanding the functional significance of the increased MePD Kiss1 expression by

maternal obesity may be furthered by our study of antagonism of MePD kisspeptin signaling

in female rats fed a normal diet throughout their life course. Bilateral injection of a kisspeptin

antagonist into the MePD delayed puberty onset, evidenced by delay in vaginal opening and

first estrus, which was independent of changes in body weight. These data not only corrobo-

rate earlier report on delayed puberty onset in female rats infused intracerebroventricularly

with kisspeptin antagonist [33], but further suggest that MePD Kiss1 expression may modulate

GnRH release and provide evidence for the contribution of MePD kisspeptin signaling in

pubertal advancement. Although the MePD lies upstream of the hypothalamus, it remains to

be determined if the delay in puberty onset by MePD kisspeptin antagonism implies a hierar-

chical role for MePD kisspeptin neurons over their hypothalamic counterparts. This may be a

likely scenario, since the MePD sends out projections innervating the mPOA, AVPV and ARC

[45,51] but there are no reciprocal projections from either ARC or AVPV to the MePD [52].

Further to the synaptic connection between MePD kisspeptin neurons and cell bodies of

GnRH neurons in the mPOA [20], we have shown that MePD kisspeptin signaling modulates

GnRH pulse generator frequency in female rats [23]. It has been proposed that the reawaken-

ing of the GnRH pulse generator at puberty may involve either extra-hypothalamic signals reg-

ulating this neural oscillator or a direct intrinsic hypothalamic mechanism [20]. The former

supports a higher-order function for the MePD on puberty timing, given the tonic inhibitory

brake exerted by amygdaloid GABAergic projections to hypothalamic reproductive nuclei

[51], the loss of which facilitates puberty onset [24]. The present study not only suggests a key

role for MePD kisspeptin in the circuitry controlling puberty onset, but opens up future direc-

tions for the regulation of GnRH pulse generator by extra-hypothalamic signals.

Since the MePD is a critical site for lesion-induced obesity in rats [53] as well as puberty

timing [24], it may equally be sensitive to metabolic cues for pubertal timing. Our earlier stud-

ies have shown that maternal obesity elicits an exaggerated and prolonged neonatal leptin

surge compared to control offspring [25] which is thought to be a developmental cue in nor-

mal hypothalamic development [54]. A key site for leptin’s regulation of reproduction is the

hypothalamic ventral premammilary nucleus (PMv) [55], which is largely populated by excit-

atory glutamatergic neurons [56] and expresses virtually no GABAergic component [57].

Within the entire mouse hypothalamus, only PMv fibres project significantly to the MePD

[52]. Leptin-induced excitatory output from the PMv may therefore be responsible for the

increased MePD Kiss1 expression in the pre-pubertal offspring as observed in the current

study.

In adult offspring, maternal obesity resulted in considerable reduction in Kiss1 mRNA lev-

els in all three brain regions examined in the female offspring, but only in the MePD of male

offspring. The reduced MePD Kiss1 expression in the male offspring may provide mechanistic
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explanation for reduced LH levels and altered sexual behaviour reported in offspring of obese

dams [10,11], supported by recent reports on the key role of kisspeptin in the limbic brain on

sexual and emotional behaviour in male rats [58] and men [59]. Maternal high fat nutrition

during pregnancy and lactation has also been associated with irregularity in estrous cycles in

rat offspring [8]; a common phenomenon being persistent estrus. The reduction in hypotha-

lamic kisspeptin signaling is accompanied by a decline in ovulatory capacity [47], while a mod-

erate knockdown of kisspeptin signaling in the AVPV increased the time spent in estrus and

metestrus stages of the estrous cycle as well as reduction in the incidence of spontaneous LH

surge in rats [60]. The present results suggest that the disruption in reproductive functions by

maternal obesity [7,8] may be causally linked to reduced Kiss1 expression in both hypotha-

lamic nuclei and the MePD, which was particularly profound in adult female offspring. It

therefore appears that maternal obesity shortens the reproductive life-cycle of the offspring by

targeting the reproductive brain, specifically by decreasing kisspeptin availability which is

essential for regulating LH release and ovulation [61,62]. Whether this is translatable to

humans remain to be proven, although there is substantial supportive evidence linking early

menarche to early menopause in women [63] and maternal obesity driving the former in girls

[3].

In view of the known role of hypothalamic kisspeptin signaling in estrous cyclicity and LH

surges [60], we ventured to investigate whether MePD kisspeptin is also a key component in

the preovulatory LH surge generation. Interestingly, bilateral intra-MePD injection of kisspep-

tin receptor antagonist reduced the percentage of animals showing normal estrous cycles and

spontaneous LH surges in a comparable fashion to kisspeptin knockdown in the AVPV [60].

The loss of normal estrous cyclicity after MePD kisspeptin antagonism is in keeping with the

prolonged estrous cycles found after MePD lesioning in rats [24]. These data, in addition to

the high expression of estrogen receptor in the MePD [21] further suggest the involvement

of the MePD in the cascade relaying estrogenic feedback mechanism important for estrous

cyclicity and the LH surge. Additionally, vasopressin fibers of suprachiasmatic nucleus (SCN)

origin convey circadian information important for preovulatory LH surges to AVPV kisspep-

tin neurons [64]. Similarly, vasopressin fibers form close apposition with MePD kisspeptin

neurons [20], but it is not known whether these vasopressin fibers also originate from the

SCN, whereby kisspeptin antagonism may have desynchronized the neural circuitry control-

ling the LH surge.

In conclusion, these data provide evidence of a key role for the MePD in pubertal timing

and reproductive function and suggests that maternal obesity may act via MePD kisspeptin

signaling to influence reproductive function in the offspring.
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