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Abstract

In this paper, we study a network of Izhikevich neurons to explore what it means for a brain

to be at the edge of chaos. To do so, we first constructed the phase diagram of a single Izhi-

kevich excitatory neuron, and identified a small region of the parameter space where we find

a large number of phase boundaries to serve as our edge of chaos. We then couple the out-

puts of these neurons directly to the parameters of other neurons, so that the neuron dynam-

ics can drive transitions from one phase to another on an artificial energy landscape. Finally,

we measure the statistical complexity of the parameter time series, while the network is

tuned from a regular network to a random network using the Watts-Strogatz rewiring algo-

rithm. We find that the statistical complexity of the parameter dynamics is maximized when

the neuron network is most small-world-like. Our results suggest that the small-world archi-

tecture of neuron connections in brains is not accidental, but may be related to the informa-

tion processing that they do.

Introduction

The brain, often compared to the central processing unit (CPU) of a digital computer, handles

and processes information from all our sensory organs. We clearly benefit from it’s capability

to hold thoughts and conciousness, even though the working principles of the brain is not yet

fully understood. While neuron level dynamics has been thoroughly studied [1], and extensive

work has been done to map the functional regions [2], we do not have an established theory

connecting functional regions to information processing at the whole-brain level. Unlike a dig-

ital computer, the brain is complex, and its information processing capabilities might be an

emergent property [3]. Indeed, the brain is suggested to be critical—with power laws found,

first by Bak et al. in their learning model [4], then by Beggs in neurons grown on petri dishes

[5], and lastly by Kitzbichler et al. in vivo in a functioning human brain [6]. These discoveries

prompted science journalist to claim that “the human brain is on the edge of chaos” [7, 8].

Chialvo further argued that the emergent complex neural dynamics in brains are essential

to “navigate a complex, critical world” [3]. The logic behind the argument is that critical sys-

tems can display long-range (power-law) correlations in space and time, and therefore it is
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very important to allow neural networks that process information from such systems to have

neuron-neuron interactions that go beyond immediate neighbours. Indeed, computer scien-

tists have shown that the computational capability of a neural network is maximised at the

edge of chaos [9, 10], so that it is able to assign unique non-random outputs to the most num-

ber of inputs. Crutchfield and Young earlier developed a measure of statistical complexity

based on his �-machines quantifying the information density of complex patterns [11, 12], and

found that the complexity of a dynamical system is maximized at the edge of chaos. At the

same time, others looking into brain-related networks discovered that they have small-world

properties [13–15]. Is this network topology unrelated to the edge of chaos, or is it a conse-

quence of the brain being at the edge of chaos? Our goal is to understand the brain more

deeply by linking all these parallel concepts to ask broader questions as what it means for the

brain to be at the edge of chaos? Why is it at the edge of chaos? How does it get the edge of

chaos? What can it do at the edge of chaos? Specifically in this paper, we check whether com-

plexity is indeed maximized for a small-world brain.

We organised our paper into five sections. In the Neuron Model section, we explain the

need to pick a biologically realistic neuron model. This is because we are interested in emer-

gent phenomenon, therefore we should not use models at the functional or whole-brain level.

In the literature, the Hodgkin–Huxley model [16] is the most realistic, but it is as the same

time the most computationally expensive. On the other hand, integrate-and-fire models [17]

are computationally cheap, but they are not realistic. We strike a compromise by using Izhike-

vich’s model [18], which balances realism with computational tractability. We then map out

the detailed phase diagram of a single neuron which lead us to discover a narrow region of the

phase diagram that is reminiscent of the edge of chaos. In the Parametric Coupling section, we

test whether it is possible to have neurons ‘kick’ each other from one phase to another in this

narrow region of the phase diagram, by parametrically coupling neurons together in an artifi-

cial energy landscape. We found that the neurons eventually relaxed to a distribution consis-

tent with equilibrium thermodynamics. In the Complexity and Small-World Network section,

we measure the transient dynamics of various small-world networks of neurons, and found

that the measured statistical complexity of their dynamics peaks close to where the network is

most small-world-like, as characterised by the gap between the average clustering coefficient

and the average path length.

Neuron model

Integrate-and-fire models [17] introduced as early as 1907 and their variants [19, 20] were the

first ever models used to mimic the dynamics of a neuron. These models were highly popular at

first as they capture the essence of neuron firing behaviour without detailed consideration of

the biological mechanisms, and at a very low computational cost. On the other hand, the Hodg-

kin-Huxley model [16], introduced in 1952 was hailed as the first biologically inspired model

that captures not only the overall dynamics of the neuron but also detailed the internal mecha-

nism. Several other biologically inspired models were developed subsequently [21] aiming to

reduce computational cost. We eventually chose the computationally lightweight Izhikevich’s

model in which different neuron types corresponds to different parameters (see Ref. [18]).

Izhikevich’s simplified neuron model

In his 2003 paper, Izhikevich demonstrated that his model was able to achieve both “biologi-

cally plausibility of Hodgkin–Huxley-type dynamics and the computational efficiency of

integrate-and-fire neurons” [18]. He achieved this by using bifurcation methodologies to map

the biophysically accurate Hodgkin–Huxley-type neuronal models to a two-dimensional
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system of ordinary differential equations of the form [22]

_v ¼ 0:04v2 þ 5v þ 140 � uþ I ð1Þ

_u ¼ aðbv � uÞ ð2Þ

with the auxiliary after-spike resetting

if v � 30mV; then

( v c

u uþ d:
ð3Þ

Here, a, b, c, and d are dimensionless parameters, and the notation _v ¼ dv=dt, where t is the

time. The variables v and u are dimensionless and represent the membrane potential of the

neuron and membrane recovery variable respectively. The membrane recovery variable, u,

provides negative feedback to v and accounts for the activation of K+ ionic currents and inacti-

vation of Na+ ionic currents. When the spike reaches its peak (+30 mV), Eq (3) resets u and v.
Lastly, I represents either synaptic currents or injected direct currents.

The summary of parameters used to simulate seven different spiking types in Izhikevich’s

model can be seen in Ref. [18]. The excitatory neurons are divided into three classes: RS (regu-

lar spiking), IB (intrinsically bursting), and CH (chattering), while the inhibitory neurons are

divided into two classes: FS (fast spiking) and LTS (low-threshold spiking). There are two

other neuron types that fall outside of the above classification scheme, and they are TC

(thalamo-cortical) neurons and RZ (resonator) neurons.

Phase diagram

Even though Izhikevich developed his simplified model relying on the fact that the spiking

behaviour changes abruptly when we go from one spiking type to another, he did not sketch a

phase diagram for his model. Touboul performed a rigorous analysis on parameters I, a and b
to identify the bifurcations separating different spiking phases on the a-b parameter space

[23], but not on c and d which appears in the reset conditions Eq (3). Hence, our first order of

business is to fully characterize the phase diagram of a single neuron. To do this, we adopted

the 4th-order Runge–Kutta method (RK4) with step size h = 10−3 to implement Eq (1) and

Eq (2) following the steps:

A1 ¼ 0:04v2
n þ 5vn þ 140 � un þ I;

B1 ¼ aðbvn � unÞ;

A2 ¼ 0:04ðvn þ hA1=2Þ
2
þ 5ðvn þ hA1=2Þ þ 140 � ðun þ hB1=2Þ þ I;

B2 ¼ a½bðvn þ hA1=2Þ � ðun þ hB1=2Þ�;

A3 ¼ 0:04ðvn þ hA2=2Þ
2
þ 5ðvn þ hA2=2Þ þ 140 � ðun þ hB2=2Þ þ I;

B3 ¼ a½bðvn þ hA2=2Þ � ðun þ hB2=2Þ�;

A4 ¼ 0:04ðvn þ hA3Þ
2
þ 5ðvn þ hA3Þ þ 140 � ðun þ hB3Þ þ I;

B4 ¼ a½bðvn þ hA3Þ � ðun þ hB3Þ�;

vnþ1 ¼ vn þ hðA1 þ 2A2 þ 2A3 þ A4Þ=6;

unþ1 ¼ un þ hðB1 þ 2B2 þ 2B3 þ B4Þ=6:

ð4Þ
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The terms A1, A2, A3, A4 and B1, B2, B3, B4 are intermediates required to be computed for the

variables vn and un respectively. Here vn and un are the membrane potential variable and the

membrane recovery variable at time t = nh. Then, with the input of the initial conditions v0

and u0, together with the parameters h, I, a, b, c and d we can compute from Eq (4) the values

of vn and un.
After replicating the results from Izhikevich’s model, further exploration revealed distinct

changes in the time series, seen in Fig 1, as the spiking type goes from IB to CH as we vary the

parameter in the c-d plane. A systematic examination of Izhikevich’s model in the c-d plane

yields the phase diagram shown in Fig 2. In particular, the “rainbow” CH regime is reminis-

cent of the period doubling route to chaos in the logistic map, and is thus a very promising

area to explore for possible encoding of information, as each “shade” enclosed one distinct

spiking time series. We can treat the small region in parameter space with a proliferation of

regimes before the system enters the FS regime as the edge of chaos and these different spiking

regimes as the basis to build a computational representation of information.

As we have explained in the Introduction, we believe that the brain is at the edge of chaos in

order to process complex information sensed from the environment. However, it is possible

that the whole brain is at the edge of chaos, but none of its functional parts are. Alternatively,

the brain can be at the edge of chaos at every scale. That is to say, even if we restrict ourselves

to examining a small part of the brain, even this small part resides at the edge of the chaos. We

do not know which scenario is true, or whether the biological brain is somewhere between

these two extremes. In fact, there is no literature on the frequency distribution of neuron types

in a functional brain. In other words, if we imagine we can extract the Izhikevich parameters

Fig 1. Observable differences in the time series with gradual variation of the parameters c and d from

IB to CH. The nomenclature here follows the number of spikes in the spike trains observed and the Roman

numbering is assigned respectively.

https://doi.org/10.1371/journal.pone.0183918.g001
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for each and every neuron in the brain, and plot them as points in the Izhikevich parameter

space, we do not know whether these points are uniformly distributed (the whole brain is at

the edge of chaos, but not all its parts), or they are clustered (the brain is at the edge of chaos at

multiple scales). Even though we do not have the answer to the above question, we felt we can

still take a baby step forward to understanding the problem of information processing by a

brain at the edge of chaos by studying a small network of CH neurons all of which are close to

the edge of chaos. If we can demonstrate that a small network of CH neurons at the edge of

chaos can encode information, then a larger network using similar building blocks will then be

able to do more.

Parametric coupling

In the literature, neurons are mostly pulse-coupled [24]. Some papers even suggested that

learning in the brain is accomplished through changing the synaptic connection strength

alone [25–28]. Neuron types plasticity is currently an experimental idea, where we find papers

suggesting possible alteration through external effects like viruses [29], optical stimulations

[30], and chemicals [31]. In simulation studies of neuron-neuron interactions, plasticity in

neurons types have not been thoroughly explored. It appears therefore that the neuroscience

community is starting to explore this phenomenon more seriously, in particular to elucidate

the mechanism(s) behind the change in excitability of neurons [32, 33]. Whatever the nature

of non-synaptic neuron plasticity, at the level of Izhikevich’s model it must be mediated by

Fig 2. Phase diagram for parameters c and d while fixing a = 0.02 and b = 0.2, which is the common

parameter values for RS, IB, and CH seen in Ref. [18]. This plot is obtained at integrating step-size of

h = 5 × 10−3, and resolution of parameters c and d is 2 × 10−2. Each shade of colour is assigned after

systematical examination of the time series of the membrane potential, v, in accordance to that displayed in

Fig 1.

https://doi.org/10.1371/journal.pone.0183918.g002
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terms where the output of a neuron is directly coupled to the parameters of another neuron,

even if the mechanism involve synaptic processes. As we can see, the phase diagram in Fig 2

suggests an alternative adaptation process that can have direct implications on information

processing if neuron types can change. Therefore, in addition to pulse coupling, we also intro-

duce parametric coupling, where the parameters of one neuron are affected by the outputs of

the neurons it is connected to.

In principle, the spiking activities of the neighbors of a neuron change the local electrostatic

and chemical environments it is in. This dynamic environment can push the neuron from one

spiking type to another, provided its parameters are close to the phase boundary between the

two spiking types. Unfortunately, a simulation at this level of detail would be prohibitively

expensive and complicated. Therefore, as a test of concept we adopt a design approach based

on an artificial energy landscape. In this framework, we treat the neuron parameter Q as a par-

ticle moving in a phase-diagram-inspired energy landscape, E, so that it will experience a force

Fe due the to potential gradient driving it to the nearest local minimum. The particle also expe-

riences a friction force Fr when moving within this artificial energy landscape. Finally, the par-

ticle are connected to other particles through springs, so that they will exert spring forces Fs on

each other. With the aid of Verlet integration, we can write these equations of motion mathe-

matically as

Qnþ1 ¼ 2Qn � Qn� 1 þ Ah
2; ð5Þ

A ¼ AðQnÞ ¼ ðFe þ Fs þ FrÞ=m; ð6Þ

Fs ¼ � Ks
Xneighbours

i6¼j

ðQðiÞ � QðjÞÞyðvðjÞÞ; ð7Þ

Fr ¼ � KrðQn � Qn� 1Þ=h; ð8Þ

Fe ¼
dEðQnÞ

dQn
: ð9Þ

In the above equations, Q parametrizes the straight line going from (c, d) = (−55, 4) to

(c, d) = (−50, 2). This effectively reduced the parameters values in Fig 1 to Q = −2 for RS, Q = 0

for IB, and Q = 1 for CH. Here, Qn are the values of Q at time step t = n � h, while h = 10−3 is

the integration step size, Ks = 25 is the spring constant, and Kr = 1 is the friction coefficient.

The superscripts in Eq (7) refers to the index of the neuron node. The Heaviside step function

θ(v(j)) term in Eq (7) ensures the update of Q(i) occurs only when its neighbour neuron j is

spiking.

Phase-diagram-inspired energy landscape

To construct an artificial energy landscape with a ‘thermodynamic’ equilibrium that is consis-

tent with the phase diagram, we determine the sharp regime boundaries from the various spik-

ing types displayed in Fig 1 and the counting of number of peaks per unit time in Fig 3(top),

and assign these as energy value of zero in the artificial energy landscape. We then assign a

negative energy value whose magnitude is proportional to the width of the spiking regime at

the middle of each spiking regime. Once these two sets of points on the artificial energy land-

scape have been identified, we fit a cubic spline through them to obtain the energy landscape

as shown in Fig 3(bottom).
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Fig 3. Top: Boundaries of each of the various spiking regimes found by collecting long times series of each of

the parameter values from Q = 0 to Q = 2 (showing only Q = 0 to Q = 1.4 because beyond this value of Q, the

neuron is in the FS regime) in steps of 4 × 10−5 and using peak analysing technique to segregate and count

the various peak type observed. The vertical axis represents the number of peaks per unit time, and spiking

types are labelled in Roman numbering as illustrated in Fig 1. Bottom: Phase Diagram Inspired Energy

Landscape obtained by performing a cubic spline of critical turning points of the boundaries and their

midpoints. The absolute value of the energies is inconsequential to the dynamics, thus the energy at the

boundaries is arbitrarily set to 0 while that of their midpoints is set to the difference of the parameter values at

the boundary.

https://doi.org/10.1371/journal.pone.0183918.g003
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While one may realized that it is also possible to simulate parametric dynamics over the full

(c, d) parameter space. This would be a lot more involved numerically compared to what we

have done in this paper. More importantly, an energy landscape over the full (c, d) parameter

space would consists of multiple elongated flat directions. A neuron anywhere along a flat

direction would be in the same CHn spiking phase, so the most important aspect of its

parametric dynamics would be that normal to the phase boundary. Fortunately, when we

chose to restrict our simulations to the straight line parametrized by Q, this straight line is very

close to being normal to the set of CHn phase boundaries. Ultimately, if we want to be strictly

normal to all phase boundaries, we would need to restrict our simulations to be along a curve,

which would again be more troublesome.

Quasi-equilibrium distribution of parameters

To perform a computation, we need to first be able to represent different information. In a dig-

ital computer, this is done by using strings of ‘1’s and ‘0’s, representing the on and off states of

logic gates. In principle, other forms of representation can also work. For example, the distinct

spiking regimes in the ‘edge of chaos’ of the Izhikevich neuron model can be used as a repre-

sentation. To use such a basis, the spike type must be able to switch from one to another during

the course of a computation. Indeed, when the parameters of our coupled neuron system were

allowed to vary in the energy landscape, we achieved a quasi-equilibrium distribution of the

parameters, as shown in Fig 4.

In this quasi-equilibrium distribution, we can estimate the temperature of the system using

the ratio of probabilities of parameters in each energy well and the energy differences of the

wells in the thermodynamic relation,
P1

P2
/ exp � DE

T

� �
. Starting with a ring network of neurons,

we find that with increasing rewiring probability, the temperature of the system increases, as

seen in Fig 4(c). This means that the system can easily switch from one spike type to another

spike type. However, an infinite temperature is not be desirable here, as that would quickly

randomize the information.

Complexity and small-world network

Like many other brain scientists, we believe that information encoding in the brain is not

done at the level of single neurons, but over a network of neurons [3]. Hence, the final missing

ingredient to understanding information encoding in the brain is the topology of the neuron

network. For this final part of the study, we chose to work with small-world networks. This

network topology allows a neuron to trigger another neuron far away and is even capable of

self-sustaining activity [34–36]. Moreover, many papers have also found that the small-world

property is a prominent common ingredient in the functional network of the human brain

[13–15]. In particularly, Sporns et al. found by generating a family of networks that the com-

plexity of the static network topology is maximized in small-world-like networks, and even

more so in network topologies derived from actual neuroanatomical data [37].

To set-up our small-world network, we used the Watts-Strogatz [38] rewiring algorithm to

generate networks with N = 200 nodes, each connected to 2k other nodes. This algorithm

allows us to continuously tune the network from a regular ring network (with N nodes each

connected to the nearest k neighbours) to a fully random network, by adjusting the probability,

p, of rewiring the connection (see Fig 5). Newman and Watts also proposed an alternative way

to link distant nodes, by starting from the regular network, and adding shortcuts between ran-

domly chosen pairs of nodes [39]. We call this the shortcut algorithm.
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Complexity measures

The hypothesis we would like to test in this paper is that the brain is in a self-organized critical

state, within which it has a large complexity, and also a small-world network topology. Self-

organised criticality (SOC), proposed by Per Bak in 1987 [40, 41], is a concept closely inter-

twined with complexity [42]. However, while the concept of SOC is well established and clearly

defined [40, 41, 43], that of complexity is generally understood but lacks unanimous definition

[44]. Many have offered methods to compute or estimate the complexities of dynamical sys-

tems [12, 45]. In particular, using the �-machine representation of a process, Crutchfield

showed that complexity is maximised in dynamical systems as they approach the edge of chaos

[12, 46].

With this in mind, we seek to find the parallel phenomenon of complexity peaking between

order and disorder in our computational model of neuron dynamics. However, instead of

Fig 4. (a) Frequency distribution of parameters with the gray dotted line marking the transition boundaries of parameters seen in (Fig 3).

This data is collected over 40 sets of network of size, N = 200, and number nearest neighbour, k = 3. The inset on the top right is the zoom-in

showing the spread of the parameters about the peaks of their distribution. (b) Ratio of probabilities of parameters in each energy well

against the energy differences of the wells. (c) Segregated by different network rewiring probabilities, p.

https://doi.org/10.1371/journal.pone.0183918.g004
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measuring Crutchfield’s �-machine complexity, we measured the statistical complexity CLMC
introduced by Lopez-Ruiz, Mancini, and Calbet [45]. This CLMC complexity measure is a good

estimate of complexity based on a probabilistic description of the dynamics, and is also com-

putationally lightweight in comparison to James Clutchfield’s �-machine.

For a system with N accessible states x1, x2, . . ., xN each with corresponding probabilities

p1, p2, . . ., pN, the CLMC complexity is defined as

CLMC ¼ H � D; ð10Þ

where

H ¼ �
XN

i¼1

pi logpi ð11Þ

is the Shannon entropy, a measure of disorderedness, and

D ¼
XN

i¼1

ðpi � 1=NÞ2 ð12Þ

is named as the disequilibrium. With this definition we have the complexity CLMC = 0 in both a

fully ordered system where the entropy H = 0, and in a equilibrium system where the probabil-

ities of the states are uniformly random D = 0 despite having high entropy H. For any other

system the complexity CLMC will have a value higher than zero which represents that the sys-

tem is in neither complete order nor in equilibrium (see Fig 6 Left for more details on the cal-

culations of CLMC). The relationship between CLMC andH gets complicated quickly with larger

systems (N> 2). Fig 6 Right illustrate a N = 3 states system where multiple combinations of

probabilities pi results in the same magnitude of entropyH yet different complexities CLMC.

However the fact remains that CLMC does not grow indefinitely with entropyH.

Maximising of complexity

The key network parameters to define a small-world network is the local clustering coefficient

Cmeasuring the cliquishness of a typical neighbourhood and characteristic path length Lmea-

suring the typical separation between two vertices in the graph [38]. More concretely, Ci of a

particular ith-node is calculated by the proportion of links between the vertices within its

neighbourhood divided by the number of links that could possibly exist between them,

Fig 5. Three networks with N = 200 nodes each connected to the nearest k = 3 neighbours with increasing

rewiring probabilities, (a) p = 0 (regular ring), (b) p = 1/32 (small-world), and (c) p = 1/2 (random).

https://doi.org/10.1371/journal.pone.0183918.g005
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hence the network average clustering coefficient is CðpÞ ¼ 1

N

PN
i¼1
Ci where p is the rewiring

probability tuning the network topology and N is the total number of nodes. As for the charac-

teristic path length we have LðpÞ ¼ 1

NðN� 1Þ

P
i6¼jdði; jÞ where d(i, j) is the shortest distance

between ith- and jth-node.

As we tune the N = 200 and k = 3 network by increasing the rewiring probability p, we find

in Fig 7 that the characteristic path length L(p) decreases rapidly, whereas the average cluster-

ing coefficient C(p) remains large and only starts its rapid decrease after p becomes large

enough. The network is close to being regular when L(p) and C(p) are both large, and is

close to being random when L(p) and C(p) are both small. In between these two extremes, the

network has small L(p), but large C(p), and is manifestly small-world. Therefore, the ratio

Sw(p) = C(p)/L(p) has a peak at intermediate rewiring probability p. When we apply the short-

cut algorithm, L(p) has the same behavior as the probability p of adding a shortcut increases.

However, C(p) remains large even at large p, so there is no well-defined peak in Sw(p).

The calculation of the CLMC statistical complexity is obtained first by reducing the dynamics

of Q(i)(t) to its symbolic dynamics of the nine CH regimes (indicated by Roman numerals in

Fig 1. This is done by computing the averages of Q(i)(t) over non-overlapping time windows of

50 time steps each. Since one time step is equivalent to 1 × 10−3 time unit, the size of each time

window is equivalent to Δt = 0.05. Secondly, a scale of 4 is chosen to analyse as states of the sys-

tem resulting in a total of 94 possible states, which is comparable to using a scale of 12 for x < 1

2

and x > 1

2
in the logistic map, i.e. 212 states [45]. Lastly, we collect the symbolic time series of

all N = 200 neurons over the 10,000 time windows, and over 40 different initial conditions, to

determine the probabilities of each of the 94 symbolic state. With this probability distribution,

we calculate the values ofH, D and C using Eqs (10) to (12).

Moving from ordered ring network to random network, we demonstrated in Fig 7 that the

statistical complexity CLMC(p) of a network of parameter-coupled neurons evolving within a

phase diagram inspired energy landscape peaks close to the peak of Sw(p). In other words, the

peak in statistical complexity coincides with the peak in small-world character of the neuron

network. This result suggests that for the brain to maximize its statistical complexity at the

Fig 6. Left: Plot of the statistical complexity CLMC, entropy H and disequilibrium D versus the probability of obtaining a head

outcome in a biased coin (N = 2 states) system. To calculating CLMC in a 2-state system we can simply rewrite Eqs (11) and (12)

as H = −[p(head)log p(head) + p(tail)log p(tail)] and D = {[p(head) − 1/2]2 + [p(tail) − 1/2]2}. Since we have p(head) = 1 − p(tail), the

graph is symmetrical about p(head) = 0.5. Right: Plot of the statistical complexity CLMC versus the normalised entropy �H�
for N = 2

and N = 3 states systems.

https://doi.org/10.1371/journal.pone.0183918.g006
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edge of chaos for effective information processing, it should also have the strongest small-

world character.

Conclusions

In this paper, we explored the plausibility of information processing in brains that are at the

edge of chaos, and how this information processing is related to the empirically observed

small-world topology of brain functional networks. We do this by identify the CH region in

the phase diagram of a Izhikevich neuron, that has the characteristics of being at the edge of

chaos, i.e. many distinct CH regimes are accessible within a small parameter region. We then

couple Izhikevich neurons such that the output of a neuron changes the parameters of neurons

it is coupled to. We called this parametric coupling, and simulated the dynamics of the set of

neuron parameters on a phase diagram inspired energy landscape.

Using the rewiring algorithm of Watts and Strogatz, we interpolate between regular neuron

networks, small-world neuron networks, and random neuron networks, and find that the sta-

tistical complexity of the neuron dynamics peaks when the small-world character of the

Fig 7. Left axis: Plot of clustering coefficient C(p)/C(0) and characteristic path length L(p)/L(0) of the networks, both scaled

so that their maxima are one, with varying rewiring probabilities, p. The ratio between these two properties, Sw(p) = C(p)/L

(p), is indicative of the transition to a small world network. In this figure, Sw(p) is also scaled so that its maximum is one. Right

axis: Plot of the statistical complexity CLMC versus the rewiring probability p, averaged over the parameter time series Q(i)(t)

of the i = 1, . . ., 200 neurons. We do not show the clustering coefficient C(p) versus varying probability p to add a shortcut

because the original k-nearest-neighbor network was not destroyed by adding shortcuts, even at very high p, and thus the

resulting network is not fully random. Note: Connecting lines were added the data points only to enhance visibility of the

trends.

https://doi.org/10.1371/journal.pone.0183918.g007
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network also peaks. This suggests that the small-world character of brains is connected to the

statistical complexity of brains sitting at the edge of chaos.

With this proof of concept, we now have the foundation to move the study forward to

understanding how information can be actually encoded and processed within such neuron

networks. We would then move on to identifying possible built-in logics gates in the network

that can manipulate information. These are small but over-represented dynamical motifs that

appear in brain information processing. With these, we aim to better understand the computa-

tional capability of the brain at the edge of chaos. We believe that in science, it is not only

important to obtain results, but also to ask the right questions that would frame the problem.

What it means for the brain to be at the edge of chaos? Why is it at the edge of chaos? How

does it get the edge of chaos? What can it do at the edge of chaos? The entire set of questions

constitutes an ambitious research program that would take much time to be completed. The

results we present in this paper partially answers some of these questions, and should be appre-

ciated in this light.

Supporting information

S1 Dataset. Final results dataset. Dataset of the final results used to plot the graphs in this
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