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Abstract The search for efficient radioprotective agents to

protect from radiation-induced toxicity, due to planned or

accidental radiation exposure, is still ongoing worldwide.

Despite decades of research and development of widely

different biochemical classes of natural and derivative

compounds, a safe and effective radioprotector is largely

unmet. In this comprehensive review, we evaluated the

evidence for the radioprotective performance of classical

thiols, vitamins, minerals, dietary antioxidants, phyto-

chemicals, botanical and bacterial preparations, DNA-

binding agents, cytokines, and chelators including adapto-

gens. Where radioprotection was demonstrated, the com-

pounds have shown moderate dose modifying factors

ranging from 1.1 to 2.7. To date, only few compounds

found way to clinic with limited margin of dose prescrip-

tion due to side effects. Most of these compounds (ami-

fostine, filgratism, pegfilgrastim, sargramostim, palifermin,

recombinant salmonella flagellin, Prussian blue, potassium

iodide) act primarily via scavenging of free radicals,

modulation of oxidative stress, signal transduction, cell

proliferation or enhance radionuclide elimination. How-

ever, the gain in radioprotection remains hampered with

low margin of tolerance. Future development of more

effective radioprotectors requires an appropriate nontoxic

compound, a model system and biomarkers of radiation

exposure. These are important to test the effectiveness of

radioprotection on physiological tissues during radiother-

apy and field application in cases of nuclear eventualities.
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Abbreviations

bFGF Beta fibroblast growth factors

CD2F1 Cluster of differentiations 2F1

DMA (5-2-[20-(3, 4-Dimethoxyphenyl)-50-
benzimidazolyl]

DMF Dose modifying factor

DTPA Diethylenetriaminepentaacetic acid

FDA Food and Drug Administration

G-CSF Granulocyte colony-stimulating factor

GM-CSF Granulocyte macrophage colony-

stimulating factor

GPx Glutathione peroxidase

GT3 Gamma tocotrienol

Gy Gray (dose of ionizing radiation)

HMG-CoA 3-Hydroxy-3-methyl-glutaryl-coenzyme A

IL Interleukin

MAP kinases Mitogen activated protein kinases

MEA b-Mercaptoethyamine

NF-kB Nuclear factor kappa beta

ROS Reactive oxygen species

SOD Superoxide dismutase

SQGD Semiquinone glucoside

TBZ 2-(4-Thiazolyl) benzimidazole

TS Tocopherol succinate

LD50 Lethal dose for 50% killing

TLR 2/6 Toll-like receptor 2/6

TNF-a Tumor necrosis factor-a
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Background

The quest for agents that can protect organisms from

radiation-induced damage began shortly aftershock of the

nuclear detonation in Hiroshima and Nagasaki (Japan,

1945) during the Second World War. This was followed by

several major radiological accidents, such as Three-Miles

island (USA, 1979), Chernobyl (Russia, 1986), Fukushima

(Japan, 2011) in addition to many isolated incidents (Singh

et al. 2015; Gupta et al. 2013; Coeytaux et al. 2015).

Furthermore, radiation preparedness plan anticipates dis-

posing of low toxicity radioprotectors as countermeasures

following threats of nuclear detonation, radiological ter-

rorisms, and accidental radiation contamination. Radio-

protectors may also be useful for staff working at different

facilities of radiation sources, radiographers, patients

undergoing lengthy radiological procedures, naval cadets

in nuclear submarine, armed forces, flight pilots and

astronauts (Stone et al. 2004). In addition, increasing

number of cancer patients undergoing radiotherapy can

benefit from such applications, to protect normal tissues

from radiation-induced side effects, which otherwise may

compromise the quality of life of cancer survivors (Hall

and Giaccia 2006; Nair et al. 2001; Zelefsky et al. 2002;

Kry et al. 2005).

There are two distinct mechanisms by which ionizing

radiation damages DNA and causes cell death. One

involves ionization of atoms in the DNA (direct effect)

while the other involves attacks by free radicals pro-

duced by the radiolysis of surrounding water molecules

(indirect effect). The total biological effects result in

damaging cellular and tissue structures that lead to

dysfunction of organs. In case of planned or inadvertent,

whole or large body radiation exposure, the physiologic

failures of organ systems are known as acute radiation

syndromes (hematopoietic, gastrointestinal, neuro-vascu-

lar), which may generally develop after doses of as low

as 1–2 Gy. The lethal dose that will result in the death

of 50% of exposed individuals (LD50) is 3.5–4 Gy. With

optimal supportive care and bone marrow transplanta-

tion, this dose can be increased by two-fold. Interest-

ingly, saving only 10% of bone marrow during whole

body exposure may shun the effects of LD50 dose

(Kumar et al. 2012). Thus, the protection of

hematopoietic system is important to rescue individuals

where radioprotectors with ability to protect hematopoi-

etic system can come into play as major radiation

countermeasures. The desired properties of a radiopro-

tector include: low toxicity in the therapeutic concen-

trations, ability to reduce damage to numerous organs

with high-dose reduction factor, economical, abundant,

and orally administered.

Radioprotective agents are broadly classified into three

groups: radioprotectors, radiation mitigators and thera-

peutic agents. Historically, radioprotectors are referred to

the agents that protect organisms from cellular and

molecular damage during irradiation, predominantly by

enhancing antioxidant defense mechanism through scav-

enging of free radicals (Singh and Hauer-Jensen 2016).

Mitigators are agents administered after radiation exposure

but before the appearance of symptoms and generally

protect organism by enhancing DNA repair, cellular sig-

naling and modulating thiols redox system of cells. Radi-

ation therapeutic agents are administered after appearance

of symptoms to regenerate tissues by stimulating division

of functional undamaged cells (Citrin et al. 2010). Alter-

natively, radioprotective agents are also categorized as

radioprotectors, adaptogens and absorbents (Nair et al.

2001). Radioprotectors are composed of antioxidant and

sulphahydryl compounds. Adaptogens are compounds that

enhance radioresistance by acting as stimulator of defense

system via boosting antioxidants and repair. Lastly,

absorbents are compounds that likely to perform action as

chelating agents to protect individual from ingested

radionuclides.

Appraisal of various classes of radioprotective
agents

Although radioprotective agents can be grouped into

radioprotectors, radiation mitigators and therapeutic agents

or alternatively into radioprotectors, adaptogens and

absorbents, there is no unified system that can unambigu-

ously classify various compounds. There is no doubt that

the number of agents studied for their radioprotective

potential is overwhelmingly large. Here we sought to

render a comprehensive, yet brief, current account of these

diverse compounds. We evaluated the evidence for their

radioprotective efficacy and the future developments in this

field. Therefore, in this review we have grouped known

radioprotective agents according to their biochemical

classes along with the potential clinical applications as

illustrated in the schematic presentation (Fig. 1). To assess

the radioprotective ability, the efficacy of different radio-

protectors is expressed in terms of dose modifying factor

(DMF). The DMF or reduction factor is defined as the ratio

of radiation dosage producing similar effects in the pres-

ence or absence of the compound. Since human experiment

is not feasible, investigations were carried out using

in vitro cell cultures and in vivo animal models. The

30 days survival of irradiated mice is considered the gold

standard endpoint to test the efficiency of a radioprotector.

The various biochemical classes of radioprotectors and

derivatives were discussed below and agents with
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quantified level of radioprotection (DMF or % survival) are

listed in Table 1 along with the mechanisms of action

(Table 1).

Sulphahydryl compounds

The marathon search for agents that can protect humans

from radiation was initiated by U.S. Army due to vivid

memory of victims of Hiroshima and Nagasaki nuclear

detonation. Cysteine, a thiol compound, was the first agent

to confer radiation protection of mice from whole body

exposure in 1949 (Patt et al. 1949). However, cysteine and

its derivatives N-acetylcysteine (DMF = 1.1) had shown

toxicity (nausea and vomiting) that limited its usefulness

(Landauer et al. 1988). To reduce toxicity, a series of

chemical compounds were synthesized and tested in Walter

Reed Institute of Research (USA). The discovery of cys-

teamine (b-mercaptoethyamine, MEA) further accelerated

the research and an analog compound named amifostine

(WR-2721) was synthesized with a DMF of 2.7 (Hall and

Giaccia 2006). Marketed under the trade name of Ethyol, it

is the only cytoprotective agent specifically approved by

the FDA as a radioprotector. Amifostine selectively pro-

tects normal tissues in multiple organs against the toxic

effects of radiation and various cytotoxic drugs in cancer

patients with advanced stages (Brizel et al. 2000). The

compound offers significant reduction of radiation-induced

xerostomia and is currently being used during radiotherapy

of head and neck cancers. A related phosphocysteamine

compound (WR-638, cystaphos, DMF = 2.1) was carried

by Russians army for infield radioprotection. Amisfostine

is an injectable non-reactive phosphorothioate prodrug that

does not readily permeate cells because of phosphorothioic

acid group. It is believed that dephosphorylation by alka-

line phosphatase enhances the uptake of amifostine and its

conversion to the active metabolite WR-1065. The free

radical scavenging (hydrogen donation), DNA protection

and enhanced repair properties of thiols are believed to be

Fig. 1 Schematic representation of various classes of radioprotectors

citing most studied compounds. Asterisks indicate agents approved or

under considerations for clinical use as follows: Amifostine (Ethyol)

is specifically approved by FDA as a radioprotector that prevents

cumulative normal tissues toxicity associated with cancer treatments,

and offers significant reduction of radiation-induced xerostomia in

head and neck radiotherapy patients. Genistein (BIO300) has

currently an investigational new drug (IND) status as radioprotector

of normal tissues to prevent acute radiation syndromes. While FDA

has approved Neupogen (filgratism), Neulasta (pegfilgrastim) and

Leukine (sargramostim) to ameliorate neutropenia induced by cancer

treatment, these compounds are currently under investigation as

radiation countermeasure agents. Palifermin (Kepivance) is an FDA-

approved recombinant derivative of human keratinocyte growth factor

(KGF) that is used to treat oral mucositis in patient undergoing

hematopoietic stem cell transplantation. Recombinant salmonella

flagellin CBLB502 (Entilimod) is FDA approved as off-label drug

that can be used during nuclear or radiological accidents to protect

against acute radiation syndromes. Prussian blue (Radiogardase) and

potassium iodide (KI) are FDA-approved decorporating agents to

increase the rate of elimination of radionuclides in internal

contamination
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Table 1 List of main radioprotective compounds studied with their dose modifying factor (DMF) or the percentage (%) of survival after 30 days

following its application along with the probable mechanism of action and chemical structure where available

Group and name of compounds DMF or %

survival

Mechanism of action Chemical structure (pubchem) References

Sulfhydryl compounds

Amifostine (WR-2721) 2.7 Free radical scavenging,

repair

Hall and

Giaccia

(2006)

Cystaphos (WR-638) 2.1 Free radical scavenging,

repair

Hall and

Giaccia

(2006)

N-Acetylcysteine 1.1 Free radical scavenging Landauer et al.

(1988)

Vitamins and hormones

Vitamin E (tocopherol) 1.1 Antioxidant, free radical

scavenging

Srinivasan

et al. (1997)

Tocopherol monoglucoside 1.23 Antioxidant, free radical

scavenging

Satyamitra

et al. (2003)

Gamma-tocotrienol (GT3) 1.29 Antioxidant, free radical

scavenging, stimulation

of G-CSF

Ghosh et al.

(2009)

Tocopherol succinate 1.28 Free radical scavenging,

modulation of

antioxidant enzymes

Landauer et al.

(1988)

Vitamin A 1.11 Free radical scavenging Seifter et al.

(1984)

Vitamin C No

protection

Free radical scavenging Harapanhalli

et al. (1996)

Lipoic acid 1.26 Free radical scavenging Ramakrishnan

et al. (1992)

L-Selenomethionine, vitamin C, vitamin E

succinate, a-lipoic acid and N-

acetylcysteine (mixed)

1.6 Free radical scavenging Wambi et al.

(2008)

Melatonin 86 Free radical scavenging Vijayalaxmi

et al.

(1999b)
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the mechanisms of protection. However, similar to other

thiols drugs, amifostine also exhibits toxicity and causes

nausea, vomiting and hypotension (Kouvaris et al. 2007).

This limits the use of amifostine in fields for mass radiation

casualties.

The significant toxicity and short half-life ([90%

clearance in 6 min) of sulphahydryl compounds fueled the

search for non-thiols-based compounds (van der Vijgh and

Korst 1996). Several chemicals such as alcohols, glycerol,

and glycol were also tested but failed again due to toxicity.

Different antioxidant mimetic agents, nitroxide, superoxide

dismutase (SOD) were also studied and boosted the

exploration of natural nontoxic compounds for their

radioprotective properties (Weiss and Landauer 2003).

Vitamins, minerals and hormones

Varieties of vitamins and minerals are present in the nature.

Most of them are natural antioxidants owing to their abil-

ities to neutralize free radicals, and act as cofactors in

different metabolic processes. The radioprotective proper-

ties of most studied vitamins, hormones, and minerals are

described here.

Vitamin E

The study on vitamin E (tocopherol, C29H50O2) and its

isoforms started in early 1980, when it had been shown that

either injected (100 IU/kg) or fed as diet enhances the

Table 1 continued

Group and name of

compounds

DMF or %

survival

Mechanism of action Chemical structure (pubchem) References

Phytochemicals and dietary antioxidants

Orientin and vicenin 1.3–1.37 Free radical scavenging Uma Devi et al.

(1999)

Genistein 1.16 Free radical scavenging Landauer et al. (2003)

Sesamol 100 Free radical scavenging Khan et al. (2015)

Botanical and herbal extracts

Podophyllum hexadendrum 1.62 Free radical scavenging N/A Lata et al. (2009),

Gupta et al. (2007)

Ageratum conyzoides 1.3 Free radical scavenging N/A Jagetia et al. (2003b)

Aegle marmelos 1.2 Inhibition of lipid peroxidation N/A Jagetia et al. (2004b)

Zingiber officinale 1.15 Free radical scavenging N/A Jagetia et al.

(2003a, 2004a)

Hippophae rhamnoides 80 Free radical scavenging N/A Prakash et al. (2005)

Radiola Imbricata 90 Free radical scavenging N/A Goel et al. (2006)

Bacterial extracts

CBLB502 (recombinant

salmonella flagellin)

1.6 Binding to toll-like receptor 5 and

activation of nuclear factor-kB

N/A Burdelya et al. (2008)

CBLB613 (lipopeptide from

Mycoplasma arginini)

1.25 Induction of interleukins and

chemokines

N/A Singh et al. (2012)

Cytokines

IL-1 88–100

1.05–1.12

Regulates the proliferation of

hematopoietic cells

N/A Neta et al. (1986),

Dorie et al. (1989)

N/A not available
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survival of CD2F1 mice exposed to lethal dose of radiation

(Srinivasan et al. 1997). A DMF of 1.06–1.1 was obtained

when vitamin E was injected 1 h before irradiation. In

addition, vitamin E has been shown to reduce oral

mucositis in cancer patients during radiotherapy (Srini-

vasan and Weiss 1992). Furthermore, tocopherol

monoglucosides (a vitamin E derivative) protected plasmid

from radiation-induced DNA strand breaks (Rajagopalan

et al. 2002). It also provided relative radiation protection of

animals from lethal dose when injected intraperitoneally

(600 mg/kg), with a DMF of 1.09 (Satyamitra et al. 2003).

However, low DMF and requirement of high concentration

limit the application of these molecules in clinics.

A series of studies on gamma-tocotrienol (GT3), a

member of vitamin E family and inhibitor of 3-hydroxy-3-

methyl-glutaryl-coenzyme A (HMG-CoA), suggested a

protective effect in mice, with a DMF of 1.29, at 100 and

200 mg/kg body weight when injected 24 h before irradi-

ation (Ghosh et al. 2009). GT3 significantly increased

granulocyte colony-stimulating factor (G-CSF), inter-

leukin-6 (IL-6) and reduced radiation-induced cytopenia

(Kulkarni et al. 2010, 2012). Tocopherol succinate (TS)

inhibited apoptosis in various cells and had protected mice

from lethal radiation dose when it was administered

(400 mg/kg) 24 h before irradiation with a DMF of 1.28

(Singh et al. 2009). The mechanism of protection is

believed to be due to the stimulation of G-CSF, a glyco-

protein that stimulates bone marrow to produce granulo-

cytes and stem cells (Singh et al. 2013). Recently, TS has

been suggested to mobilize progenitor cells (Singh et al.

2014). Although TS and tocotrienols had higher DMF

compared to classical tocopherol (alpha), recent studies

suggest that injection of high dose (75 mg/kg) of these

drugs causes adverse effects in non- human primates and

could increase mortality with no significant protection

compared to irradiated control (Singh et al. 2016). These

results suggest that vitamin E and its derivatives at high

concentrations might be toxic to humans.

Ascorbic acid (Vitamin C)

Many studies have been carried out to investigate the

radioprotective effect of vitamin C (C6H8O6). Although a

role as antioxidant and radical scavenger is established,

conflicting results envelop its effect in improving the

overall survival after lethal radiation dose. Ascorbic acid

was shown to reduce the formation of micronuclei and

dicentrics in mice (Sarma and Kesavan 1993), and protect

radionuclides-mediated DNA damage in mice sperm with a

DMF of 2.2 (Narra et al. 1993). Monoglucosides’ deriva-

tives of ascorbic acid have been shown to scavenge dif-

ferent free radicals and protect plasmid from radiation-

induced DNA strand breaks (Mathew et al. 2007).

Although supplemental vitamin C improved the survival of

mice’ nucleated bone marrow cells following whole body

sublethal irradiation (3.5 Gy, DMF = 1.7), it had no sig-

nificant effect after lethal irradiation (9 Gy) on 30-day

survival outcome (Harapanhalli et al. 1996). Nonetheless,

pre-treatment of ascorbic acid (150 mg/kg/day) orally for

3 days before a lethal radiation dose (14 Gy) followed by

bone marrow transplantation had reduced gastrointestinal

syndrome and resulted in an enhancement of mice survival

(Yamamoto et al. 2010). Post-treatment with ascorbic acid

at high dose (3 g/kg) immediately after exposure (7–8 Gy)

resulted in a recovery of hematopoietic system, reduced

apoptosis in bone marrow cells and effectively improved

survival of mice (Sato et al. 2015). It appears that ascorbic

acid at high dosage could provide protection to mice after

whole body irradiation. However, a high dose of 3 g/kg for

60 kg humans will be impracticable. Therefore, it has been

concluded that the requirement of high pharmacologic

effective doses limits the application of this molecules in

clinics (Du et al. 2015).

The reason for failure of such classic antioxidants and

vitamins as radioprotectors is due to their poor efficacy in

whole body irradiation. Low reduction factors (DMF

1.11–1.26) were also observed for vitamin A and lipoic

acid (Seifter et al. 1984; Harapanhalli et al. 1996;

Ramakrishnan et al. 1992). However, a mixture of vitamins

(L-selenomethionine, vitamin C, vitamin E succinate, a-
lipoic acid and N-acetyl cysteine) provided improved pro-

tection with a DMF of 1.6 (Wambi et al. 2008). Clearly,

vitamins and minerals act as cofactors and regulate many

physiological systems in addition to their anti-radical

activities. These essential nutrients are required in small

amounts by living organisms for normal function. Thus,

they may harm rather than help at high concentration

needed a priory for radiation protection purposes.

Melatonin

The pineal hormone melatonin (C13H16N2O2) had attracted

much attention when it was shown to reduce radiation-

induced genetic damage and protect mice from a lethal

radiation dose (8.15 Gy) in a series of work by Vijyalaxmi

et al. (1999a, b). The increase in survival was dose

dependent and improved from 45% without treatment to

60% (DMF = 1.33) and 85% (DMF = 1.78) for mice

pretreated with 125 and 250 mg/kg melatonin, respec-

tively. Furthermore, clinical reports indicated that mela-

tonin administration results in a favorable ratio of

radiotherapy efficacy versus toxicity during the treatment

of human cancers (Vijayalaxmi et al. 2004). The mecha-

nism of radiation protection by melatonin has been attrib-

uted to scavenging of varieties of oxygen-based radicals

and DNA protective properties (Reiter et al. 2010). It has
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also been reported that melatonin possesses the unique

property of selectively sensitizing tumor (Um et al. 2011)

while protecting normal cells (Mishra et al. 2011). Further,

it was suggested that melatonin could protect antioxidative

enzymes including catalase (CAT), glutathione peroxidase

(GPx), and SOD from depletion following UV radiation

(Fischer et al. 2013).

Melatonin is highly tolerated over a wide range of doses

and recent studies suggest that up to 8000 mg/kg of body

weight is not toxic in mice (Ali et al. 2012). Assessing the

efficacy and safety of melatonin as adjuvant therapy in

concurrent chemo-radiotherapy for solid tumors, a meta-

analysis of 8 randomized controlled trials concluded that

20 mg orally, once a day, led to substantial improvements

in tumor remission, 1-year survival, and alleviation of

therapy-related side effects (Wang et al. 2012). Although

melatonin has shown some characteristics of a promising

candidate radioprotector, its implication in regulating

physiological functions is still inadequately understood. In

addition, its short active half-life (20–50 min) and the

requirement of rather high doses for radiation protection

are still challenging for developing melatonin as radiation

countermeasures.

Selenium

Selenium (Se) is an important chemical element that exists

as cofactor for many enzymes such as GPx, thioredoxin

reductase and ribonucleotide reductase in different

prokaryotes and eukaryotes. Early report using selenium

and its derivatives had described radioprotective effect in

mice (Weiss et al. 1992). Intraperitoneal injection either

before (B1 h) or shortly after (15 min) 9 Gy radiation has

enhanced the 30-day survival. Selenomethionine (SLM)

has lower lethal and behavioral toxicity (locomotor activity

depression) compared to sodium selenite (Weiss et al.

1992). A derivative of selenium, 3, 3, di-selenopropionic

acid had also protected mice by reducing DNA damage and

apoptosis (Kunwar et al. 2010). Furthermore, dietary

selenium (100 lg) had mitigated the radiation-induced

nephropathy in mice (Sieber et al. 2011). The combination

of selenium with vitamin E has also been reported to

protect gastrointestinal system from ionizing radiation

(Mutlu-Turkoglu et al. 2000). A recent review of clinical

trials has concluded that selenium supplementation

(200–500 lg/day) improves the general conditions and the

quality of life of patients and reduces the side effects

without reducing the effectiveness of radiotherapy (Puspi-

tasari et al. 2014). The authors, however; warned that high-

dose and long-term supplementation may be unsafe due to

selenium toxicity and that more evidence-based informa-

tion and research are needed to ensure its therapeutic

benefits. In addition, in a more recent randomized phase II

clinical trial on 18 radiotherapy patients, selenomethionine

did not lower the incidence of severe mucositis or improve

quality of life or survival outcomes (Mix et al. 2015).

Phytochemicals and dietary antioxidants

Many dietary compounds from a wide range of foods and

beverages have been screened for their potential modula-

tory effects in various human ailments on the belief that

they do not only provide us with nutrients, but also enhance

our capacity to fight against oxidative stress and diseases.

Different natural compounds possess hepatoprotective,

cardioprotective, neuroprotective, and anti-tumorigenic

properties (Omar 2010; Alqasoumi 2012; Shareef et al.

2016) and these are desired traits for effective medicinal

agents. The radioprotective properties of the most common

natural dietary compounds are discussed here.

Curcumin

The phenolic compound curcumin (C21H20O6) present in

spices (curcuma longa) was shown to protect radiation-

induced genotoxicity (micronuclei and dicentrics) in cul-

tured rat lymphocytes and hepatocytes and decreased lipid

peroxidation, particularly at the highest dose (10 lg/ml)

used (Srinivasan et al. 2006, 2007). An in vivo study, on

the lens of rats fed with 100 mg/kg curcumin for 28 days,

had reported significant decrease (from 100 to 40%) in

radiation-induced (15 Gy) cataract (Ozgen et al. 2012). In

addition, pre-treatment with curcumin (25–200 mg/kg) led

to a dose-dependent increase in wound healing following

6 Gy whole body irradiation of mice (Jagetia and Rajani-

kant 2004).

In contrast to these radioprotective effects in normal

cells and tissues, curcumin was reported to radiosensitize

variety of tumor cells in vitro, especially by blocking NF-

kB pathways (Chendil et al. 2004; Qiao et al. 2012),

modulating p53, thioredoxin reductase-1, enhancing reac-

tive oxygen species (ROS) and MAP kinase pathways

(Javvadi et al. 2008, 2010; Veeraraghavan et al. 2010). The

apparent differential effect of curcumin between normal

(radioprotective) and tumor (radiosensitizer) cells is diffi-

cult to interpret in radiobiological terms. Curcumin is tra-

ditionally known for its anti-inflammatory effects. It has

been shown to be a potent immunomodulatory agent that

can regulate the activation of T cells, B cells, macrophages,

neutrophils, natural killer cells, dendritic cells and can

enhance antibody responses (Jagetia and Aggarwal 2007).

It remains to be demonstrated whether this dissimilarity in

effects pertains to a potential metamorphic ability of cur-

cumin to modulate the immune system in such a way that it

distinguishes between good (normal) and bad (cancer) cells

or simply by harnessing the differences in cellular
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homeostasis? Thus, the studies on the radioprotective

effects of curcumin are inconclusive. In addition, its poor

aqueous solubility, hydrolytic degradation, poor bioavail-

ability and metabolism may introduce technical bias in

various studies (Chidambaram and Krishnasamy 2014).

Although these limitations preclude the use of curcumin as

radioprotector or radiosensitizer in clinic, its

immunomodulatory roles merit in depth exploration for a

well-defined use in medicine (Srivastava et al. 2011).

Genistein

Genistein (C15H10O5) is a natural isoflavone from soybeans

that has drawn wide attention for its bioactivity and

potential role in modulating radiation damage (Song et al.

2015). According to in vivo studies, genistein was reported

to have a protective effect on radiation-induced intestinal

damage in tumor-bearing mice and to also delay tumor

growth (Son et al. 2013). A study by Calveley and col-

leagues on rat lung tissue had shown that although genis-

tein treatment decreased the levels of many inflammatory

cytokines and protected from DNA damage, it provided

partial protection against pneumonitis and fibrosis (Calve-

ley et al. 2010). Subcutaneous pre-administration of

genistein (25–400 mg/kg), 24 h before irradiation (9.5 Gy)

enhanced the 30-day survival of mice (DMF = 1.16),

whereas survival was not different from controls when it

was administered one hour before irradiation (Landauer

et al. 2003). In addition, enhanced hematopoietic cell

recovery and 30-day survival of mice (97% compared to

31%) were described following subcutaneous administra-

tion of genistein (200 mg/kg) 24 h prior to lethal radiation

(8.75 Gy) dose (Davis et al. 2007).

As for in vitro studies, it has been shown that low

concentration of genistein (1.5 lM) could protect L-02

cells from radiation-induced injury via inhibition of apop-

tosis, DNA damage and chromosome aberration; mean-

while, high concentration (20 lM) demonstrated

radiosensitizing effect via opposite increase in apoptosis,

chromosome aberration and impaired DNA repair along

with up-regulation and down-regulation of certain genes

(Song et al. 2015). Genistein at 10 lM had also radiosen-

sitized breast cancer cell strains via G2/M cell cycle arrest,

increased DNA damage and apoptosis (Liu et al. 2013). In

addition, genistein had potentiated radiation-induced cell

killing in vitro and in vivo orthotopic model of PC-3

prostate carcinoma (Hillman et al. 2004). Again, these

apparent differential effects of genistein on normal and

tumor cells are difficult to interpret. Currently genistein has

an investigational new drug (IND) status as radioprotector

of normal tissues for acute radiation syndrome under name

BIO300 (Singh et al. 2016). However, its ability to inhibit

many enzymes (tyrosine kinase) and modulate different

signal transduction pathways infers a complex role in

biological systems and call for further investigation to

establish genistein as a radioprotective agent (Grabowski

et al. 2015; Qian et al. 2015).

Sesamol

Sesamol (C7H6O3) is a natural compound found in sesame

(sesamum indicum) oil. Although sesame seeds are popular

nutritional food, it is a relatively new antioxidant molecule

having potential radioprotective effect with strong anti-

radical properties (Mishra 2012; Kumar et al. 2015).

Sesamol exhibited more free radicals scavenging capacity

compared to melatonin and demonstrated greater radio-

protective efficacy in plasmid and calf thymus DNA

(DMF = 10 at 100 lM), human lymphocytes, and V79

cell survival (DMF = 2) in vitro (Prasad et al. 2005;

Mishra et al. 2011). Sesamol has been shown to protect

C57BL/6 male mice (100 mg/kg) in vivo following 7.5 Gy

radiation dose by protecting hematopoietic and gastroin-

testinal systems (Khan et al. 2015). Radioprotection was

also described in the jejunum of Swiss albino mice irra-

diated with 15 Gy, where it showed increased crypt cells,

maintained villus height, and prevented mucosal erosion

(Parihar et al. 2006). In addition, sesamol was also reported

to reduce radiation-induced cytogenetic damage in bone

marrow cells of mice (Kumar et al. 2015). These studies

are encouraging and put forth to consider sesamol as a

potent candidate radioprotector.

Botanical and herbal extracts

Worldwide, different botanical, herbal, and Ayurvedic

preparations have been traditionally used to treat different

ailments including stress-induced disorders. Therefore, it

was assumed that these preparations might be effective

against radiation-induced mortality (Jagetia 2007). Many

botanical and herbal extracts have been studied to deter-

mine their capability to demonstrate radioprotective effect.

The crude extracts of different parts of plants such as root,

leaf, bark, seeds, flower were examined. The radioprotec-

tive properties were revealed for some botanical or herbal

plants, such as Tinospora cardifolia, Panax ginseng,

Rosemarinus officinalis, Aloe vera, Embilica officinalis,

Alstonia scholaris and Mentha piperata. Extracts of these

plants have showed significant protection against radiation-

induced syndromes (hematopoietic, gastrointestinal), as

well as cellular and molecular damages in mice (Goyal and

Gehlot 2009; Jindal et al. 2010; Samarth et al. 2004).

The high-altitude plant Hippophae rhamnoides

(seabuckthorn) was studied in different model systems for

potential radioprotective properties. It was shown to protect

hematopoietic and gastrointestinal systems when
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administered 30 min before irradiation (Goel et al. 2002;

Bala et al. 2015). A 30 mg/kg of this botanical extracts

(RH-3) rendered a more than 80% survival after whole

body lethal irradiation (10 Gy) in mice (Prakash et al.

2005). The hippophae extracts had also protected mito-

chondrial and genomic DNA from radiation damage

(Shukla et al. 2006). In contrast, it showed enhanced

apoptosis in thymocytes (Goel et al. 2004). Another high-

altitude plant that has been studied is Podophyllum hex-

adendrum. The crude extracts are rich in podophylotoxins,

such as 4-O-a-(D)-6-acetylglucopyranoside and podophyl-

lotoxin-4-O-b-(D)-6-acetylglucopyranosid (Puri et al.

2006). A single dose (10–15 mg/kg body weight) of a

semi-purified extract (REC-2001) conferred greater than

90% of survival when administered before whole body

irradiation (10 Gy) with a DMF of 1.6 (Lata et al. 2009).

Conversely, high dose (115 mg/kg body weight) was toxic

and killed 100% of the animals. At pharmacological doses,

the extract protected different organs such as liver, testis,

gastrointestinal, brain and reduced genotoxicity in periph-

eral blood lymphocytes (Dutta and Gupta 2014; Dutta et al.

2015). The extract had also protected HePG2 cells from

radiation-induced cell death (Gupta et al. 2003). Another

extract of P. hexadendrum (REC-2006) had protected 90%

of the mice from lethal whole body irradiation (10 Gy) at

significantly lower dose of 6–8 mg/kg (Gupta et al. 2007).

The names of these extracts were based on the years they

were isolated and the active constituents provided protec-

tion even after years of extraction from the plants. The

mechanism of radioprotection was attributed to scavenging

of free radicals and immunomodulation (Rajesh et al.

2007).

The radioprotective properties of many traditional

medicinal plants were widely studied by various groups of

investigators (Table 1). The overall outcome indicates that

dietary supplements of Ageratum conyzoides

(DMF = 1.3), Aegle marmelos (DMF = 1.2), Zingiber

(Ginger) officinalis (DMF = 1.15), Radiola Imbricata

(90% survival), magiferin (Mangifera indica), LiV52,

naringin (citrus flavonoids), triphala, chavanyaprash, mint

(Mentha arvensis), Syzygium cumini (Jamun), Coleus aro-

maticus can confer protection to mice from radiation-in-

duced cell death (Jagetia et al. 2003a, 2004b; Goel et al.

2006; Jagetia 2007). Active flavonoids Orientin and Vice-

nin from basil plants (Ocimum sanctum) have also

demonstrated potential radioprotective properties (Uma

Devi et al. 1999). The results also showed that most of

these herbal extracts possess strong antioxidants and

immunomodulatory properties.

Plant products have great potentials as pharmacological

agents. However; these herbal preparations are mixtures of

compounds. The scientific communities believe that it is

very difficult in such situation to predict the effects of a

single constituent alone (Ramana et al. 2014). In addition,

the limited knowledge regarding dosing of different herbals

and botanicals preparations during treatment of various

pathological conditions restricts their universal applica-

tions and carries the risk of inefficiency or toxicity due to

miss-dosing. Also, the relative availability of specific

constituents in plants at specific geographical areas further

complicates their study as radioprotective drugs.

Bacterial extracts

It has been observed that many bacterial species may sur-

vive at extreme conditions of heat and/or radiation (ther-

mophiles and radiophiles). These species must be adapted

to these environmental conditions by changing their

physiological or genetic constitution (Satoh et al. 2016). It

is assumed that understanding the mechanism of radiore-

sistance and mimicking the condition may provide pro-

tection to humans against ionizing radiation. A few

bacterial species are radioresistant (such as Deinococcus

radiodurans, radiophilus, and grandis), and evidence sug-

gests that extracts of those bacteria could confer radio-

protective properties in different experimental models

(Fedorocko and Mackova 1996; Daly et al. 2010).

Various other bacterial extracts were also tested for

radioprotective potential. Intraperitoneal administration of

250 and 500 lg endotoxin-free extract of bronchovaxom

(bacteria responsible for respiratory infection, available as

drug) at 24 h before whole body irradiation (9.5 Gy) pro-

tected mice from death with DMFs of 1.12 and 1.25;

respectively (Fedorocko et al. 1992). A single subcuta-

neous injection of extract prepared from heat killed Lac-

tobacillus casei protected mice from a lethal radiation dose

of 8.5 Gy (Tsuneoka et al. 1994). The effect was attributed

to enhanced protection of hematopoietic tissues due to

activation of macrophage stimulating factor. Also, a single

injection of recombinant polypeptide derived from salmo-

nella flagellin (CBLB502) 30 min before lethal total body

irradiation had protected mice from hematopoietic and

gastrointestinal syndromes and brought about two-fold

(DMF = 1.6) improvement in mice survival and mortality

in rhesus macaques (Burdelya et al. 2008). CBLB502

protected animals by binding to toll-like receptor 5 and

activation of nuclear factor-kB, which presents a landmark

work that changed the way of earlier thinking considering

only radical scavengers as good radioprotectors. CBLB502

(marketed as Entilimod) is FDA approved as off-label drug

that can be used during nuclear or radiological incidents for

acute radiation syndrome (Singh et al. 2015). In addition,

CBLB613, a toll-like receptor 2/6 (TLR 2/6) agonist and

natural lipopeptide obtained from Mycoplasma arginini,

had also shown significant radioprotective capacity in

CD2F1 mice against hematopoietic syndrome
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(DMF = 1.25), and stimulated induction of various inter-

leukins and chemokines (Singh et al. 2012). Intraperitoneal

administration of aqueous solution of semi-quinone glu-

cosides (SQGD) obtained from bacillus species INM-1

showed antioxidant and radioprotective properties in vitro

and enhanced the expression of immuno-stimulatory

cytokines such as IL-12p40, IL-12p35, IL-23p19, and Rel

A genes in human peripheral blood mononuclear cells

(Kumar et al. 2011). Alteration of host immunomodulatory

activity seems to be the primary mode of action of many

bacterial products. However, immune responses in humans

are very complex in nature and the mechanisms of different

bacterial products as drug are not well understood.

Cytokines

Cytokines, which include chemokines, interferons, inter-

leukins, lymphokines, and tumor necrosis factors, are

proteins of small molecular weight that regulate the inter-

action among lymphoid, inflammatory and hematopoietic

cells (Schaue et al. 2012). Interleukins were the first to

demonstrate radioprotective effect. Intraperitoneal injec-

tion of 2000 units of synthetic interlukin-1 (IL-1) showed

to protect 88 and 100% of C57BL/6 mice following

LD100/17 and LD50/30 radiation doses, respectively (Neta

et al. 1986). Other study, however, showed rather modest

DMFs (1.05–1.12) for 100 ng/mouse (3 Âlg/kg) in

C57BL/Ka and C3H/Km mice (Dorie et al. 1989). In

addition, the administration of antibodies against inter-

leukins and tumor necrosis factor (TNFa) reduced survival

of CD2F1 mice following whole body irradiation due to

myeloid suppression in exposed animals (Neta et al. 1991).

Furthermore, many cytokines, such as IL-3, IL-6, IL-12,

IL-11, G-CSF, granulocytes-macrophages colony-stimu-

lating factors (GM-CSF), erythropoietin, and thrombopoi-

etin that regulate the proliferation of hematopoietic cells at

various stages, were clinically tested for their ability to

restore bone marrow after chemotherapy or radiotherapy of

cancer patients. However, only IL-1, IL-12, TNF-a, basic
fibroblast growth factor (bFGF), and G-CSF had protected

animals when given prior to irradiation [(Singh and Yadav

2005) and references therein]. Although cytokines can

potentially be used as candidate radioprotectors due to

decreased toxicity, few cytokines such as TNF-a sensitize

cells and, therefore, their mechanism and role in radiation-

induced cell death need to be explored in more detail

before being used as radioprotectors. Furthermore, the

natural compound curcumin downregulates the expression

of pro-inflammatory cytokines such as TNF, IL-1, IL-2, IL-

6, IL-8 and IL-12, mostly through an activation of Nf-kB

transcription factor (Jagetia 2007).

Interleukins such as G-CSF and GM-CSF, and their

pharmaceutical analogs, filgratism, lenogratism

sargramostim, regulate maturation and differentiation of

progenitor cells in the bone marrow to granulocytes,

macrophages and T cells. Interleukins G-CSF and GM-CSF

are also shown to ameliorate cancer therapy-induced neu-

tropenia for which FDA has approved Neupogen (fil-

gratism), Neulasta (pegfilgrastim) and Leukine

(sargramostim) and currently under investigation as radia-

tion countermeasure agents (Singh et al. 2015). In this

context, palifermin (Kepivance), a recombinant derivative

of human keratinocyte growth factor (KGF), is also an

FDA-approved drug (Fig. 1) that is used to treat oral

mucositis in patient undergoing hematopoietic stem cell

transplantation (Vadhan-Raj et al. 2013). In contrast to

amifostine, the mechanism of action of palifermin is rela-

ted to epithelial cell proliferation leading to significant

reduction in oral mucositis in head and neck cancer

patients. Further studies are required to explore its use-

fulness as radiation countermeasure agent after radiological

events (Johnke et al. 2014).

Thus, cytokines are diversified in their nature and

functions. The intricate actions of interleukins and their

targets during irradiation of animals are poorly understood

in the scenarios of whole body exposure. Since these sig-

naling molecules are produced during different physio-

logical processes and each interleukin is involved in more

than one pathway, it will be difficult to demonstrate the

mechanism of action responsible for the desired radiopro-

tective effect. On the other side, it is a fact that these

interleukins promote also tumor progression and are

responsible for the poor prognosis in many cases of cancers

(Rastogi et al. 2015).

DNA-binding agents

DNA-binding or damaging agents are broadly anticancer

drugs. In general, there are three modes of binding of

small-molecule with double-stranded DNA: intercalation,

groove binding and covalent binding. The minor groove of

DNA is of particular interest due to sequence-specific

interactions with a large number of small molecules. These

minor groove ligands bind typically to AT-rich sequences

and either induce permanent DNA damage or cause only

reversible inhibition of DNA-dependent functions (Baraldi

et al. 2004). Although most of these small molecules have

cytotoxic activities, a few modulates cellular pathways that

promote cell survival and exhibit radioprotective properties

(Gurova 2009). The mechanism of radioprotection seems

to be hydrogen or electron transfer from the ligands to the

DNA radical at binding sites leading to DNA structural

stabilization.

The Hoechst minor groove ligands H33258 (C25H24N6-

O�3HCl), H33342 (C27H28N6O�3HCl) and amino deriva-

tives methylproamine had protected V79 cells from
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radiation-induced DNA damage and death with a DMF of

2.1 (Martin et al. 2004). Also, dioxomolybdenum and

dioxotungusten hydroxamato had protected DNA from

radiation-induced strand breaks (Paul et al. 2014).

Netropsin (C18H26N10O3�2HCl), which is another minor

groove binding ligand, had radioprotective properties

through DNA structural stability mechanism (Mishra et al.

2009). In contrast with H33258, the netropsin protection

was at specific DNA site. H33342 derivatives such as tris

(TBZ), and dimethoxty (DMA) benzimidazole were also

studied for their radioprotective efficacy in vivo. DMA

showed an effective radioprotection in mice at single

nontoxic oral dose with a DMF of 1.28 (Nimesh et al.

2015). DMA-treated mice showed delayed radiation sick-

ness, such as weight loss, irritability and lethargy.

DNA-binding drugs raise, however, a serious concern

due to potential mutagenic effects. Many classes of DNA

minor groove binding ligands induce aneuploidy, poly-

ploidy, chromosome decondensation at heterochromatic

regions rich in AT content, fragile sites, which may have a

propensity to develop particular cancers (Turner and

Denny 1996). Nonetheless, pentamidine (a minor groove

binder used in the treatment of AIDS-related pneumocystis

pneumonia) did not show so far mutagenic effects in

nuclear DNA. Thus, minor groove binding does not nec-

essarily lead to mutagenesis and further studies are

required to ascertain their role as safe radioprotectors.

Absorbents and chelators

In general, absorbent is defined as a substance endowed

with the property of attaching other substances to its

surface without covalent bonding, while chelator is a

chemical compound that bonds with a metal ion to form a

chelate. Yet, the exact distinction between the two terms

is not unanimous and often used interchangeably. In

radiation protection, absorbents do often include chelating

and are the compounds that can sequester radionuclides

after internal contamination and nullify toxic effects to

protect biological systems (Nair et al. 2001). During a

nuclear explosion, distinctive radioactive materials may

be produced and released to the atmosphere where they

could be inhaled either as gases, ingested as particulates

by mouth, or through skin contamination. Hence, suit-

able decorporating agents are required to remove internal

contamination of different radionuclides (Rump et al.

2016). Radionuclides have unstable nucleus and in the

process of stabilization, they emit gamma radiation, alpha

or beta particles which are ionizing radiations causing a

high risk of stochastic and sometimes deterministic health

effects. Radioactive nuclides, such as strontium 90,

cesium 137, plutonium 239, cobalt 60, radium 226,

polonium 210, iridium 192, iodine 131 and americium

241, might be also a component of potential radioactive

dirty bombs (Rump et al. 2016).

Radioprotective agents can be used as decorporating

agents to remove radionuclides from the whole body. Fast

and effective removal of radionuclides from biological

system are the properties required from these agents.

Prussian blue (FDA approved decorporating agents) has

been used as radioprotector to eliminate cesium and thal-

lium ingested radionuclides (Bhardwaj et al. 2006). Prus-

sian blue, a non-absorbable resin dye, acts as laxative agent

that promotes the elimination of radionuclides from the

digestive system. The absorption of certain divalent

radionuclides, such as strontium, may be inhibited using

calcium chloride in large quantity. Iodine radionuclides

accumulate in the thyroid gland and potassium iodide is

used to eliminate the incorporated isotopes. Chelating

agents, such as calcium-DTPA and zinc-DTPA, may be

administered to chelate a number of radioactive materials

and promote their elimination via urinary system. Changes

in the alkalinity by sodium bicarbonate can be used to

eliminate uranium poisoning (Dominguez-Gadea and Cer-

ezo 2011).

A variety of synthetic and natural products have been

studied for decorporation of radionuclides from the body.

Orally administered dietary recombinant Chlorella algae

were shown to inhibit the absorption of strontium (90Sr)

into the blood and enhance its elimination from mice body

through adsorption in intestine (Ogawa et al. 2016). The

transdermal delivery of synthetic DTPA di- and tri-ethyl

ester has been reported to enhance decorporation in a dose-

dependent manner (Zhang et al. 2013). Different silica-

based materials have also been tested to capture various

radionuclides of Plutonium, Americium, Uranium, and

Thorium (Yantasee et al. 2010). The mechanisms of

radioprotection in case of radionuclide’s toxicity might be

chelating, inhibiting uptake by changing chemical state,

diluting, and flooding of active compounds (Dominguez-

Gadea and Cerezo 2011). However, most of these absor-

bents are not well tolerated due to their side effects.

Research is still in progress for more suitable agents with

less toxicity to various organs.

Conclusions

An overwhelming number of natural agents and derivatives

were studied for their radioprotective potentials. These

compounds belong to a broad range of unrelated chemical

groups. Although the mechanisms of radioprotection differ

widely among groups, most compounds act primarily via

scavenging of radiation-induced free radicals or by

quenching of secondary biomolecular reactive species.

Where radioprotection was demonstrated, the compounds
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showed modest dose reduction factor (DMF) ranging from

1.1 to 2.7. However, the resulting number of useful

radioprotectors that can be used in human remains sur-

prisingly limited. To date, not a single drug is ready to be

used with acceptable degree of confidence except amifos-

tine. Several drugs obtained an Investigational New Drug

(IND) status; however, their use in clinical setting is still to

be confirmed. Hence, the ideal radioprotector remedy has

not been achieved yet despite the extensive research for last

five decades.

Future development of ideal radioprotectors requires

taking into consideration the following points. The inter-

action of radiation with biological systems involves

physico-chemical and molecular processes and, hence,

these are complex in nature. A radioprotector comes into

play as an intermediate neutralizing the produced free

radicals, thus preventing their consequences on the bio-

logical system. Whether the intent of their use is for

initial radiation protection, mitigation or therapeutic, they

are often required to be present in effective concentrations

during or shortly after the radiation exposure. The

development of suitable radiation countermeasures that

could possibly be used as prophylactic and/or therapeutic

agents is in nascent stage. The quest is still ongoing to

discover less toxic compounds that could be used under

minimal medical supervision during radiotherapy and

field applications.

Varieties of molecules have shown their radioprotective

properties and potential (Fig. 1; Table 1), but their detailed

molecular, physiological and pharmacological mechanisms

need to be fully studied and understood before being

applied. Attempts to repurpose suitable nontoxic drug for

the management of radiation victims are also an attractive

approach and that can save time, money, and risk associ-

ated with new drug development. It is evident that natural

compounds are currently the most attractive source due to

their potential lower toxicity than synthetic compounds.

The major concerns of high dosage and limited bioavail-

ability and efficacy can be improved by designing more

efficient derivatives of selected potential compounds.

One of the important challenges of radioprotector

development is the model system where these promising

molecules could be tested. Therefore, the identification of

biomarkers that can be used to test putative agents is also

needed. Although the ability to reduce radiation-induced

xerostomia was tested, many more test systems are needed

for different category of radioprotective agents. The risk of

radiation-induced secondary malignancy and cardiovascu-

lar diseases due to the use of radiotherapy for cancer

patients is also legitimate targets for radiation protection.

The risk of cardiovascular diseases during breast cancer

therapy is of growing concern and has attracted more

attention recently. Therefore, suitable agents with the

ability to protect cardiovascular system will be an

achievement of great importance.

In summary, the future development of ideal radiopro-

tector requires an appropriate nontoxic drug, a model

system and biomarkers of radiation exposure to test and

verify the effects on physiological systems. Multifaceted

mechanistic understanding is essential in this development.

Such approach is essential to ensure the efficacy and safety

of customized agents for use during radiotherapy and field

application in cases of nuclear eventualities.
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