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Abstract Polyhydroxyalkanoates (PHA) are produced by a

large number of microbes under stress conditions such as

high carbon (C) availability and limitations of nutrients

such as nitrogen, potassium, phosphorus, magnesium, and

oxygen. Here, microbes store C as granules of PHAs—

energy reservoir. PHAs have properties, which are quite

similar to those of synthetic plastics. The unique properties,

which make them desirable materials for biomedical

applications is their biodegradability, biocompatibility, and

non-toxicity. PHAs have been found suitable for various

medical applications: biocontrol agents, drug carriers,

biodegradable implants, tissue engineering, memory

enhancers, and anticancer agents.

Keywords Antibacterials � Biocontrol agents �
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Abbreviations

PHA Polyhydroxyalkanoate

PHB Polyhydroxybutyrate

3HB 3-Hydroxybutyric acid

3HV 3-Hydroxyvaleric acid

3HO 3-Hydroxyoctanoate

3HD 3-Hydroxydecanoic acid

4HB 4-Hydroxybutyric acid

P(3HB-3HV) Poly-3hydroxybutyrate-co-

3hydroxyvalerate

P(3HB-4HB-3HV) Poly-3hydroxybutyrate-co-

4hydroxybutyrate-co-

3hydroxyvalerate

P(3HB-3HV-3HHx) Poly-3hydroxybutyrate-co-

3hydroxyvalerate-co-

3hydroxyhexanoate

P(3HB-3HO) Poly-3hydroxybutyrate-co-

3hydroxyoctanoate

P(3HB-3HV-DHB) Poly(3-hydroxybutyrate-co-3-

hydroxyvalerate-co-2,3-

dihydroxybutyrate)

3HA Hydroxyalkanoic acid

OA Octanoic acid

UA Undecanoic acid

Introduction

Plastics are synthetic polymers which find wide usage in

our daily lives. The major limitation associated with plas-

tics is their non-biodegradable nature. The production of

plastics in large quantities makes their disposal a major

issue to worry about among Environmentalists and Health

Departments. The most well envisaged alternative is to

produce biodegradable plastics. In Nature, microbes have

been bestowed with ability to withstand environmental

stress. Under stress caused by high carbon: nitrogen (or

potassium, oxygen, magnesium, phosphorus) ratio,

microbes manipulate their metabolic activities in such a

manner that rather than following the tricarboxylic acid

cycle, the acetyl-CoA is diverted towards the synthesis of
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polyhydroxyalkanoates (PHAs), which can be categorized

as completely degradable natural bioplastics [1–14].

The use of PHAs as biodegradable polymers has gained

attention because of their biological (microbial) origin and

non-toxic nature compared to synthetic plastics, which may

be toxic [15]. Biocompatibility of PHA polymers—PHB

and PHBV is an issue which has been the focus for their

use in medical applications. In fact these polymers have

caused prolonged and acute inflammatory responses. It was

realized that we need PHAs which will be appropriate for

engineering biological tissues and various applications in

medical field [16, 17].

Antibacterials

R-3HAs are chiral compounds, which have potential for being

used as building blocks for compounds, for use in pharma-

ceutical industry [18]. 3HA can be transformed into different

hydroxycarboxylic acids such as 2-alkylated 3HB and b-lac-

tones. These can be employed as oral drugs [19]. R-3HAs can

be formed by the degradation of PHAs [18]. The most

important compounds are carbapenem or macrolide antibi-

otics [20, 21]. Depolymerase enzyme of Pseudomonas fluo-

rescens GK13 encoded by gene phaZGK13 can depolymerise

PHAs to monomers [22, 23]. These monomeric units can

reduce bacterial infection such as those by Staphylococcus

aureus [24] and those conjugated with D-peptide prove anti-

cancerous [25]. P3HB/P4HB helps in enhancing angiogenic

properties of skin and wound healing (Table 1) [26, 27].

Biocontrol Agents

Antibiotics are commonly used as feed supplement for ani-

mals. At low concentration, these antibiotics have been

reported to influence the growth of the animals—livestock and

aquaculture [28]. As the incorporation of antibiotic in a con-

sistent manner can be a risky affair and the gastrointestinal

microflora is likely to develop resistance [29, 30]. One has to

ensure that there is complete elimination of antibiotic from the

digestive system of the animal. It has been observed that

Short-chain fatty acids (SCFAs) are effective in controlling

agents against pathogens [31]. As PHAs are biopolymers ofb-

hydroxy SCFAs, these can be metabolized in the intestinal

tract. The metabolites can be exploited as biocontrol agents for

giant tiger prawn Penaeus monodon [32, 33].

Drug Carriers

In order to improve the efficacy of the drugs, it has been

envisaged that they should be delivered in a controlled and

targeted manner. PHAs have been recognized as biomate-

rials which have desirable physical properties with high

biocompatibility. Hence, their usage as raw material for

producing tablets, nano-particles and as scaffolds for

eluting drugs can be effective [34, 35].

3HB monomers have proved helpful in the synthesis of

novel polymers such as Dendrimers. These polymers are

biodegradable, have monodispersity, and surface-func-

tional moieties. These features make them as potent drug

carriers [19, 20]. Monomers—3HB and 4HB have been

exploited for preparing novel b- and c-peptides, which are

resistant to the action of peptidases. This enables them to

stay longer in mammalian serum i.e., improving its suit-

ability for cargo-drug delivery. 3HB can inhibit glycolysis

during haemorrhagic shock. These monomers are helpful in

the synthesis of sex hormones and fragrance (S-citronellol).

A few other properties of these monomers include

antibacterial, anti-proliferative and haemolytic activities

[36].

PHB microspheres carrying rifampicin were used as

hemoembolizing agent. The microspheres proved effective

in releasing drug. Implantable rods prepared with PHB,

PHBV and their copolymers such as P(3HB-4HB) were

used for delivery of antibiotics [37]. mcl-PHAs are more

effective candidate for drug delivery as they have lower

crystalinity and melting point. mcl-PHA have been

employed for transdermal drug delivery. PHA copolymers

containing 3HO and 3HHx shows adhesion to the python

reticulatus skin and was used for dispersing three respec-

tive drugs such as tamsulosin, ketoprofen and clonidine.

This drug shows good permeability through PHA matrix

[38].

P. fluoroscenes produces mcl-PHAs, which helps in

drug delivery, protein purification and immobilizing agent

in clinical diagnostics (Table 1) [39]. These PHAs are

bioengineered as biologically active beads for various

medical applications. PHA beads are used in clinical

diagnostics such as in recombinant protein production,

vaccine delivery, bio-imaging, endotoxin removal, etc.

(Table 1) [40–50]. PHA beads are also used as tuberculin

skin test reagent for diagnosis of bovine tuberoculosis

(Table 1) [51, 52].
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Table 1 Potential applications of polyhydroxyalkanoates and their derivatives in medical industries

Bioproducts Source Applications References

Polyhydroxybutyrate Not known Stomach wall patch [77]

Staphylococcus aureus Peripheral nerve guide [54]

Polyhydroxyalkanoate (mcl) P. fluorescens Drug delivery, protein microarray, protein purification, antibody

immobilization in clinical diagnostics

[39]

Polyhydroxyalkanoate beads

(antigen displaying polyester

beads)

Escherichia coli Tuberculin skin test reagent for diagnosis of bovine tuberoculosis

(TB)

[51, 52]

Polyhydroxyalkanoate beads E. coli Recombinant protein production [47]

E. coli Protein purification [49]

E. coli Vaccine delivery agent [43]

Lactococcus lactis Hepatitis C vaccine delivery agent [44]

Alcaligenes latus Microbeads [40]

E. coli Nano/microdevices for bioimaging in medical approaches [42]

E. coli Fused to specific antigen and applied as beads in Fluoroscence

activated cell sorting based diagostics

[41]

E. coli Displays foreign antigens are immunogenic and presents a

delivery system for vaccination against Hepatitis C virus

[50]

Ralstonia eutropha Endotoxin removal and protein purification [48]

Polyhydroxybutyrate-valerate Ralstonia eutropha B5785 Suture [79]

Sigma-Aldrich Company Myocardial patch [78]

Not known Bone regeneration [57]

Poly-3-hydroxybutyrate, Poly-

4-hydroxybutyrate

Cupriavidus eutrophus

B-10646

Elastic nonwoven membranes-helps in reducing inflammation,

enhancing angiogenic properties of skin, facilitate wound

healing capacity

[74]

Polyhydroxybutyrate-

hydroxyhexanoate

Shantou Lianyi Biotech

Company

Osteoblast attachment, proliferation and differentiation [55, 56]

Not known Bone regeneration [55]

Aeromonas hydrophila

4AK4

Vessel stent, hemocompatibility and cytocompatibility [58, 59]

A. hydrophila 4AK4

(Recombinant) (20%)

Smooth muscle cells related graft scaffolds for tissue engineering

Not known Cartilage tissue engineering [56]

– Nerve conduit [60]

Not known Scaffold for cartilage tissue engineering [61]

Not known Nanoparticles [34]

Polyhydroxybutyrate Biomer and Roth Scaffolds for tissue engineering [67]

Polyhydroxyvalerate Goodfellow

Poly-3-hydroxyoctanoate-co-3-

hydroxyundecanoate

Procter and Gamble

EMPA

Poly-3-hydroxy-

acetyllthioalkanoate-co-3-

hydroxyalkanoate

P. putida KT2442

P. putida KT2442 fadB; P.

fluorescens GK13

Antibacterial activity against methicillin resistant S. aureus [24, 26]

3Hydroxybutyrate E. coli Immobilized cell factories for biocatalysis and bio-transformation,

Chaperone protein levels

[46]

3Hydroxyalkanoic acid Pseudomonas sp. Helps in establishing PHA producers in soil and rhizosphere, and

improves metabolism

[23]

3-hydroxydecanoic acids

conjugated to D-peptide

P. putida CA-3 Anti-cancer activity [25]

Polyhydroxybutyrate-valerate

microspheres

Sigma-Aldrich Company Neural tissue engineering [66]

PHB-Hydroxyapatite

composite

R. eutropha B5786 Bone regeneration [74]

Not known Bone bonding between implants and biological tissue [73]
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Tissue Engineering

PHAs available in general were not targeted for use as

medical implants and were thus lacking the quality which

can get approval of the Drug Administrators. The need is to

produce PHAs of high purity, check their biodegradation

in vivo, fabrication of scaffolds, modify their surface [53].

PHAs with necessary modifications hold great potential to

contribute to tissue engineering, developing tissue products

for medical and therapeutic applications: (1) vascular

grafts, (2) heart valves, (3) nerve tissue engineering, etc.

(Table 1) [54–65].

PHAs can be used to produce scaffolds, which have

higher mechanical strength. These scaffolds promote

growth of the cells by supplying nutrition (Table 1) [66].

These products are available as screws, pins, sutures, films,

etc. (Table 1) [67]. P(3HB-4HB-3HV) has been exploited

for fiber meshes by providing support to stem cell growth

for proliferation and cell adhesion [68]. P(3HB-3HV-

3HHx) can be employed as scaffolds for engineering liver

tissue [69]. On the other hand, 3-D scaffolds had been

developed by using PHA nanofibers [70]. P(3HB-3HO)

have found usage for scaffold formation for cartilage repair

[71]. The new P(3-HB-3HV-2,3-diHB) produced by

recombinant Ralstonia eutropha have also been exploited

[53].

Further to enhance mechanical strength and flexibility of

PHAs, inorganic bioceramics have been combined with

PHAs, which produce novel composites for using them for

engineering tissues. Composites of PHA and ceramic are

employed to form different blends. Hydroxyapatite and

PHA are also used in tissue engineering (Table 1) [72–76].

Medical Devices

PHA have been envisaged to prove useful in making

medical devices, as they are biocompatible, biodegradable

and have strong mechanical characteristics. Some of the

most potential devices are: adhesions barriers, articular

cartilage repair, cardiovascular patch grafting, meniscus

repair device, orthopedic pins, repair patch, rivets and

tacks, staples and screws, stents, surgical mesh, sutured

fastener, etc. (Table 1) [77–80]. Vessel stent produced

from PHA copolymer (PHB-HHx) from Aeromonas

hydrophila 4AK4 has high hemo- and bio-compatibility

(Table 1) [58, 59]. The preparation of cardiovascular pat-

ches should have very high quality features, primary being

resistance to infection and degradation. In addition, these

bioproducts should be durable, lack immunogenicity and

should not be toxic.

Table 1 continued

Bioproducts Source Applications References

Not known Bone tissue engineering [75]

Fibronectin and alginate coated

PHB-fiber

Astra Tech Sweden Spinal cord injury [94]

PHBV-PLGA Aldrich, UK Nerve tissue engineering [76]

Unsaturated m- and lcl-

copolyesters: PHO-Sy series

P. oleovorans octanoic acid

(OA) and soya oily acids

(Sy)

Subcutaneous patches in rats [92]

Gold embedded poly (3-OH

octanoate-co-3-OH-10-

undecenoate)

P. oleovorans (OA and

10-undecanoic acid, UA)

Subcutaneous implantation in rats [93]

Polyhydroxyoctanoate ?PGA

conduit

PHO 3836; TEPHA Inc.,

Cambridge, MA

PHO 3836; TEPHA Inc.,

Cambridge, MA

PHO 3836; TEPHA Inc.,

Cambridge, MA

PHO 3836; TEPHA Inc.,

Cambridge, MA

PHO3836 TEPHA Inc,

Cambridge, MA

Vascular tissue engineered structures [72]
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Biodegradable Implants

Implants are used on a large scale in a very skilful manner.

However, invariably the issue of their getting infected with

pathogens comes as a major hurdle. Now-a-days biomate-

rials are also used as implants. Biomaterial associated

infection is a serious health issue. In order to meet the

functional demand, materials with desirable properties

must be selected [81]. For example, their physical, chem-

ical, biological, biochemical properties. Use of biopoly-

mers as biodegradable implants has greatly influenced the

modern medicine [82].

The use of PHA degradation product HAs for preparing

biodegradable implants, and to fabricate systems to deliver

antibiotics like Duocid and Sulperazone, in chronic

osteomyelitis therapy have been gathering importance [19].

Rod of PHA biopolymer having antibiotics, such as com-

binations of sulbactam-ampicillin/cefoperazone, gentam-

icin, were prepared with the help of copolymer—P(3HB-

3HV) as matrix [83–86]. Mixtures P3HB and P3HO were

employed as a matrix system for coronary stents needed for

eluting drugs. This can prove effective in reducing the

reoccurrence of the blockages in the arteries [87].

To avoid biofilm formation and bacterial adhesion, there

is a need to improve implant surfaces [88]. PHB and its co-

polymer P(3HB-3HHx) sheets loaded with lysozyme are

being used for biofilm inhibition and in fabrication of

wound dressing [89]. Implants coated with PHB copolymer

fastens the degradation process for a stable drug release

within a given time period as compared to its co-polymer

[90, 91].

Gold-catalyzed oxidation of bacterial polyester pro-

duced by Pseudomonas oleovorans supplemented with

octanoic acid and 10-undecanoic acid was employed for

biodegradable subcutaneous implantation in rats (Table 1)

[92, 93]. PHB fiber covered with fibronectin and alginate

was used as implant in spinal cord injury (Table 1) [94].

Anti-osteoporosis Effect

Ketoacidosis is induced in human beings by the accumu-

lation of high concentration of 3HB [95]. Oligomers of

3HB have properties to act as good energy substrate for

patients, where these compounds undergo rapid diffusion

within peripheral tissues. It also prevents brain damage as

it can enhance cardiac efficiency by regenerating mito-

chondrial energy. 3HB can potentially cure Parkinson’s

and Alzheimer’s diseases, where they act by reducing the

death rate of neuronal cells [96]. 3HB enhances osteoblasts

growth and anti-osteoporosis activity, by rapidly depositing

calcium and its strong serum alkaline phosphatase activity.

It helps in prevention lowering of bone mineral density and

reducing the level of serum osteocalcin [97, 98].

Memory Enhancer

Memory loss and related abilities are serious enough to

disturb our daily routine. Among the different forms of

dementia, Alzheimer’s disease is the most common. As a

consequence of memory loss, there are problems of

thinking and behaviour. Derivatives of 3HB such as

3-hydroxybutyrate methyl ester (HBME) have the potential

to act as drug against Alzheimer’s disease. HBME acts by

protecting mitochondrial damages [99]. During ketogene-

sis, D-b-HB prevents neuronal death, which is induced by

glucose deprivation [100]. HA monomers derived from

PHAs can stimulate the Ca2? channels, which can help in

enhancing memory [98, 101–104].

Challenges for Industrial Scale Production
of PHAs

PHAs have unique characteristics, which make them suit-

able for commercial production. However, there are still a

few challenges, which limit their upscaling [3]. The

physical and chemical properties which demand attention

include: lowering of melting point and glass transition

temperature, elastic modulus, tensile strength and elonga-

tion. These characteristics depend up on the monomeric

composition and the molecular weight of the polymer.

Copolymers of PHAs with high molecular weights have the

potential to overcome these limitations [3]. In addition,

strategies to manipulate feed composition [14], culture

conditions such as independence from nutritional imbal-

ance [8, 107], increased microbial biomass, high expres-

sion of polymerase genes and genetic modifications to

synchronize termination of PHA biosynthesis with cell

lysis [1] will certainly help in economic production of

PHAs on an industrial scale.

Future Prospects

PHAs have been finding their applications in diverse

fields [105–107]. The economic feasibility of using

PHAs and their derivatives for medical purposes stands

at the highest level. The usage of PHAs can be extended

to other health related issues such as cancer therapy,

fighting malnutrition, neurodegenerative and metabolic

disorders, anti-diabetics agent, monitor environmental

health, etc.
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