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Atmospheric deposition, CO2, and 
change in the land carbon sink
M. Fernández-Martínez  1,2, S. Vicca  3, I. A. Janssens3, P. Ciais4, M. Obersteiner5, M. Bartrons1,2,  
J. Sardans1,2, A. Verger1,2, J. G. Canadell  6, F. Chevallier4, X. Wang  7,8, C. Bernhofer9, P. S. Curtis10, 
D. Gianelle11,12, T. Grünwald9, B. Heinesch13, A. Ibrom14, A. Knohl15, T. Laurila16, B. E. Law17, 
 J. M. Limousin18, B. Longdoz19, D. Loustau20, I. Mammarella21, G. Matteucci22,23, R. K. Monson24, 
L. Montagnani25,26, E. J. Moors27,28, J. W. Munger  29, D. Papale  30, S. L. Piao7,31 & J. Peñuelas  1,2

Concentrations of atmospheric carbon dioxide (CO2) have continued to increase whereas atmospheric 
deposition of sulphur and nitrogen has declined in Europe and the USA during recent decades. Using 
time series of flux observations from 23 forests distributed throughout Europe and the USA, and 
generalised mixed models, we found that forest-level net ecosystem production and gross primary 
production have increased by 1% annually from 1995 to 2011. Statistical models indicated that 
increasing atmospheric CO2 was the most important factor driving the increasing strength of carbon 
sinks in these forests. We also found that the reduction of sulphur deposition in Europe and the USA lead 
to higher recovery in ecosystem respiration than in gross primary production, thus limiting the increase 
of carbon sequestration. By contrast, trends in climate and nitrogen deposition did not significantly 
contribute to changing carbon fluxes during the studied period. Our findings support the hypothesis 
of a general CO2-fertilization effect on vegetation growth and suggest that, so far unknown, sulphur 
deposition plays a significant role in the carbon balance of forests in industrialized regions. Our results 
show the need to include the effects of changing atmospheric composition, beyond CO2, to assess future 
dynamics of carbon-climate feedbacks not currently considered in earth system/climate modelling.
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Terrestrial ecosystems are key components of the global carbon cycle. Since the 1960s, they have been seques-
tering an average of about 30% of the annual anthropogenic CO2 emitted into the atmosphere1. The increase in 
atmospheric CO2 concentration (hereafter CO2) affects the terrestrial biosphere in multiple ways: warming the 
climate (radiative effect)2, increasing photosynthesis (CO2 fertilization), decreasing transpiration by stimulating 
stomatal closure (leading to increased water-use efficiency) and changing the stoichiometry of carbon, nitrogen 
and phosphorus (C:N:P) in ecosystem carbon pools3. Although Earth system models simulate rising CO2 to make 
a significant contribution to increasing plant productivity and C storage, empirical evidence remains elusive4. This 
uncertainty is evidenced by the fact that many studies reporting observations of large-scale increases in produc-
tivity (or “greening”) in the Northern Hemisphere have attributed these increases to different contributing mech-
anisms. These mechanisms include the CO2-fertilization effect (i.e., more CO2 leads to more photosynthesis), the 
lengthening of the growing season due to higher winter, spring or autumn temperatures5, nitrogen deposition6, 
recovery from acidic deposition7 and afforestation or forest regrowth8. Here, we combine all these potential driv-
ers to reveal the dominant drivers of the increase in C fluxes across 23 northern hemisphere forests.

Many experimental studies have shown that productivity increases when ecosystems are exposed to artificially 
elevated CO2

9. However, despite being highly valuable, these experiments do not resemble natural conditions 
because they cannot capture the long-term responses of mature forest ecosystems to gradually increasing CO2 
concentrations. In this sense, a CO2-fertilization effect has not yet been firmly established in terrestrial ecosys-
tems so far. Positive effects of increasing CO2 on productivity are, in fact, only expected when other factors are not 
limiting growth (e.g., water and nutrient availability)10. Some studies attributed increased ecosystem water-use 
efficiency to the reduction in transpiration resulting from increased CO2

11, but they have not always been able to 
link it to enhanced plant growth10, 12.

Detecting a fertilization effect from increasing CO2 in terrestrial ecosystems is difficult because many other 
factors, that also alter ecosystem productivity trends, are changing concurrently. One of such confounding var-
iable is the physical change in climate, which alters ecosystem productivity directly by impacting the ecosys-
tem C cycle, and indirectly by increasing nutrient mineralization rates and the length of the growing season. 
Atmospheric deposition of nitrogenous and sulphurous compounds (N and S deposition) also alter ecosystem 
processes.

There is strong evidence indicating that N deposition has increased the terrestrial C sink13–16. By acidifying the 
soil, sulphur deposition can reduce plant growth and increase leaching of soil nutrients needed by plants17. Some 
studies have shown that reduced S deposition is associated with recovery in tree growth through increased net 
photosynthesis and stomatal conductance18, however, the role of S deposition on forest productivity and C storage 
has rarely been explored19. In Europe and North America, air-quality policies to reduce emissions of pollutants 
(SO2 and NOx) have proven effective and have decreased acidic deposition (mainly SO4

2− and NO3
−) substan-

tially since 198020, 21. The reduction in acidic deposition of both N and S should lead to a slow recovery of forests 
to a pre-acid deposition state. On the other hand, decreasing N deposition could also slow down forest growth 
and C sequestration once previously accumulated soil N is used up and N again becomes a limiting nutrient15, 22.

Here, we test the hypothesis that gross primary production (GPP), ecosystem respiration (Re) and the net 
C-sink strength (net land-atmosphere CO2 flux) or net ecosystem production (hereafter NEP), have accelerated 
during the last two decades because of the increased atmospheric CO2 concentrations and temperature, and 
because of the recovery from high loads of S deposition in Europe and North America. However, decreasing 
atmospheric deposition of N may have constrained productivity. We expected these deposition reductions to have 
modulated the biogeochemical effects of rising CO2.

To test our hypothesis, we used long-term eddy-covariance observations of NEP, derived GPP, and Re from 23 
temperate and boreal forest sites distributed across Europe and the USA (see Supplementary Fig. S1). For these 
23 forests, we also used remotely sensed maximum leaf area index (LAI) as a proxy for canopy development, 
derived from the AVHRR GIMMS NDVI3g data set23. Data for predictor variables were acquired from: i) gridded 
maps for wet N and S deposition for Europe (European Monitoring and Evaluation Programme)24 and the USA 
(National Atmospheric Deposition Program)25, and ii) historical climate data from the Climatic Research Unit 
(TS v.3.21) for time series of temperature, precipitation26 and the Standardized Precipitation-Evapotranspiration 
Index (SPEI) — a measure of meteorological drought27.

Results
Individual trends of NEP, GPP, Re, LAI and predictor variables. Averaged across the 23 temper-
ate and boreal forests, annual NEP and GPP increased (mean ± SE) by 8.4 ± 1.8 and 11.2 ± 2.5 g C m−2 yr−1, 
respectively, during the studied period (P < 0.001). The increase corresponds to an annual increase of 1.1% in 
both C fluxes, consistent in magnitude with growth rates reported in previous studies28 and simulated by global 
models in response to rising CO2 only29. NEP increased over time in 18 of the 23 forests; for 11 of these 18 the 
increase was statistically significant at P < 0.05 (Fig. 1a inset, Table 1). Bootstrapping analysis show that forests 
with increasing NEP clearly outnumbered those in which NEP did not increase (P = 0.001; Fig. 1a). Similarly, 
GPP increased over time in 14 of the 23 forests, with eight forests presenting statistically significant trends at 
P < 0.05 (Fig. 1b, Table 1). Re of individual forests increased by 2.9 ± 2.5 g C m−2 yr−2, but this signal was not sta-
tistically significant (P = 0.25). This led NEP to increase slightly less than GPP, (Fig. 1c and Table 1). Additionally, 
we found maximum LAI derived from satellite data to exhibit an overall increasing trend (0.019 ± 0.007 m2 m−2 
yr−1, P = 0.003) across the 23 forests (Fig. 2). Maximum LAI increased for 14 of the 23 forests, being a statistically 
significant increase for 5 of these 14 forests.

Across the 23 forests in Europe and USA, CO2 increased on average by 2.0 ± 0.1 ppm yr−1, but neither 
mean annual temperature (MAT) nor the hydric conditions (SPEI) changed significantly over the same period 
(Tables S1 and S2, Fig. 3). This apparent climatic stability may partly result from the relatively short time series 

http://S1
http://S1
http://S2


www.nature.com/scientificreports/

3SCiEntiFiC REPORTS | 7: 9632  | DOI:10.1038/s41598-017-08755-8

Figure 1. Long-term trends in C fluxes for 23 forests (1992–2013). Most of the forests presented increasing 
trends in (a) NEP and (b) GPP, whereas (c) respiration remained fairly constant. The percentage of forests with 
increasing NEP was statistically higher (P = 0.001) than the percentage of forests with decreasing NEP, but the 
percentage of forests where GPP tended to increase was not statistically different (P = 0.28) from those with 
decreasing GPP. Red and blue lines indicate forests with increasing and decreasing trends, respectively, and 
black lines indicate the average trends. The shaded area indicates the standard error of the average trend. Grey 
dots indicate forest-year observations, and all values were adjusted to the same mean to remove forest-specific 
variability. The inset shows the modelled distribution of the trends using kernel-density estimation, indicating 
the percentage of forests with increasing and decreasing trends. See Methods for further information on the 
methodology used to calculate the trends. All data came from eddy-covariance towers.
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analysed (10 to 20 years). Conversely, N and especially S deposition exhibited strong and in generally monotonic 
downward trends from 1995 to 2011 across the 23 forests. On average, N deposition decreased by 1.1% annu-
ally (−0.09 ± 0.02 kg N ha−1 yr−2; P < 0.001) and S deposition by 4.6% annually (−0.09 ± 0.01 kg S ha−1 yr−2; 
P < 0.001) (Tables S1 and S2, Fig. 3).

Spatial variability in individual trends of NEP, GPP, Re and LAI. A regression analysis of the indi-
vidual trends (see Supplementary Information 1 and Fig. 4) indicates that the annual trends of NEP and GPP 
were mostly positively correlated with the increasing trend of CO2 (Fig. 4). Forests with larger standing biomass 
presented more positive trends in GPP and especially Re but not in NEP. Instead, trends of NEP were higher 
in forests with higher N deposition. Within forests, Re increased with positive trends of MAT, which, conse-
quently, reduced trends of NEP. Older forests presented lower or more negative trends of Re than young forests 
(Supplementary Information 1, Fig. 4). Our analysis did not show significant statistical associations between C 
flux trends in individual forests and other possible factors (e.g., trends in S deposition, see Supplementary Fig. S2) 
or forest characteristics, such as mean annual precipitation, soil pH, or leaf type and habit. However, trends in 
maximum LAI presented a positive association with soil pH and a negative association with trends in MAT 
(Supplementary Information 1 and Fig. 4).

Drivers of trends in C fluxes: temporal contributions and sensitivities. We used generalized linear 
mixed models (GLMMs) and model averaging to attribute the temporal trends of NEP, GPP and Re to changes in 
CO2, N and S deposition rates, MAT, SPEI, LAI and their interactions by calculating the difference between trends 
predicted by the full model and those maintaining one of the temporal covariates (i.e., anomalies) constant at a 
time (see Methods for further details). We found that increasing CO2 is the only predictor systematically associ-
ated with the observed increase in both NEP and GPP over time (Fig. 5). For each ppm increase in atmospheric 
CO2 concentration, NEP and GPP increased by 4.81 ± 0.52 and 4.49 ± 0.75 g C m−2 yr−1, respectively (Table 2). 
Conversely, increasing CO2 had no statistically significant association with increasing Re (Fig. 5) despite the nor-
mally close relationship between Re and GPP15. The statistical models also show that the decrease of S deposition 
during the period of flux measurements at both European and USA forests (Fig. 3 and Table S2) has also affected 
the CO2 fluxes in these forests (Fig. 5).

Forest Code Climate
Forest 
Type Age

Maturity 
Age

Corrected 
Mat. Age

Initial 
year Finalyear Y

NEP TS 
Trend P GPP TS Trend P Re TS Trend P LAITS Trend P

Brasschaat1 BE-Bra Temp M 80 90 0.89 1997 2011 14 17.5 ± 7.5 0.0773 21.4 ± 13.9 0.0313 9.7 ± 19.8 0.2556 0.000 ± 0.008 0.6329

Castelporziano2 IT-Cpz Temp EB 61 75 0.81 1997 2008 10 2.8 ± 6.9 0.3603 −12.8 ± 16.9 0.7629 −22.1 ± 12.8 0.8145 0.100 ± 0.010 0.0173

Collelongo3 IT-Col Temp DB 118 95 1.24 1997 2012 12 4.1 ± 9.6 0.2686 16.8 ± 11.9 0.1219 8.5 ± 6.4 0.0574 −0.014 ± 0.015 0.8299

Hainich4 DE-Hai Temp DB 275 95 2.89 2000 2012 13 −7.3 ± 4.6 0.9197 −11.2 ± 7.3 0.8502 −6.3 ± 5.9 0.7489 0.047 ± 0.018 0.0466

Harvard5 US-Ha1 Temp DB 81 75 1.07 1992 2011 20 12.6 ± 5.9 0.0372 34.7 ± 5.1 <0.0001 20.2 ± 9.6 0.0075 0.000 ± 0.005 0.6539

Hesse6 FR-Hes Temp DB 43 95 0.45 1996 2010 15 26.4 ± 11.0 0.0374 18.3 ± 15.4 0.1381 0.5 ± 15.3 0.5000 0.017 ± 0.007 0.2737

Howland MT7 US-Ho1 Temp EC 109 90 1.21 1996 2008 13 6.5 ± 2.8 0.0293 −5.8 ± 7.5 0.7489 −16.2 ± 7.2 0.9364 −0.050 ± 0.008 0.9934

Howland F7 US-Ho2 Temp EC 109 90 1.21 1999 2009 11 5.4 ± 4.8 0.1751 7.7 ± 8.2 0.2667 2.6 ± 11.0 0.3202 −0.025 ± 0.011 0.7621

Hyytiala8 FI-Hyy Bor EC 47 90 0.52 1997 2012 16 6.2 ± 2.5 0.0172 14.7 ± 4.0 0.0017 10.4 ± 3.5 0.0051 0.000 ± 0.004 0.5201

Lavarone9 IT-Lav Temp EC 120 90 1.33 2003 2012 10 41.8 ± 10.3 0.0100 37.2 ± 12.8 0.0159 −2.7 ± 5.1 0.7042 0.114 ± 0.022 0.1008

Le Bray10 FR-LBr Temp EC 38 90 0.42 1997 2008 11 7.2 ± 18.8 0.4381 10.8 ± 25.6 0.3777 −18.3 ± 12.6 0.8935 −0.033 ± 0.014 0.8465

Loobos11 NL-Loo Temp EC 88 90 0.98 1997 2012 16 21.5 ± 4.9 0.0009 −6.0 ± 4.2 0.9186 −27.1 ± 5.9 0.9991 −0.017 ± 0.008 0.6559

Metolius12 US-Me2 Temp EC 64 90 0.71 2002 2012 11 13.4 ± 9.8 0.1379 29.0 ± 13.7 0.0806 10.6 ± 13.4 0.2667 0.156 ± 0.028 0.0866

Morgan 
Monroe7 US-MMS Temp DB 70 75 0.93 1999 2013 15 −2.6 ± 3.9 0.8619 −1.8 ± 5.5 0.6897 0.7 ± 5.0 0.5000 −0.041 ± 0.009 0.8677

Niwot ridge13 US-NR1 Bor EC 98 90 1.09 1999 2010 12 1.9 ± 2.8 0.4185 −0.1 ± 3.4 0.5000 −1.3 ± 2.3 0.6341 0.060 ± 0.005 0.0166

Park Falls14 US-PFa Temp DB 44 65 0.68 1997 2013 16 9.6 ± 3.7 0.0172 0.1 ± 4.3 0.4820 −12.1 ± 6.2 0.9425 −0.008 ± 0.008 0.5873

Puechabon2 FR-Pue Temp EB 66 75 0.88 2001 2013 13 −10.3 ± 6.6 0.9197 −28.4 ± 13.3 0.9502 −18.5 ± 8.7 0.9880 0.114 ± 0.014 0.0108

Renon15 IT-Ren Bor EC 90 75 1.20 1998 2011 13 37.9 ± 5.3 0.0001 51.9 ± 8.7 0.0006 10.2 ± 6.3 0.0636 0.030 ± 0.007 0.1202

Sodankyla16 FI-Sod Bor EC 75 90 0.83 2000 2012 13 −0.2 ± 1.6 0.5000 −2.8 ± 7.1 0.5243 0.6 ± 6.8 0.4757 0.047 ± 0.005 0.1346

Soroe17 DK-Sor Temp DB 78 95 0.82 1997 2009 13 27.3 ± 4.8 0.0004 22.9 ± 8.4 0.0164 −0.2 ± 8.8 0.5000 −0.017 ± 0.007 0.7336

Tharandt18 DE-Tha Temp EC 117 90 1.30 1997 2013 17 −1.2 ± 3.6 0.6446 16.1 ± 8.3 0.0383 20.4 ± 6.7 0.0178 −0.025 ± 0.014 0.6730

UMBS19 US-UMB Temp DB 79 65 1.22 1999 2012 14 5.4 ± 3.1 0.0080 −3.5 ± 5.4 0.7444 −10.4 ± 4.5 0.9373 0.058 ± 0.005 0.0017

Vielsalm20 BE-Vie Temp M 83 95 0.87 1996 2008 13 17.0 ± 6.9 0.0062 15.1 ± 6.8 0.0120 −0.3 ± 7.2 0.5243 0.2330

Table 1. Summary of the main characteristics of the forests and the trends presented by NEP, GPP, Re, and 
maximum LAI. Trends were computed using the robust Theil-Sen slope estimator. P indicates a one-tailed P 
(H1: trend > 0). Corrected maturity age was calculated by dividing the mean stand age by the logging maturity 
tree age as described by Stokland et al.60 for average productivity classes. Abbreviations: Y, years; TS, Theil-
Sen; Clim for Climate; Temp, temperate; Bor, boreal; for, Forest type; M, mixed; E, evergreen; D, deciduous; 
B, broadleaved; C, coniferous; EC, eddy covariance. Upperscript numbers indicate reference numbers, see 
additional References in Supplementary Material.
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The reduction in S deposition was associated with a net decrease in NEP (NEP sensitivity: 24.45 ± 15.42 g C m−2  
yr−1 for each kg S ha yr−1), likely because of a larger (P = 0.038) increase of Re than GPP as forests recover from 
past S deposition. The sensitivity of Re and GPP to each kg S ha−1 yr−1 is −74.01 ± 16.02 and −31.24 ± 18.52 g C 

Figure 2. Trends in forest maximum LAI. Red and blue lines indicate forests with increasing and decreasing 
trends, respectively, and the thick black line indicates the average trend. The shaded area indicates the standard 
error of the average trend. Grey dots indicate forest-year observations, and all values were adjusted to the same 
mean to remove forest-specific variability. The inset shows the modelled distribution of the trends using kernel-
density estimation.

Figure 3. Temporal evolution and trends in N and S deposition, mean annual temperature (MAT), SPEI for 
the 23 forest sites (1995–2011). Trends were calculated using GLMMs with random slopes, with the forest as a 
random effect and year as a fixed effect. Models also used an ARMA (1,0) autocorrelation structure. Shading 
indicates the 95% confidence intervals of the means (calculated as 1.96 times the standard error of the mean). 
See Methods for further details.
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m−2 yr−1, respectively. These results imply that the reduction in S deposition reduced the positive effect of CO2 
fertilization on NEP by 21 ± 13%. However, the reduction in N deposition tended to reduce both GPP and Re, 
but this effect of reduced N deposition was not statistically significant (Fig. 5). The sensitivity of Re and GPP to 
each kg N ha−1 yr−1 is 15.62 ± 18.65 and 14.41 ± 19.39 g C m−2 yr−1, respectively (see Fig. 5 and Table 2). Using 
past N and S deposition, i.e. the cumulative totals of the previous 5 years, did not improve our models according 
to the variance explained, the second-order Akaike Information Criterion (AICc) and the Bayesian Information 
Criterion (BIC).

The combined effect of reductions in S and N suggest that the positive effect gained from reduced S depo-
sition on GPP and Re was offset by 47 ± 68% and 21 ± 25%, respectively, due to the opposite effect of reduced 
N deposition. Trends in climate (MAT and SPEI) did not influence trends in CO2 fluxes over the timeframe 
of this study (1995–2011). Using temperature and SPEI from the warm half of the year (April – September) 
in our models did not show any greater influence of climate on C flux trends either (see Models 2.2.1–2.2.3 
in Supplementary Information). In addition, the increasing LAI was not correlated with the changing C fluxes 
(Fig. 5, Table 2). Finally, the model used to detect potential causes for the increased LAI showed, again, that rising 
CO2 and decreased S deposition were the only factors of significant importance for temporal changes across the 
23 forests (Fig. 6).

Figure 4. Partial residual plots showing significant relationships found between predictors and C-flux trends 
in the 23 forests (ΔNEP/Δt, ΔGPP/Δt and ΔRe/Δt) and ΔLAI/Δt. Model summaries can be found in 
Supplementary Information section 1. Corrected maturity age (MatAge) was calculated by dividing the mean 
stand age by the logging maturity tree age as described by Stokland et al.60 for average productivity classes. See 
Methods for more information on the calculation of the corrected logging maturity age.

Figure 5. Temporal contribution of the predictor variables on NEP, GPP and Re, for the period 1995–2011. 
Models (see Supplementary Information, section 2.1.1–2.1.3) suggest that increasing CO2 is the main 
contributor to the observed increases in NEP and GPP. The difference between the modelled contributions and 
the observed trends (yellow shaded) has been considered as an unknown contribution to the temporal variation 
in C fluxes. The temporal variations of the predictors are shown in Fig. 3. Error bars indicate standard errors. 
Units are ppm for CO2, kg ha−1 yr−1 for S and N deposition, °C for temperature and standard deviation for SPEI. 
Data for forest C fluxes came from eddy-covariance towers. Error bars indicate standard errors. See Methods for 
information about the methodology used to calculate the contributions. Significance levels: (*)P < 0.1; *P < 0.05; 
**P < 0.01; ***P < 0.001.
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Discussion
Empirical evidence of CO2 fertilization effect. Even though our statistical analyses do not directly prove 
causality, the results provide consistent empirical evidence that support the dominant role of the CO2-fertilization 
effect in explaining the current positive NEP trends at local and possibly regional scales (Fig. 5). The results sup-
port our hypotheses, which were based on the state of the art from earlier studies, refined with respect to other 
drivers (S deposition), and corroborated by careful attribution of variances with GLMM. The results indicate a 
relatively strong CO2 fertilization effect given the somewhat short span of CO2 increases in our data set (increas-
ing by 13–47 ppm during the study period, depending on the forest and database, see Table 1 and Supplementary 
Table S2). This increase is relatively small compared to the increases applied in free-air CO2-enrichment experi-
ments (typically 475–600 ppm9, i.e., a step change in CO2 of ~100–200 ppm).

Our results also show a much higher sensitivity of NEP to CO2 of 4.81 ± 0.52 g C m−2 y−1 ppm−1 when com-
pared to the sensitivity obtained from CO2-enrichment FACE experiments of 1 g C m−2 y−1 ppm−1, which is a 10% 
increase in net primary production (assuming an average of 1000 g C m−2 y−1) for a step increase of 100 ppm30, 31. 
This discrepancy may be related to the differences between small gradual increases in CO2 seen in the environ-
ment versus large stepwise increases in CO2 manipulative experiments. It has been suggested that the progressive 
nutrient limitation makes CO2 fertilization be stronger at lower CO2 increases and become saturated at higher 
levels like the ones in experiments (e.g. 600 ppm)32, 33.

Increasing CO2 can enhance photosynthesis by increasing the rate of carboxylation and reducing losses from 
photorespiration34. Increasing CO2 might also decrease stomatal conductance, leading to increased water-use effi-
ciency11, 35, but the relationship between increasing water-use efficiency and higher plant growth and net C uptake 
in ecosystems is still controversial10, 11. Because tissues with high C:N ratio are more difficult to decompose than 
tissues with lower C:N ratio, the increase in litter C:N ratio due to increased CO2

36 might reduce heterotrophic 
respiration37, 38 and, therefore, increase the C-sink strength, at least during a transient period. Elevated CO2, 
though, could also stimulate root exudation, thereby increasing the priming effect and reduce soil C stocks39. 

NEP P GPP P Re P

CO2 (ppm) 4.81 ± 0.52 <0.0001 4.49 ± 0.75 <0.0001 −0.29 ± 0.60 0.3183

Nitrogen (kg ha−1 yr−1) −1.64 ± 15.96 0.4593 14.41 ± 19.39 0.2029 15.62 ± 18.65 0.2044

Sulphur (kg ha−1 yr−1) 24.45 ± 15.42 0.0616 −31.24 ± 18.52 0.0511 −74.01 ± 16.02 <0.0001

Temperature (K) −126.74 ± 408.16 0.4182 −137.36 ± 415.44 0.3716 80.46 ± 592.16 0.4464

SPEI (SD) 13.67 ± 2225.46 0.4976 645.30 ± 6256.23 0.4593 −238.29 ± 3255.54 0.4711

LAI (m2 m−2) −1.80 ± 66.73 0.4893 9.37 ± 76.01 0.4514 28.86 ± 104.40 0.3930

Table 2. NEP, GPP and Re mean sensitivity to predictors for the 23 forests for the period 1995–2011. 
Sensitivities (units of change in the response variable for each unit of change in the predictor) were calculated by 
dividing the temporal contributions of the predictor (Fig. 5) by the trend of the predictors (Figs 2 and 3,  
Table S2). Nitrogen and sulphur refers to atmospheric deposition, and temperature to mean annual air 
temperature. Errors were calculated by error propagation63. NEP, GPP and Re units are g C m−2 yr−1. Bold type 
indicates statistically significant sensitivities.

Figure 6. Temporal contribution of the predictor variables. The model (Supplementary Information, section 
2.1.4) suggested that increasing CO2 is the main contributor to the observed increases in LAI. The difference 
between the modelled contributions and the observed trends has been considered as an unknown contribution 
to the temporal variation LAI. The temporal variations of the predictors are shown in square brackets. Error 
bars indicate standard errors. Units are ppm for CO2, kg ha−1 yr−1 for S and N deposition, °C for temperature 
and standard deviations for SPEI. Error bars indicate standard errors. See Methods for information about 
the methodology used to calculate the contributions. Significance levels: (*)P < 0.1; *P < 0.05; **P < 0.01; 
***P < 0.001.

http://S2
http://S2
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However, those counteracting mechanisms seem to offset each other in our forests, resulting in no significant 
change in Re. Nonetheless, despite possible counteracting mechanisms, elevated CO2 seems to be responsible for 
the increases in terrestrial photosynthesis and C sequestration during the last decades.

Recovery from high loads of acid deposition in Europe and USA. The negative effect of the reduc-
tion in S deposition on NEP is the consequence of differences in recovery of the gross fluxes from previously 
higher rates of acid deposition, i.e. the recovery of Re is stronger than that of GPP (Fig. 5 and Table 2). We 
postulate that this follows from a chain of processes during recovery from soil acidification. A reduction in S 
deposition, in our case combined with a reduction in N deposition, typically increases soil pH, which, in turn, 
increases microbial activity40, thereby increasing heterotrophic respiration and thus nutrient mineralization and 
availability41, with implications for both GPP and Re. The potential increase in pH and nutrient availability, dur-
ing a recovery phase after high S deposition, can enhance photosynthesis and tree growth18 in a second step, i.e. 
when nutrient availability has considerably increased. Even if pH remains unaltered, reduced acid input reduces 
aluminium release in soil and, therefore, less damage to roots occur, potentially increasing productivity42. While 
higher microbial activity in response to reduced S deposition increases respiration, the associated higher nutri-
ent availability can in turn reduce C allocation to root symbionts43 and to free living heterotrophs via exudates, 
therefore ultimately reducing heterotrophic respiration44. These two opposing mechanisms may compensate each 
other to some degree after some time. The stronger positive response of Re to declining S deposition than of GPP 
(Fig. 5) suggests a stronger contribution of the increase in microbial respiration, following recovery, than a possi-
ble reduction of respiration due to decreased belowground C allocation. Nonetheless, the results obtained here are 
quite surprising given the relatively small change observed in S deposition that, according to soil models, would 
have a low impact on soil pH and aluminium release45.

In addition to soil biochemical impacts, reduction in sulphurous pollutants affect optical properties of the 
atmosphere by reduced secondary aerosol (SOA) formation. S emissions lead to higher aerosol densities, which 
affect photosynthesis in two opposite ways: by reducing total light inputs, photosynthesis would be reduced, 
but by increasing the ratio of diffuse over direct radiation, photosynthesis in deeper layers of the canopy would 
increase46, 47. We speculate, from the overall negative effect of S deposition on GPP, that the disadvantage from 
decreasing diffuse light fraction because of reduced S emissions is lower than the positive effect due to the recov-
ery from acidification of an ecosystem.

The impacts of N deposition on forest ecosystem C cycling have been widely studied. Reduced heterotrophic 
respiration is a general response to N deposition, possibly through an enhanced stabilization of soil organic mat-
ter, altered plant carbon allocation patterns and shifts in the saprotrophic community48. Nitrogen fertilization 
increases aboveground production in young forests, while decreasing autotrophic and heterotrophic respira-
tion49, and hence potentially enhancing ecosystem C uptake (or increase C stocks)15, 22. However, in N limited 
ecosystems and young stands, low levels of N deposition can increase respiration because of enhanced biomass 
production and the associated increase in maintenance and growth respiration14, 44. N deposition - where N is a 
limiting nutrient - will increase net primary production50 through its effect on photosynthesis51 and possibly by 
the above-mentioned increasing C allocation to wood production at the expense of symbionts and exudates43. 
Our analysis of spatial variability supported these hypotheses (Supplementary Information, models in section 1 
and 2), but our analysis of temporal variability indicated that decreasing N deposition had no statistically signif-
icant effect on the trend in NEP, because the small effect of reducing both Re and GPP at the same time (Fig. 5). 
N deposition rates have been relatively high during several years and the recent decrease (in percentage around a 
quarter of the decrease in S deposition, see Fig. 3) may have not been large enough to significantly alter C fluxes 
in forest ecosystems. On the other hand, N is efficiently accumulated and kept in the ecosystem’s internal cycle52, 
thereby protecting it from leaching, whereas this is not usually the case for sulphate in acidic soils53.

Small effects of decadal-scale climate change on the carbon balance. In the 23 forests studied, 
temperatures and drought did not significantly change and, therefore, could not be responsible for the observed 
trends in C fluxes. The estimated effect of temperature and drought on CO2 fluxes was clearly small compared to 
the effects of increasing CO2 and decreasing S deposition. These results suggest that, during the studied period, 
availability of CO2 and nutrients and stoichiometric changes have exerted a stronger impact on the terrestrial C 
balance than the changing climate6. Nonetheless, given the small increase in temperatures and droughts during 
the study period, we cannot rule out the possibility that climate change might have larger effects on C fluxes in 
the future. Larger datasets, including longer time series comprising other geographical regions (i.e., Asia, South 
America, Africa…) and covering the main biomes of the world, are necessary to correctly answer this question 
and to better assess the effect of atmospheric deposition on terrestrial C balance.

Changing land carbon sinks. Multiple drivers are affecting the C budget of terrestrial ecosystems in sev-
eral ways. Increasing atmospheric CO2 concentrations have increased the land C sink by enhancing GPP more 
than ecosystem respiration. The reduction in S deposition rates is severely altering the C balance by enhancing 
photosynthesis and ecosystem respiration but in a decoupled manner. In addition, the reduction of N deposition 
rates in developing countries may soon present a significant effect on forest C balances by reducing both photo-
synthesis and respiration. However, trends in N and S deposition are divergent depending on the region of the 
world considered: while S deposition is mainly decreasing in western countries, fossil fuel burning is increasing 
S deposition rates in Asia54. On the other hand, N deposition is expected to approximately double current levels 
by 2050 globally55. Hence, the trends observed for the forests studied here may take place at different regions at 
different times in the following decades, unless other nutrient imbalances (e.g., limitation of phosphorus) com-
pletely change the response of ecosystems3.
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It is far from certain whether terrestrial ecosystems will continue to respond positively to increasing CO2, will 
saturate, or will eventually reach a tipping point beyond which respiration and the release of greenhouse gases 
exceed production. Stoichiometric imbalances and the limitation of key nutrients such as nitrogen and phospho-
rus3, 6, 56 may already be acting as limiting factors for enhanced C sequestration. Given these observed complex 
relationships, partly compensating effects of multiple drivers on the gross C fluxes, GPP and Re, with apparently 
differing dynamic behaviour, accurate prediction of the future net C sink is complex. It will require biospheric 
models that include realistic parameterisations of the various biochemical responses of C sequestration processes 
obtained from real field conditions and experiments. Further, this study shows the need to go beyond climate 
and CO2 to characterize the strength of the land sink, and the future evolution of the carbon-climate feedback. 
Biospheric and earth system models will need to develop processes to address the effects of additional atmos-
pheric pollutants.

Materials and Methods
Data sets. Carbon fluxes. We downloaded Level-4 CO2 flux data collected by eddy-covariance towers from 
the Euroflux (GHG-Europe) and Ameriflux databases. When Level-4 data were not available, we downloaded 
gap-filled Level-2 data and checked for the homogeneity of the time series. In all cases, time series were either 
Level-2 or Level-4. Level 4 data are obtained after applying u* filtering, gap-filling and partitioning following 
Reichstein et al., (2005). Level-2 data are provided by the PIs, half-hourly, not gap-filled or filtered but quality 
checked by the PIs. This data was then processed using the Eddy covariance gap-filling & flux-partitioning tool 
from the Max Planck Institute webpage (http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/) to be equivalent to 
Level-4 data, also following Reichstein et al., (2005). The data used in this study have been harmonized in terms of 
processing but the fluxes calculation is still heterogeneous because it is performed by the responsible staff of every 
forest. We also used a global forest database updated in 2013 with data up to 20106 to obtain ancillary data (e.g., 
stand age and standing biomass) and for comparing CO2 flux measurements. We selected 23 forests for which at 
least 10 years of CO2 flux measurements were available. All forests were in the Northern Hemisphere between 39 
and 68 °N (see Supplementary Fig. S1), and the years of measurement ranged from 1992 to 2013. These forest sites 
were selected because they are the longest running flux sites with 10 or more years of data available between 1992 
and 2013. The selected forests had no indication of major disturbances or strong management practices which are 
known to alter C fluxes (in contrast to the typical situation for grasslands or croplands). We also extracted infor-
mation for all forests about leaf type and habit (evergreen/deciduous), and the age of the stand at the time of the 
measurements. Soil pH was extracted from the ancillary data of the forests when possible (17 forests), but when 
not available, pH was assessed using data from the Harmonized World Soil Database57 (4 forests) and published 
literature reviews6 (2 forests).

Remotely sensed LAI data. We calculated the maximum annual LAI for the 23 forests from the GIMMS LAI data 
set23. The Global Inventory Modeling and Mapping Studies (GIMMS) LAI is derived from Advanced Very High 
Resolution Radiometer (AVHRR) satellite time series of the third generation of Normalized Difference Vegetation 
Index (NDVI3g). It is available at 15-day intervals and 8-km spatial resolution for July 1981 to December 2011. 
The GIMMS LAI is the only dataset providing time series long enough and with enough temporal resolution to 
allow the study of trends over the period considered in our study. Furthermore, interannually, GIMMS LAI data 
were significantly related (P < 0.01) to MODIS LAI (version C5) data for our 23 forests at a resolution of 1 km. 
The principles used for the generation of the GIMMS LAI data set were based on the use of neural networks that 
were first trained with data from the overlapping GIMMS NDVI3g and MODIS LAI products. The trained neural 
network algorithm was then applied using the land-cover class, the latitude and longitude coordinates and the 
NDVI3g as the input data to generate the full temporal coverage of the GIMMS LAI data set. Further details of 
the algorithm and quality assessment of GIMMS LAI data set given by Zhu et al.23.

Climate and weather data. We extracted the climatological mean annual temperature and precipitation (MATc, 
MAPc) for all forests from the WorldClim database, with a spatial resolution of around 1 km at the equator. 
Because time series of temperature and precipitation data from eddy covariance towers were of insufficient quality 
(too many missing values) for many of our forests, we opted to use the CRU TS3.21 data set26 from the Climatic 
Research Unit to extract temperature and precipitation time series for our forests as weather data. In addition, 
the SPEI (Standardized Precipitation-Evapotranspiration Index, Vicente-serrano et al.27 from the global SPEI 
database (http://sac.csic.es/spei/database.html) was used as a measure of drought intensity. Annual means of 
temperature (MAT), precipitation (MAP) and SPEI were calculated for each year. We also calculated annual val-
ues of MAT, MAP and SPEI for the warm half of the year (April – September) to be tested in the models as done 
for annual values.

Atmospheric CO2 concentrations. We used atmospheric CO2 concentrations recorded by eddy-covariance towers 
above the canopies of the forests when available. Annual atmospheric CO2 records, however, sometimes contain 
implausible values because of gaps along the time series (years with lower CO2 concentrations than the year 
before, higher than the next year’s or increases much larger than the normal increase of ~2 ppm per year recorded 
worldwide). We deleted the erroneous annual values and where possible filled the gaps using generalized additive 
models (GAM), adjusting a smoothing function. When this procedure was not possible, we used atmospheric 
CO2 concentration data from the Mauna Loa observatory, provided by the Scripps Institution of Oceanography 
(Scripps CO2 program). Original CO2 records from Mauna Loa and from individual forests were highly corre-
lated (P < 0.0001) and their trend was very close to one (1.012 ± 0.005) using a zero intercept mixed model with 

http://S1
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random slopes. Therefore, using Mauna Loa’s data instead of original CO2 records from the eddy covariance 
towers could not influence the outcome of our results.

Deposition data. Annual data for N (NO3− + NH4+) and S (SO4−) wet deposition were extracted from the 
European Monitoring and Evaluation Programme (EMEP) with a spatial resolution of 0.15 × 0.15° for longitude 
and latitude, the MSC-W chemical transport model developed to estimate regional atmospheric dispersion and 
deposition of acidifying and eutrophying compounds of N and S over Europe and the National Atmospheric 
Deposition Program (NADP) covering the USA with a spatial resolution of 0.027 × 0.027° for longitude and 
latitude. We used only data for wet deposition because the NADP database did not contain records for dry deposi-
tion. Analyses were restricted to Europe and the USA because temporal gridded maps of atmospheric deposition 
were not available for other regions.

Statistical analyses. Trends of individual forests. To test whether GPP, Re, NEP, LAI, N and S deposition, 
MAT and SPEI had changed during the study period, we first analysed the individual (for each forest) annual time 
series of each of these variables. The trends were extracted using the Theil-Sen slope estimator that minimizes the 
influence of extreme values (the breakdown point is ca. 29%) when calculating the trends (mblm package58 in R 
statistical software). This analysis has proven to be robust against temporal autocorrelation, non-normality and 
heteroscedasticity and produces results very similar to those of ordinary least squares regressions when errors are 
normally distributed and no outliers are present59, 60. Kernel densities were estimated to illustrate the proportions 
of forests with increasing and decreasing trends. Bootstrapping was used to statistically test whether the distri-
bution of positive and negative trends across the forests was significantly different than the distribution of trends 
we would find by chance. We then tested the average trends (over all studied forests) in the studied variables 
using mixed models with random slopes (e.g., NEP ~ year) where the forest was the random factor (affecting the 
slopes of the year, therefore the trend). These mixed models also accounted for temporal autocorrelation using 
an autoregressive moving average (ARMA) (p = 1, q = 0) correlation structure. The average trends shown in the 
results section, and their significance, were calculated using the mixed effects models explained above.

To account for the spatial variability among forests (N = 23) in the trends of NEP, GPP, Re and LAI we used 
weighted linear models (adjusted by ordinary least squares and weighting for the number of observations for each 
forest) and stepwise forward model selection. The predictor variables we tested were climate (MATc and MAPc), 
mean S and N annual deposition rates, stand age, leaf type and habit, soil pH, the observed trends in LAI, S and 
N deposition, MAT, SPEI and the increase in CO2 since the beginning of the C-flux measurements. To further 
test that the observed trends in C fluxes were dependent on the age of the stand, we calculated a surrogate of the 
state of maturity of the forests by dividing the mean stand age by the logging maturity tree age as described by 
Stokland et al.60 for average productivity classes and included this variable as a predictor in the model. We also 
included the first-order interaction between pH and trends in N and S to test whether the effect of deposition 
depended on pH and vice-versa. We checked for multicolinearity overseeing the variance inflation factor. The 
variance explained by each variable within these models was assessed using the proportional marginal variance 
decomposition (PMVD) metric from the relaimpo R package61.

Temporal contributions and sensitivities of changes in C fluxes. The temporal contribution of each variable to 
the observed trends in GPP, Re, NEP and LAI was assessed using Generalised Linear Mixed Models (GLMMs) 
and model averaging (multi-model inference)62. This technique (GLMMs) allows disentangling the effect of 
one single predictor, while taking into account the variance shared (or correlation) with the other predictors. 
Model averaging is a statistical technique based on multi-model inference that calculates an average model with 
the estimates of the models that best fit the data while weighting their importance using the difference of the 
second-order Akaike Information Criterion (AICc) between each model and the model with lowest AICc. Using 
the forest as the random effect and an ARMA (p = 1, q = 0) autocorrelation structure, we fitted the saturated 
models as: response (annual anomalies) ~ (mean S deposition + S anomalies + CO2) + (mean N deposition + N 
anomalies + CO2) + (MATc + MAT anomalies + CO2) + (MAPc + SPEI + CO2) + mean S deposition x mean N 
deposition + MATc x climatic MAPc + CO2 x mean stand age, where variables between brackets where those for 
which we tested for first order interactions. Anomalies were calculated as the difference between the average value 
(e.g., MATc) and the annual value of a given year (i.e., MATan = MATc + MAT). When including the interactions 
between the climatic annual mean and the anomalies (MATc x MATan), we are including a changing effect of 
increasing or decreasing the anomalies depending on the mean for the forest (e.g., increasing temperature may 
have a positive effect in cold climates but a negative effect in warmer climates). In C flux models, we also included 
the anomalies of maximum LAI as a covariate. In our case, LAI can be interpreted as a surrogate for forest man-
agement, which implies that the reported effects of increasing CO2 concentrations are disconnected from any 
changes in forest structure (LAI or crown cover closure). Additionally, we fitted the saturated models using past 
N and S deposition, i.e. the cumulative totals of the previous 5 years, to test whether cumulative atmospheric 
deposition could improve prediction of interannual variability of C flux trends.

Using the model-averaging method [MuMIn R package] we fitted the saturated models for GPP, Re, NEP 
and LAI to construct an average model from the best models nested into the saturated models. 758246 models 
were calculated for each C flux and 379055 models for LAI. Average models were calculated using those models 
differing by less than four AICc units (in comparison with the best model) and fitted using restricted maximum 
likelihood. When calculating the model average estimates of the variables, estimates were replaced with 0 for 
models in which the explanatory variable was not included. Model residuals met the assumptions of normality, 
homocedasticity and linearity in all analyses.

We then used the average models to predict the change of the response variables during the study period 
(1995–2011). With the average models, we first calculated the observed trend (slope estimate ± standard error 
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of the slope estimate) in our data using GLMMs with random slopes and temporal autocorrelation structure 
(ARMA, p = 1, q = 0). We then calculated the trend predicted by the average model and the trends predicted 
by the same model but maintaining the predictors constant one at a time (e.g., S deposition anomalies are held 
constant, using the median values per forest, while all other predictors change according to the observations). 
The difference between the predictions for the whole model and when one variable was controlled was the con-
tribution of that predictor variable to the change in the response variable. The difference between all individual 
contributions and the observed trend were considered to be unknown contributions. Finally, we calculated the 
average NEP, GPP and Re sensitivities to predictor changes dividing the temporal contributions by the trends of 
the predictor variables. All errors were calculated using the error-propagation method.
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