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Automated Classification of Benign 
and Malignant Proliferative Breast 
Lesions
Evani Radiya-Dixit1, David Zhu1 & Andrew H. Beck2

Misclassification of breast lesions can result in either cancer progression or unnecessary chemotherapy. 
Automated classification tools are seen as promising second opinion providers in reducing such errors. 
We have developed predictive algorithms that automate the categorization of breast lesions as either 
benign usual ductal hyperplasia (UDH) or malignant ductal carcinoma in situ (DCIS). From diagnosed 
breast biopsy images from two hospitals, we obtained 392 biomarkers using Dong et al.’s (2014) 
computational tools for nuclei identification and feature extraction. We implemented six machine 
learning models and enhanced them by reducing prediction variance, extracting active features, and 
combining multiple algorithms. We used the area under the curve (AUC) of the receiver operating 
characteristic (ROC) curve for performance evaluation. Our top-performing model, a Combined model 
with Active Feature Extraction (CAFE) consisting of two logistic regression algorithms, obtained an 
AUC of 0.918 when trained on data from one hospital and tested on samples of the other, a statistically 
significant improvement over Dong et al.’s AUC of 0.858. Pathologists can substantially improve their 
diagnoses by using it as an unbiased validator. In the future, our work can also serve as a valuable 
methodology for differentiating between low-grade and high-grade DCIS.

Pathologists must identify precursor lesions as either benign usual ductal hyperplasia (UDH) or malignant ductal 
carcinoma in situ (DCIS) for diagnosis and treatment of breast biopsies. Most patients with UDH receive no treat-
ment and have minimal or no increased risk of cancer, while patients with DCIS are more likely to be diagnosed 
with invasive breast cancer1, 2. Treatment to reduce DCIS recurrence and invasive carcinoma has notable risks and 
side effects, given the extensive methods of lumpectomy with radiation, mastectomy, and tamoxifen hormonal 
treatment3. Diagnostic oversights can lead to either untreated cancer or unnecessary radiation treatment and 
chemotherapy, both of which have detrimental consequences. Thus, accurate diagnosis is critical for patients 
as well as for hospitals to reduce extraneous treatment costs. However, human pathologists may not always be 
in concordance as there is no strict set of instructions on how to carry out a diagnosis. In a study by Jain R.K.  
et al.4, researchers found that nine pathologists were in complete agreement in only 9 of 81 total cases of UDH 
and DCIS. Therefore, given the extreme treatment disparity between these two classes and the limited number of 
trained pathologists available, a second opinion based on an automated model would help reduce bias and varia-
bility and improve tumor diagnosis reliability by identifying challenging diagnosis cases.

Currently, computational pathologists identify morphological features from precursor lesions and apply statis-
tical models on those features for lesion type discrimination. The lesion features are extracted through whole-slide 
image digitalization with multiplexed antibody stains5, image segmentation, and measurements of features such 
as nuclear area and perimeter6. These methods are primarily used in existing bioinformatics cancer research, and 
pathologists in the clinical setting typically use single-marker immunohistochemistry7, 8.

Dong et al. computationally extracted features from diagnosed tissue images, which were then used as input 
to an L1-regularized logistic regression machine learning model6. This model was successfully trained to differ-
entiate between UDH and DCIS, and as a consequence of using the L1 regularizer, active features were obtained 
from the given input.

Despite advancements in techniques described by existing literature, there are still various limitations and 
areas for improvement in feature extraction and model selection. First, a manual intervention is necessary for 
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feature extraction, especially for segmentation and nuclear tracing6. Second, existing models often have redun-
dant training data of the morphological features, so active features should be identified and utilized to refine 
the algorithm input. Third, previous studies tended to focus on data collection and feature extraction and have 
not compared and combined multiple algorithms for better prediction. Leveraging prediction results from sev-
eral models would be potentially useful for accuracy improvement. Finally, many existing models have not been 
applied to validation datasets9. They may not generalize well to datasets obtained from different hospitals, causing 
the algorithms to overfit and describe the noise of the training data instead of identifying the underlying relation-
ship as shown in Fig. 1.

To strengthen the discrimination between DCIS and UDH, we enhanced prior work in a number of ways. 
We implemented six different machine learning methods to differentiate between the two diagnostic categories 
using automatically extracted cellular features. The diverse set of computations enabled a clearer understanding of 
the correlation between the quantitative features and breast lesions. We then curated the features dataset to keep 
only the active features by eliminating features that were not pertinent to the classification. We also combined 
algorithms, a strategy that has not been used previously in lesion categorization to our knowledge6, 9–12. Using 
diagnosis predictions from multiple models, we reduced prediction randomness and greatly improved accuracy. 
Finally, we validated the methods by training and testing them with datasets from different hospitals. Achieving 
high accuracy when we train our model with data from one hospital and test it with data from another indicates 
that our model makes predictions independent of hospital-specific data curation and would be able to generalize 
well to datasets from other hospitals. By reducing interobserver variability4, our automated investigational tools 
show potential in aiding pathologists with breast cancer decision support, serving as valuable, unbiased valida-
tors. The model can be used in different clinical studies across institutions.

Results
First, to compare our study to previous work, we reran Dong et al.’s algorithm with 1000 seeds to account for 
prediction randomness. Their model had been evaluated on the same MGH and BIDMC datasets and achieved a 
validation score of 0.858. Next, we ran our six machine learning models on all 392 features, evaluating each with 
the AUC-ROC values. Most validation scores improved when the models were run on the refined active features 
dataset. By further combining the two logistic regression algorithms, we obtained our top-performing model with 
a validation score of 0.918.

Scoring of Statistical Models.  We obtained two scores to represent each algorithm’s performance. A vali-
dation score (V-score) was obtained by training the model on the 116 samples from the MGH hospital and testing 
its accuracy on the 51 samples from the BIDMC hospital. A cross-validation score (C-score) was obtained from 
training and testing with ten folds on all 167 samples from two hospitals. Since it is more applicable than the 
C-score, we used the V-score for comparison of our model performances and those from other studies. Achieving 
a high V-score is difficult as it represents the algorithm’s ability to extrapolate to datasets from other hospitals.

For each model, we evaluated its score by computing the AUC of the ROC curve, which was created from the 
model’s predictions on the test dataset13. An ROC curve provides a more accurate scoring measure than a simple 
true/false ratio since it accounts for the degree of confidence of a prediction between 0 and 1.

Recalculation of Results from Existing Work to Account for Randomness.  Dong et al. had devel-
oped a statistical model using the L1-regularized logistic regression model on the same MDH and BIDMC cases. 
The study had used only a single seed for computing C-scores and V-scores and thus did not reduce the ran-
domness that resulted from the automated fold selection. We reran their models using 1000 seeds to reach more 
accurate AUC values for analysis and comparison to our own data. Dong et al.’s algorithm achieved a C-score 
AUC of 0.931, which was equivalent to our initial C-score without active features. The model achieved a V-score 
AUC of 0.8586.

DCIS/UDH Classification Models.  For six machine learning models, we obtained the C-score for clas-
sification with all features and with active features as well as the V-score for classification with active features. 

Figure 1.  (a) An underfitting model. (b) An ideal model that identifies the underlying relationship of the data. 
(c) An overfitting model.
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Table 1, column 2 includes the C-score AUC-ROC values of these algorithms for discrimination between DCIS 
(100 cases) and UDH (67 cases).

Analyses of DCIS/UDH Classification Models with Active Features.  We also obtained the C-score 
for the six machine learning models for classification with active features (Table 1, column 3). For each fold, the 
training data was used for the selection of the active features, and the features dataset was revised accordingly. 
Almost all algorithms had an increase in AUC, revealing the accuracy of the selected active features and the 
improved performance when irrelevant features were eliminated.

We evaluated the four top-performing algorithms by training the predictive models with active features on 
the MGH samples and testing those fixed models on the BIDMC samples (Table 1, column 4). The active features 
from training the L1-regularized logistic regression model on the MGH cases were used again for the V-scores of 
all algorithms. We obtained high performances for the L1-regularized logistic regression and logistic regression 
with early stopping models (AUC = 0.897 and 0.884, respectively, about 3% higher than the AUC V-score of 
0.858 achieved by Dong et al.). However, the V-scores for the random forest and convolutional neural network 
algorithms were less impressive (AUC = 0.666 and 0.650, respectively). These results indicate that logistic regres-
sion models displayed stronger generalizability than decision tree-based learning methods when running each 
algorithm on different, unseen data from an independent source.

Analyses of the Combination of Top-performing DCIS/UDH Classification Models.  The logistic 
regression with early stopping and L1-regularized logistic regression had high C-scores and V-scores for classi-
fication with active features. To verify our hypothesis that strong prediction models tend to correct each other, 
we combined them to create our CAFE (Combined with Active Feature Extraction) model. The scores for the 
individual logistic regression algorithms and the CAFE model are listed in Table 2. For comparison, we added the 
scores of Dong et al.’s model6.

As Table 2 shows, CAFE achieved a strong C-score AUC of 0.921, very similar to the C-scores achieved by 
either individual algorithm. However, it obtained a much higher V-score, which is a substantial improvement 
when compared with the V-score of 0.858 obtained by Dong et al.’s model that did not use active feature extrac-
tion. Figure 2 compares the ROC curve of our CAFE model with that of Dong et al.

The strong performance from this top-performing CAFE model confirms that it is more robust when facing 
data variation across hospitals. The AUC of 0.918 demonstrates that the model is a reliable classifier for patholo-
gists to use for real-time decision support.

Discussion
We first investigate the overall reduced accuracy of the V-score AUC-ROC values in comparison to the C-scores. 
We applied the CNN model directly to the raw tissue images, so we analyze the implications of using the deep 
learning algorithm. Finally, we review the findings of our study, particularly in comparison to prior art.

Analyses of V-scores of DCIS/UDH Classification Models.  The V-score of the individual classification 
models as well as the combined model had a generally reduced accuracy in comparison with the C-score due 
to variation in image collection mechanisms from different hospitals. Variation across the institution datasets 
is inevitable due to the different processes for obtaining the images, such as staining, fixating, and scanning the 
samples. Thus, the V-scores were lower than the C-scores, especially for the random forest and convolutional 

Algorithm
C-score for classification 
with all features

C-score for classification 
with active features

V-score for classification 
with active features

L1-regularized LR 0.931 0.921 0.897

LR w/early stopping 0.904 0.923 0.884

Random forest 0.854 0.878 0.666

Convolutional neural network 0.779 0.850 0.650

Conditional inference forest 0.801 0.822 Did not run

Multi-layer perceptron 0.695 0.489 Did not run

Table 1.  The performances of the six machine learning models with all features (column 2) and with the active 
features (column 3) in terms of the AUC. The V-scores for classification with the active features (column 4) 
indicate each model’s generalizability. We used 1000 seeds to account for the random number variance.

Algorithm C-score V-score

L1-regularized LR from Dong et al. 0.931 0.858

L1-regularized LR with active features 0.921 (SD of 0.0064) 0.897

LR with early stopping and active features 0.923 (SD of 0.0020) 0.884

CAFE model 0.921 0.918

Table 2.  The performance of Dong et al.’s model, our two LR algorithms with active features, and our CAFE 
model.
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neural network models (AUC = 0.666 and 0.650, respectively). These specific individual algorithms had mediocre 
robustness and likely overfit to the training data due to limited dataset size.

Analyses of V-scores of DCIS/UDH Classification Models with Switched Datasets.  To provide 
a more comprehensive evaluation of the generalizability of the classification models, we switched the training 
and testing datasets for the V-scores (Table 3). We see similar trends in the performance of Dong et al.’s model as 
well as the L1-regularized LR, random forest, and convolutional neural network models with active features after 
switching the datasets for training and testing, confirming that the active feature optimization improves diagnosis 
accuracy. We also noticed an overall reduced accuracy of the models compared to results from the un-switched 
datasets due to the small training set and the larger testing set. We were unable to determine the V-score with 
switched datasets for LR with early stopping. The model splits the cases that are not in the testing set into a train-
ing set and a validation set and fails to run when the testing set is larger than the training set.

Analyses of Active Features from Validation of DCIS/UDH Classification Models.  We analyzed 
the 28 active features obtained from employing the L1-regularized LR model for validation across hospitals.

Application of CNN Model to Images.  In addition to implementing the six methods to the features data-
set, we applied the convolutional neural network model directly to the images to discriminate between DCIS and 
UDH classes. This algorithm has previously had impressive results on image-based machine learning benchmarks 
such as MNIST, an image database of handwritten digits14, 15. However, even after optimizations and data aug-
mentation, the CNN consistently predicted DCIS for all of the cases. The inability of the network to distinguish 
between the two classes was likely due to the extremely high variance of the image samples. The number, location, 
size, and other features of the tumor cells varied widely across samples of the same class, making identification of 
patterns and significant features difficult. Furthermore, deep learning algorithms tend to perform better on larger 
datasets and often overfit on smaller datasets.

Implications of Our Findings.  We developed an accurate model to distinguish between DCIS and UDH 
lesions. By using Dong et al.’s features extraction process, our dataset remained unbiased and free of manual 
intervention. We identified the active features using the L1-regularized logistic regression model, which was made 
more accurate with the optimal λ. This study is the first to combine models using the various algorithm predic-
tions to obtain a more accurate result for lesion type discrimination. By combining predictions, we developed a 
more reliable model. For the C-scores of all algorithms, we reduced variance resulting from the fold selection by 
running the methods 1000 times. Finally, we demonstrated the ability to apply our method to new data from a 
different hospital, revealing the real-time application across institutions.

Our model can be implemented across multiple laboratories for clinical practice. The algorithm can be used 
as a second-reader to identify suspicious cases when the pathologist’s diagnosis disagrees with the computational 

Figure 2.  The receiver operating characteristic (ROC) curve of our CAFE model of the combined and 
optimized L1-regularized and early stopping logistic regression algorithms is graphed in blue. This model 
achieved a V-score AUC of 0.918. The ROC curve of Dong et al.’s model of the L1-regularized logistic regression 
algorithm is in red. Their model achieved a V-score AUC of 0.858.

Algorithm V-score for Switched Datasets

L1-regularized LR from Dong et al. 0.757

L1-regularized LR with active features 0.827

Random forest with active features 0.662

Convolutional neural network with active features 0.631

Table 3.  The performance of Dong et al.’s model as well as the L1-regularized LR, random forest, and 
convolutional neural network models with active features after switching the datasets for training and testing.
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evaluation. Additionally, our methodology of feature extraction and combination of multiple algorithms pro-
vides a basis for conducting additional computational research for automated cancer diagnosis. This study can be 
replicated for further analysis using additional datasets from other hospitals. The optimization methods can be 
extended to biopsy images, for instance, of the lung, colorectal, and pancreas as well as applied to images for other 
classification and pattern recognition problems.

Conclusion and Future Work.  Our CAFE model was developed to distinguish the benign (UDH) from the 
malignant (DCIS) lesions. We optimized our results by reducing test result variance, optimizing the λ parameter, 
selecting active features, and combining algorithms. These strategies were used for our top-performing model, 
which achieved a V-score AUC of 0.918, significantly higher at a statistical p-value of 0.01 in comparison with 
Dong et al.’s V-score of 0.858, as well as with results from other studies6, 16–18. This increase is noteworthy consid-
ering that for every 100 patients, our model would on average correctly diagnose six more cases, preventing these 
individuals from receiving a potentially harmful mistreatment. Our CAFE model can help pathologists confirm 
their diagnoses and identify cases that may require additional analysis.

There are a few areas for development of our classification model. Further classification refinement can be 
made through the extension of our statistical model to discriminate low grade from high grade DCIS. The meth-
ods for optimization can also be applied to categorization in other fields of pathology such as classification of 
muscle weakness grades from ultrasound images19 and of the severity of cardiovascular disease from nuclear 
medicine images20 since they also rely on image segmentation and feature extraction.

Materials and Methods
In this study, we extracted features from patient breast biopsy images from two hospitals. We then input the 
features dataset into six predictive models of three machine learning classifier types. Finally, we evaluated the 
algorithms using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve as a score 
and implemented several optimization methods to improve prediction accuracy.

Patient Samples and Image Processing.  From two different hospitals, we obtained scanned images of 
breast biopsies of 167 patients, all of whom provided informed consent for study participation. The image dataset 
includes 80 cases of DCIS and 36 cases of UDH from the Massachusetts General Hospital (MGH), for which the 
Partners Human Research Committee approved the study. The dataset also includes 20 cases of DCIS and 31 
cases of UDH from the Beth Israel Deaconess Medical Center (BIDMC), for which the Beth Israel Deaconess 
Medical Center IRB approved the study. All methods were performed in accordance with the relevant guidelines 
and regulations. At both hospitals, the biopsies were processed using standardized procedures: formalin fixed 
and paraffin embedded tissue was cut into 5 µm sections and stained with hematoxylin and eosin. Per case, one 
slide per case was digitized using Philips Ultra Fast Scanner 1.6, and one to four diagnostic ROIs were manually 
selected for image analysis6.

We obtained a features dataset using Dong et al.’s algorithm on raw tissue sample images, the same as used 
in this study. After nuclei segmentation was performed using Fiji (ImageJ, National Institutes of Health), the 
algorithm computed 392 features for each case. Morphological features included geometric and physical meas-
urements such as area, perimeter, and Feret’s diameter, while statistical features included intensity and texture 
measurements under eight different color channels6. All images and data can be found at the following website: 
http://earlybreast.becklab.org/.

Machine Learning Algorithms.  We used six models from three classifier types to analyze the machine 
learning algorithm categories that worked best for the classification. The applied algorithms were L1-regularized 
logistic regression, logistic regression with early stopping, multilayer perceptrons, convolutional neural networks, 
random forests, and conditional inference forests. These algorithms represent the best-known and mostly widely 
used machine learning algorithms in the literature6, 21–30. Multilayer perceptrons and convolutional neural net-
works are the two deep learning algorithms, while the other four are categorized as either regression or decision 
tree-based learning. All the models produced final predictions through probability values on a scale from 0 to 1, 
with 0 strongly indicating that the sample is UDH, 1 strongly indicating that the sample is DCIS, and 0.5 indicat-
ing that the model is uncertain of the class to which the sample belongs. Table 4 summarizes the machine learning 
models we applied.

Two Logistic Regression Models.  The L1-regularized logistic regression model was implemented in the statistical 
computing language R with the glmnet package in R31, while the logistic regression model with early stopping 
was implemented using the Theano library in Python (https://github.com/Theano/Theano). Both algorithms fit 
the samples to a logistic curve by minimizing a loss function based on the feature values. The L1-regularized 
approach minimizes the absolute difference of each feature from its predicted value on the curve, reducing over-
fitting32. On the other hand, the regression algorithm with early stopping splits the samples not used for testing 
into a training set and a validation set. The model trains on the former set and prevents overfitting through ver-
ification on the latter set. Training is ceased when the model no longer improves its score on the validation set.

Multilayer Perceptron.  The multilayer perceptron (MLP) was implemented with the neuralnet package in R31. 
The network consists of a three-layer perceptron containing input, output, and hidden layers. The input layer 
has 392 nodes, one for each of the features. Our top-performing MLP model contains 30 nodes in the hidden 
layer, which is the typical number of active features observed in the logistic regression models. The input nodes 
are connected to the hidden layer nodes with edges, and weights are assigned to these edges to minimize the 
negative log-likelihood error of the training data. Ideally, the MLP would identify the most significant of the 392 

http://earlybreast.becklab.org/
https://github.com/Theano/Theano
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input features and incorporate them in the hidden layer33. The nodes in the hidden layer are also connected with 
weighted edges to two output nodes, corresponding to the likelihood of either UDH or DCIS. The model makes 
the final prediction between 0 and 1 by dividing the DCIS score by the sum of the UDH and DCIS scores.

Convolutional Neural Network.  The Convolutional Neural Network (CNN) was implemented in Python using 
the Theano library34. The CNN consists of two convolutional pooling layers that are not completely intercon-
nected as in the MLP. Instead, these layers undergo successive filtering and pooling, which isolate the most signifi-
cant features in each pooling region and also reduce the variation under translation of the input data35. The output 
from the pooling layers passes through a hidden layer and then an output layer, from which the final predictions 
are made.

Random Forests.  The random forest classification system was implemented with the randomForest package in 
R31. A random forest is an ensemble of decision trees, each of which is given a subset of n total features; see Fig. 3 
for an illustration. Although decision trees by themselves are prone to either high variance or bias, many errors 
counterbalance when compiled into an ensemble36. Since each tree is only given a random subset of size n  of the 
features, all trees are unlikely to become biased in the same manner36. The random forest algorithm used in this 
study computes its predictions by calculating the proportion of 10,000 decision trees that predict either of the two 
lesion classes for a given sample.

Conditional Inference Forests.  The conditional inference forest classification system was implemented in R with 
the party package31. This model does not consist of standard decision trees but rather of conditional inference 
trees, which typically use information measures such as the Gini coefficient to determine where to split the tree. 
Conditional inference trees also utilize multiple significance tests on the permutations of the features on the tree 
nodes. Ideally, this process helps to reduce some of the bias that can occur in standard decision trees37.

Optimization and Algorithm Development.  We implemented various methods to improve prediction 
accuracy. First, we reduced prediction randomness by establishing a reliable way to measure the accuracies of 
our models. We noticed that when measuring prediction scores, the randomness caused by seed selection could 
vary the results by up to 10%. To obtain reliable C-score predictions, we ran each model 1000 times on different 
splits of the dataset by setting the seed of the random number generator to a different value before each test. We 
then used the median, which is less prone to outliers and skewness, of the 1000 predictions as the final prediction.

Model Type Implementation Layers

L1-regularized LR Regression R (glmnet) 2 (input, output)

LR with early stopping Regression Python (Theano) 2 (input, output)

MLP Deep learning R (neuralnet) 3 (input, hidden layer, 
output)

CNN Deep learning Python (Theano) 5 (filtering, pooling, 
MLP)

Random forests Tree-based learning R (randomForest) Not applicable

Conditional inference 
forests Tree-based learning R (party) Not applicable

Table 4.  A summary of the various machine learning models that were applied to automate the lesion 
classification.

Figure 3.  An example decision tree with two features.
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Second, we applied active feature identification and extraction techniques. With a large set of features and a 
small sample set, we expected dependencies among the features and overfitting when using all the features to train 
the models. Therefore, we used the L1-regularized logistic regression algorithm to identify active features. We ran 
this model on all 392 features to obtain the optimal λ value. The features with a weight greater than zero corre-
sponding to this λ value were identified as “active features”. For the V-score predictions, we extracted 28 active 
features from all features. For the C-score predictions, we ran the logistic regression algorithm 1000 times with 
different seeds, extracting between 20–40 active features each time. We then ran the six algorithms on the selected 
feature sets for training and testing and used the median of the 1000 predictions to compute our final scores.

Finally, we combined the predictions of multiple algorithms to improve their accuracy. We observed that if an 
algorithm gave a correct DCIS/UDH prediction, a similarly performing algorithm tended to give the same pre-
diction, and if it missed, its score was on the borderline. Therefore, we expected the algorithms to reinforce each 
other when combined. We took the average of continuous prediction scores from multiple algorithms to compute 
the AUC-ROC value for the combined model. We based our methodology on bootstrap aggregating rather than 
decision fusion since we used regression models instead of binary classifiers. Thus, we capture more information 
from the models by averaging the predictions17.

Regarding code availability, the Python and R scripts for reproducing validation of our top-performing 
CAFE model can be accessed using our GitHub repository: https://github.com/evaniradiya-dixit/
CAFE-BreastLesionDiagnosis.
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