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Poisson Plus Quantification for 
Digital PCR Systems
Nivedita Majumdar, Swapnonil Banerjee, Michael Pallas, Thomas Wessel & Patricia Hegerich

Digital PCR, a state-of-the-art nucleic acid quantification technique, works by spreading the target 
material across a large number of partitions. The average number of molecules per partition is 
estimated using Poisson statistics, and then converted into concentration by dividing by partition 
volume. In this standard approach, identical partition sizing is assumed. Violations of this assumption 
result in underestimation of target quantity, when using Poisson modeling, especially at higher 
concentrations. The Poisson-Plus Model accommodates for this underestimation, if statistics of the 
volume variation are well characterized. The volume variation was measured on the chip array based 
QuantStudio 3D Digital PCR System using the ROX fluorescence level as a proxy for effective load 
volume per through-hole. Monte Carlo simulations demonstrate the efficacy of the proposed correction. 
Empirical measurement of model parameters characterizing the effective load volume on QuantStudio 
3D Digital PCR chips is presented. The model was used to analyze digital PCR experiments and showed 
improved accuracy in quantification. At the higher concentrations, the modeling must take effective 
fill volume variation into account to produce accurate estimates. The extent of the difference from 
the standard to the new modeling is positively correlated to the extent of fill volume variation in the 
effective load of your reactions.

Digital PCR is a state-of-the-art technique for measuring nucleic acid concentrations with high precision and 
accuracy. The digital method distributes target molecules into a large number of partitions such that each par-
tition gets a number of molecules (0, 1, 2, etc.), theoretically following a Poisson distribution. Performing PCR 
on these partitions results in amplification being detected (positives) in those partitions containing one or more 
target molecules and no amplification being detected (negatives) in those partitions containing zero molecules. 
As positives may contain more than one copy of the target molecule, a simple summing of the number of positives 
will not yield the correct number of target molecules present across the partitions. Poisson statistics are widely 
employed to estimate the total number of target molecules present within the interrogated sample. For a detailed 
review of standard digital PCR modeling and characteristics, refer to ref. 1. In digital PCR data analysis, the num-
ber of molecules per unit partition is estimated from the fraction of partitions not recording a molecule over an 
ensemble of partitions. The estimate is then divided by partition volume to obtain a measure of the concentration. 
In this case, for the purposes of computation, an ensemble of identically sized partitions is assumed where the 
occurrence of a molecule in each partition follows a Poisson process. But this technique is adversely affected, 
particularly at higher concentration, when partitions are not identically sized.

The effect of partition size variation is investigated with Monte Carlo simulations. Figure 1 shows the meas-
urement precision for each λ (molecules per partition) computed using 20000 partitions. In this simulation, the 
concentration of the target molecules is kept constant. The average number of molecules in a partition is propor-
tional to the volume of the partition. Precision is defined as the absolute value of the maximum deviation from 
the true rate (measured across the inner 90th percentile of simulation results) divided by the true rate. (Lower 
computed values, rising up the y-axis, are associated with higher precision and better measurement reproducibil-
ity). A normal distribution of partition sizes is assumed with the standard deviation taken as a percentage of the 
mean partition size.

Partition size variation impacts results for higher concentrations more significantly than for lower concen-
trations. The extent of the effect is positively correlated with the magnitude of partition size variation. This paper 
demonstrates how Poisson modeling can be extended to better estimate concentration when effective loads are 
not identically distributed. Current platforms supporting digital PCR use either array-based or droplet-based 
mechanisms to divide input sample into a large number of partitions. While array based systems have the advan-
tage of fixed partition sizes, other factors can influence the effective load. If the effective load variation can be well 
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characterized, adoption of the model proposed in this paper will enable precise measurements of target molecules 
despite load volume dissimilarities.

Results
The Poisson-Plus Model.  The Poisson-Plus Approximation Model.  For the standard Poisson model, the 
mean number of molecules per partition (λ) is assumed to be constant. For the new model, it is assumed that the 
λ in each partition is proportional to the size of the partition volume v as given as follows:

λ =v( ) Cv (1)

The constant of proportionality C in (1) is the average number of molecules per unit volume, or, the concentra-
tion. The joint probability distribution of a partition to both not contain a molecule (indicated by the phrase ‘neg’) 
and be of size v is constructed using Bayes’ theorem2, given as follows:

= vP(neg, v) P(neg )P(v) (2)

where P(neg|v) is the probability of a partition to register zero molecules for a given volume of the partition, and 
P(v) is a suitable probability density function for the partition volumes. P(neg|v) is the standard Poisson distribu-
tion with λ given by (1), evaluated at number of molecules = 0:
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For P(v), a normal distribution is first investigated. A normal distribution for variable v is a reasonable choice 
since nature abounds in examples in which quantities of interest are normally distributed. P(v), under assump-
tions of being normally distributed, is given by (4), where v0 is the mean and σ is the standard deviation:
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Note that the variable v in (4) can take negative values, which is unphysical so far as the problem at hand is 
concerned, since volume cannot be negative (addressed in the Poisson-Plus Model). Therefore, (4) is at best an 
approximation of the actual probability distribution followed by the partition volumes.

Substituting (3) and (4) into (2),
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A theoretical expression for P(neg) is obtained by integrating the volume variable out from the above expression, 
yielding:

∫= =
−∞

∞ σ −( )P(neg) P(neg, v)dv e (6)
1
2 C Cv2 2

0

For an experimentally measured value of P(neg), C can be computed using (6). The closed form expression for 
C, as calculated from (6), is given as follows:

Figure 1.  Effect of Partition Size Variation on Precision: Partition Size Variation affects precision significantly 
at higher concentrations1.
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It can be shown that approximating the effective partition volumes by a normal distribution is not a serious defi-
ciency in our model as long as the spread or the standard deviation of the partition sizes is small, or more pre-
cisely, the ratio of the standard deviation to the mean, σ

v0
, is sufficiently small. By sufficiently small, we mean 

enough that the left tail of the normal distribution goes close to zero for positive values of volume. A theoretical 

limit is imposed by =

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 as the term inside the square root in (7) starts to go negative 

beyond this point, yielding physically meaningless imaginary results.
Of these two solutions for C, only one is valid and the other is unphysical. To determine which solution should 

be retained, the σ → 0 limit of this expression is investigated. In that limit, C should be independent of σ as per the 
first order approximation and should resemble the expression obtained from using the Poisson distribution with 
no partition size variability. In (7) the solution for C with the negative sign reduces to the expected limit as σ goes 
to zero. It can be shown that for σ → 0, C with the negative sign in (7) becomes independent of σ and reduces to 
the same form, as in the case of standard Poisson formalism, given below.
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Hence the realistic solution for C is given by
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This solution is referred as “The Poisson Plus Approximation Model”, a complete derivation of which is provided 
in Additional Information, Appendix A. The term “approximation” is used to indicate that the mathematics used 
for the derivation of C has not taken care of the issue of negative partition sizes.

The Poisson-Plus Model.  In the more rigorous “Poisson Plus” model, it is assumed that the partition size follows 
a truncated normal distribution ℵ̂ v( ) with the parameter v0 and σ. A truncated Normal distribution is given as 
follows:
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The variable v in the above expression does not take negative values. Being a probability distribution function, the 
distribution satisfies the normalization condition ∫ σℵ =

∞ ˆ v dv( , ) 1
0 0 . Note that, v0 and σ are the parameters of the 

distribution, which, although related to the mean and the standard deviation of the measurements of partition 
size, are not exactly the same as those quantities.

Using (3) for P(neg|v) and (10) for P(v) in (2), the joint probability density of a partition not containing any 
molecules and being of size v is given as follows:
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Next, the variable v can be integrated out as in (6) to yield the probability of negatives only:

∫=
∞

P(neg) P(neg, v)dv (12)0

Using (11) in (12) and carrying out the integration (as shown in Additional Information, Appendix B3), the final 
expression for P(neg) is given as follows:
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For a given P(neg), C, the quantity of interest, has to be solved for implicitly by using numerical methods. This 
solution is referred as “The Poisson Plus Model”. This version is implemented in QuantStudio 3D AnalysisSuiteTM 
Cloud Software from Thermo Fisher Scientific4, 5, where this algorithm was first released to the public in July 
2015. In the software, the mean and standard deviation from empirical measurements (discussed in the next 
section) are directly used for v0 and σ as given in above equations. For most practical purposes this is adequate. 
Simulation investigations indicate that as long as the standard deviation to the mean ratio is under some reason-
able limit, the parameters v0 and σ closely follow the mean and the standard deviation of the truncated Gaussian 
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distribution. In the unlikely event of further variation, one needs to specifically estimate v0 and σ, calculated from 
the mean and standard deviation of available data, for use in the model.

The Poisson Plus Approximation as a Limiting Case of the Poisson Plus Model.  It is noted here that as →σ 0
v0

, the 

multiplicative factor 
σ
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, appearing in (13), goes to 1. Hence (13) reduces to (6). This verifies that, as 

expected, “Poisson Plus Approximation” emerges as an approximation of the “Poisson Plus” model.
An alternate model for accommodating partition size variation was proposed by Huggett, et al.6, heretofore 

referenced as the HCF (Huggett-Cowen-Foy Model). The next section presents a comparison of performance 
across the two versions of the Poisson Plus, the HCF and the Poisson models.

Simulation Results.  Monte Carlo simulations were run to demonstrate the remedial effects of quantification 
using alternate modeling that accounts for non-uniform partition size in Poisson processes. These simulations 
assume that the probability of a partition of capturing the molecule is proportional to the size of the partition. A 
normal distribution of partition sizes is assumed with the standard deviation taken as a percentage of the mean 
partition size. The steps of generating the simulation data are outlined in Additional Information, Appendix C.

Results from the Poisson Plus, the Poisson Plus Approximation, the Poisson and the HCF models are com-
pared in Fig. 2 in terms of the measurement inaccuracy and precision. Inaccuracy is measured as the ratio of the 
absolute difference of the mean quantification from the trials and the expected concentration, to the expected 
concentration. The lower the inaccuracy the better. Precision is measured as the ratio of the absolute difference of 
the 95% confidence bound of the quantification across the trials and the expected concentration, to the expected 
concentration. The lower the precision the better.

Three levels of variation are considered: 10%, 20% and 30% of the mean partition size. Note that typical fill 
volume variation in QuantStudio 3D chips is under 10%. The higher levels of fill volume variation used in these 
simulations demonstrate the capabilities of the model. An N of 20000 partitions was used in the simulation. Each 
simulation was run for 10000 iterations. All models taking partition size variation into account perform better 
than standard Poisson when variation in partition size is present, beyond 400 copies/microliter. The Poisson Plus 
models have better accuracy beyond 1000 copies/microliter for more than 20% variation. Later sections show the 
performance of the model with experimental data.

Measuring The Model Parameters For QuantStudio 3D Digital PCR Platform.  Using an L20 pipette, 12.5 or 14.5 
μL (nominal) reaction mix was loaded onto the chips and the chips sealed using the standard procedure. The 
actual volume loaded was determined with a gravimetric study on the actual volume of reaction mix dispensed by 

Figure 2.  Comparison of performance across the two versions of the Poisson Plus, the HCF and the Poisson 
models in terms of A. Inaccuracy and B. Precision. The lower these values the better. All models taking partition 
size variation into account perform better than standard Poisson when variation in partition size is present, 
beyond 400 copies/microliter. The Poisson Plus models have better accuracy beyond 1000 copies/microliter for 
more than 20% variation.
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the pipette. The volume loaded that is used for the average well calculation is the adjusted sample volume, adjusted 
for the difference in weight. No liquid was left over after loading and no liquid in between the through-holes was 
observed, ensuring zero dead volume in these measurements. Five different lots of chips were used. The average 
well volume for each chip was determined by dividing the adjusted sample volume by the number of filled wells.

Measuring the Average Effective Load Volume.  Digital PCR experiments were conducted on the QuantStudio 
3D Digital PCR System to measure the average through-hole fill volume. Experiments here present volume dis-
tribution profiles independent of instrument. Since the final quantification result is obtained by converting the 
number of molecules per partition to the number of molecules per unit volume, an accurate estimate of the mean 
volume has a large impact on the result. Corbisier et al.7 provide empirical evidence highlighting the importance 
of partition size in digital PCR quantification. Gravimetric measurements were made to accurately estimate the 
mean fill volume. The details of the materials and methods used in this experiment are included in Methods. 
The total volume loaded on the chip was divided by the total number of through-holes receiving master mix as 
indicated by their ROX fluorescence. Figure 3 shows the median fill volume measured from 96 chips. The blue 
box encloses the data between the 1st and 3rd quartile. The tails extend to 1.5 times the interquartile range. There 
are no outliers observed in this dataset. The median value of this dataset at 755 picoliters is chosen to represent 
the average through-hole fill volume. The mean fill volume at 754.72 picoliters, with a 3.03 percent coefficient of 
variation, was not much different from the median measurement. Note that even though array partition sizes are 
highly uniform, there may be additional factors that impact the fill volume that is accrued in each partition. It is 
this variation that is reflected in the measurements in Fig. 3 and we can correct for it with the modeling proposed 
in this paper.

Measuring the Coefficient of Variation for Effective Load Volume.  For the QuantStudio 3D Digital PCR System, a 
direct measurement of the effective through-hole fill volume was challenging. A proxy measurement from every 
through-hole was used instead. Since the ROX dye is present in the master mix and quantified separately for each 
through-hole, the coefficient of variation in the ROX measurement could potentially be used as a proxy measure. 
Experiments here present a volume distribution profile independent of instrument.

Figure 4 demonstrates the relationship between the average ROX fluorescence and the average fill volume 
using 36 chips. ROX fluorescence increases with increase in fill volume with a correlation coefficient of 0.81. 
As higher volumes have higher numbers of ROX fluorophores, it makes logical sense that higher volume shows 
higher ROX.

ROX measurements used to compute the average and the variance are taken from a single population of 
through-holes: either positives or negatives. If a negative population with more than 50 points is available in the 
central region, those are used. Otherwise, the population of positives in the central region is used. The edge areas 
of the chip are avoided because they are more susceptible to a variety of edge effects such as evaporation. The 
central part of the chip is more resistant to effects from evaporation. A set of chips are manufactured together on 
a wafer. It is seen that the average volume measured between adjacent chips manufactured on same wafer using 
all wells, do not show a significant variance. Thus, the estimates shown here based upon through-hole from the 
central region of the chip can be reliably applied to the whole chip.

A linear relationship between average volume and average ROX is hypothesized. Specifically, in this dataset, 
the linear fit is given by Eq. (14).

= . × −R 4454 4 v 541 (14)

Now, taking the mean and standard deviations, we get:

= . × −R 4454 4 v 541 (15)

Figure 3.  Median fill volume measured from 96 chips [Part #100027736].
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= . ×std(R) 4454 4 std(v) (16)

Algebraic rearrangement yields the expression for the coefficient of variation as:
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Assuming a mean through-hole fill volume of 755 picoliters:

= . ×CV 1 0002 CV (18)R v

It is thus reasonable to assume CV in ROX is representative of the CV in through-hole fill volume. In QuantStudio 
3D AnalysisSuite Cloud Software, as ROX readings are available for each chip, the coefficient of variation is esti-
mated on a per chip basis, which is, in turn, used to correct for the level of variation that is present for each chip 
analyzed. The mean volume used is fixed as part of the manufacturing specification, estimated as discussed in last 
section using gravimetric measurements.

Note that the chips here (Fig. 4) were deliberately overloaded and under loaded to tease out the relationship 
of the observable ROX measurement with the fill volume, to establish that ROX levels are acceptable as a proxy 
measure for through-hole fill volume. Therefore, the fill volume here is different from the 755 picoliters reported 
earlier (Fig. 3), where the intent of the experiment was to establish the mean fill volume when an experiment is 
performed following recommended protocol.

Discussion
A set of samples was quantified using digital PCR on the QuantStudio 3D Digital PCR system. Details on the 
experimental material and methods are presented in Methods per recommended practices 8.

The positive and negative calls for each qualified through-hole were made using the QuantStudio 3D 
AnalysisSuite Cloud Software. The standard Poisson and the proposed Poisson Plus models were applied to get 
the quantification results.

Two sets of experiments are presented. Up to 6 replicate chips were run at each concentration shown in the first set 
of experiments. Figure 5 uses data from the first set of experiments. The p values from a t-test between results from the 
Poisson and the Poisson Plus modeling at each concentration is given as follows: 0.00000117, 0.04, 0.000003, 0.0002, 
0.000004. The results suggest a significant difference in the means of the two distributions at the 95% confidence level 
at these concentrations. Two outliers were excluded at the third concentration because of which a p value could not be 
computed. Figure 5 suggests that the Poisson Plus modeling is more accurate than Standard Poisson as the Poisson Plus 
results lie closer to the line of equivalence (where the quantification perfectly matches the expected results).

Figure 6, constructed from the same set of experiments as Fig. 5, focusses on a different concentration range. 
The p values from a t-test between results from the Poisson and the Poisson Plus modeling at each concentra-
tion is given as follows: 0.8585, 0.4001, 0.7380, 0.0087, 0.5780, 0.9773. The results suggest that the difference 
between the standard Poisson and the Poisson Plus Model are insignificant at the 95% confidence level at these 
low concentrations.

Figure 7, constructed from the second set of experiments show that the standard Poisson and the Poisson Plus 
Model produce a much higher difference in results at the higher concentration. The p values from a t-test between 
results from the Poisson and the Poisson Plus modeling at each concentration is given as follows: 0.00000117, 
0.04, 0.000003, 0.0002, 0.000004. The results suggest a significant difference in the mean results produced by 

Figure 4.  Relationship of average well fill volume to average ROX fluorescence from the chip center using 36 
chips is presented. ROX increases with increase in volume with a correlation coefficient of 0.81. Hence, the 
variation in volume IS REFLECTED by variation in ROX. A linear relationship between average fill volume and 
average ROX is hypothesized. Specifically, in this dataset, the linear fit is given by: R = 4454.4*v − 541.
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Poisson and Poisson Plus modeling at the 95% confidence level at these concentrations. The majority of the mean 
Poisson Plus results are closer to the line of equivalence constructed with the expected results, suggesting a greater 
accuracy of the Poisson Plus Model at these concentrations.

Note that there are three effects. The standard Poisson model underestimates by larger amounts as the concen-
tration increases; therefore, the magnitude of the correction from models taking load variation into account also 
increases with concentration. The second effect is that, a given chip has a certain load variation. The larger that 
load variation, the larger is the magnitude of the correction. This is independent of the concentration. The spread 
of the data for each concentration in the figure is a third effect, which reflects the normal experimental variation, 
independent of both the concentration and the extent of volume variation measured on the chip.

Note that sources of variation other than volumetric variation, can, in principle be all lumped into the sigma 
parameter of the Poisson Plus model. Figure 8 shows the recomputed results using a fixed scaling factor applied to 
the ROX variation assessed from each chip. When the sigma parameter in Poisson Plus is set to twice the coeffi-
cient of variation in ROX, assessed on a per chip basis, the linear fit of the data lies almost on top of the X = Y line, 
demonstrating the efficacy of this correction when the levels of variation is appropriately characterized. However, 
this is not a strategy we adopted in the software, as the characterization of the appropriate factor would require 
much larger studies, not available to us at this time.

Figure 5.  The p values from a t-test between results from the Poisson and the Poisson Plus modeling, at each 
concentration, is given as follows: 0.00000117, 0.04, 0.000003, 0.0002, 0.000004. The results suggest a significant 
difference in the means of the two distributions at the 95% confidence level at these concentrations. The mean 
result from each model along with a ± one standard deviation around this mean value is shown in the figure. 
The Poisson Plus results are consistently closer to the line of equivalence constructed with the expected results, 
suggesting a greater accuracy of the Poisson Plus Model at these concentrations.

Figure 6.  The p values from a t-test between results from the Poisson and the Poisson Plus modeling, at each 
concentration is given as follows: 0.8585, 0.4001, 0.7380, 0.0087, 0.5780, 0.9773. The results suggest that the 
difference between the standard Poisson and the Poisson Plus Model are insignificant at the 95% confidence 
level at these low concentrations. The mean result from each model along with the ± one standard deviation 
around this mean value is shown in the figure.
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Poisson based quantification is sensitive to effective load variability, particularly at higher concentrations. A 
novel modeling for estimating the concentration is presented in this paper for the case where there is finite varia-
tion in effective load volume of each partition. We have shown that models taking this variation into account can 
be harnessed to reproducibly quantify results despite the variation. The key to the success of these models is in the 
correct assessment of the true levels of variation of the effective load volume. Data demonstrate improved preci-
sion and comparable linearity at the higher end of the concentration spectrum between the uses of the Poisson 
Plus verses the Poisson models for quantification.

While the described Poisson Plus models may fail if the partitions aren’t distributed following a truncated 
normal or normal distribution, the general approach to addressing the problem will remain valid. However, new 
expressions for the concentration will need to be derived using a suitable partition size distribution model.

The QuantStudio 3D Digital PCR System and the QuantStudio 3D AnalysisSuite Cloud Software from Thermo 
Fisher Scientific are For Research Use Only. Not for use in diagnostic procedures.

Methods
Experiment I.  Data in Figs 3 and 4.

Assays.  TaqMan® Copy Number Reference Assay, RNase P, Human (VIC), (PN4403326); Hs04107718_cn, 
TaqMan® Copy Number Assay, GLA (Thermo Fisher Scientific).

Figure 7.  The p values from a t-test between results from the Poisson and the Poisson Plus modeling at each 
concentration is given as follows: 0.00000117, 0.04, 0.000003, 0.0002, 0.000004. The results suggest a significant 
difference in the mean results produced by Poisson and Poisson Plus modeling at the 95% confidence level at these 
concentrations. The mean result from each model along with a ± one standard deviation around this mean value is 
shown in the figure. The majority of the mean Poisson Plus results are closer to the line of equivalence constructed 
with the expected results, suggesting a greater accuracy of the Poisson Plus Model at these concentrations.

Figure 8.  Recomputed results using a fixed scaling factor applied to the ROX variation assessed from each 
chip. When the sigma parameter in Poisson Plus is set to twice the coefficient of variation in ROX, assessed on 
a per chip basis, the linear fit of the data lies almost on top of the X = Y line, demonstrating the efficacy of this 
correction when the levels of variation is appropriately characterized.
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Sample.  Control DNA (from CEPH Individual 1347-02), (PN 403062) (Thermo Fisher Scientific), diluted to 
approximately 100 copies/μL RNaseP and 200 copies/μL of GLA.

Protocol.  Reaction mixtures were prepared by combining genomic DNA, RNase P assay, GLA assay, and 
QuantStudio™ 3D Digital PCR Master Mix v2 (PN A26358), according to the manufacturer’s instructions. Each 
reaction mixture was loaded onto a QuantStudio 3D Digital PCR Chip v2 (PN 100027736).

For all experiments, chips were run on a ProFlex™ 2 x flat PCR System (Applied Biosystems™) cycled with the 
following conditions: 10 min at 96.0 degree C; then 39 cycles at 60.0 degree C for 2 min, 30 s at 98.0 degree C; and 
a final elongation step of 2 min at 60 degree C. End-point fluorescence data were collected on the QuantStudio 
3D Digital PCR instrument and analyzed using the QuantStudio 3D AnalysisSuite software (Thermo Fisher 
Scientific).

Experiment II.  Data in Figs 5 and 6.

Assays.  BCR-ABL1 primers and probe: ENF501_F (5′-TCCGCTGACCATCAAYAAGGA-3′), ENF561_R 
(5′-CACTCAGACCCTGAGGCTCAA-3′), ENP541 (6FAM-5′-CCCTTCAGCGGCCAGT-3′-MGB).

ABL1 primers and probe: ENF1003_F (5′-TGGAGATAACACTCTAAGCATAACTAAAGGT-3′), ABL1063_R 
(5′-GATGTAGTTGCTTGGGACCCA-3′), ABL1043 (VIC-5′-CATTTTTGGTTTGGGCTTC-3′-MGB).

Sample.  A dilution series was prepared using the ERM-AD623 plasmid (produced by the European Commission 
for Reference Materials), a reference vector containing the BCR-ABL1 exonic fusion and ABL1 seqeunce.

Protocol.  Reaction mixtures were prepared by combining plasmid, BCR-ABL1 assay and ABL1 assay at a final 
primer concentration of 900 nM each and probes at a final concentration of 250 nM, and QuantStudio™ 3D 
Digital PCR Master Mix (PN 4482710), according to the manufacturer’s instructions. Each reaction mixture was 
loaded onto a QuantStudio 3D Digital PCR Chip (PN 4482954) for quantification.

Experiment III.  Data in Fig. 7.

Assays.  TaqMan® Copy Number Reference Assay, RNase P, Human (VIC), Catalog # 4403326; (Thermo Fisher 
Scientific).

Sample.  Varying amounts of a plasmid containing the amplicon of the RNase P assay.

Protocol.  Reaction mixtures were prepared by combining dilution series of plasmid DNA, RNase P assay, and 
QuantStudio™ 3D Digital PCR Master Mix v2 (Cat # A26358), according to the manufacturer’s instructions. Each 
reaction mixture was loaded onto a QuantStudio 3D Digital PCR Chip v2 (PN 100027736) for quantification.

Conclusion
The Poisson-Plus Model for quantification of results of a digital PCR experiment, first released to public in July 2015 
as part of the QuantStudio 3D AnalysisSuite Cloud Software from Thermo Fisher Scientific, is presented. The model 
accommodates for the underestimation caused by using standard Poisson model in the presence of fill volume variation 
of individual reactions. The fill volume variation was measured on the chip array based QuantStudio 3D Digital PCR 
System using the ROX fluorescence level as a proxy for effective load volume per through-hole. Monte Carlo simula-
tions demonstrated the efficacy of the proposed correction. The model was used to analyze digital PCR experiments 
and showed improved accuracy in quantification. Particularly at the higher concentrations, the modeling takes effective 
fill volume variation into account to produce more accurate estimates. The extent of the difference from the standard 
to the new modeling is positively correlated to the extent of fill volume variation in the effective load of the reactions.
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