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Conservation priorities for 
endangered Indian tigers through a 
genomic lens
Meghana Natesh1,2, Goutham Atla1, Parag Nigam3, Yadvendradev V. Jhala3, Arun Zachariah4, 
Udayan Borthakur5 & Uma Ramakrishnan1

Tigers have lost 93% of their historical range worldwide. India plays a vital role in the conservation of 
tigers since nearly 60% of all wild tigers are currently found here. However, as protected areas are small 
(<300 km2 on average), with only a few individuals in each, many of them may not be independently 
viable. It is thus important to identify and conserve genetically connected populations, as well as to 
maintain connectivity within them. We collected samples from wild tigers (Panthera tigris tigris) across 
India and used genome-wide SNPs to infer genetic connectivity. We genotyped 10,184 SNPs from 38 
individuals across 17 protected areas and identified three genetically distinct clusters (corresponding 
to northwest, southern and central India). The northwest cluster was isolated with low variation and 
high relatedness. The geographically large central cluster included tigers from central, northeastern and 
northern India, and had the highest variation. Most genetic diversity (62%) was shared among clusters, 
while unique variation was highest in the central cluster (8.5%) and lowest in the northwestern one 
(2%). We did not detect signatures of differential selection or local adaptation. We highlight that the 
northwest population requires conservation attention to ensure persistence of these tigers.

Genetic variation and its partitioning across populations helps inform evolutionary history, population connec-
tivity, and demographic fluctuations1, 2. Such information is particularly important for endangered species, where 
conservation strategy and management planning depends on accurate detection of species status, population 
structure and connectivity, inbreeding, adaptive variation, admixture, and population demographic history2.

Until recently, highly polymorphic microsatellites  were the markers of choice for conservation genetic stud-
ies3. Rapid development of next generation sequencing (NGS) has facilitated survey of genome-wide variation. 
Such data has helped identify African savannah (Loxodonta africana) and forest elephants (Loxodonta cyclotis) 
as separate species4, detect cryptic population structure in chimpanzees (Pan troglodytes)5, reveal local adapta-
tion in giant panda (Ailuropoda melanoleuca) populations6 and quantify genetic diversity in Tasmanian devils7 
(Sarcophilus harrisii). Genome-wide Single Nucleotide Polymorhphisms (SNPs) have been developed for mon-
itoring populations in the wild, including bears8 (Ursus arctos), wolves9 (Canis lupus) and river otters10 (Lontra 
canadensis). Several thousands of SNPs provide higher statistical power in comparison to examining a limited 
number of microsatellites, resulting in more robust population genetic inference11, 12.

Many large carnivores are currently threatened, with around 61% of them designated as ‘threatened’13 by the 
IUCN redlist. A majority of them have suffered range reduction and fragmentation, with surviving individuals 
restricted to small isolated populations that tend to have low genetic variation and a high probability of extinc-
tion14. Identifying such populations can help devise conservation strategies to avoid inbreeding depression, aid 
in population recovery and plan assisted gene flow for genetic rescue. Such strategies have been implemented 
effectively in carnivores like the Florida panther15 (Puma concolor coryi). However, genetic rescue could be 
counter-productive if populations are locally adapted16. Conservation strategy must consider the relative risks of 
inbreeding and outbreeding depression before genetic rescue is implemented17.
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Tigers have lost an estimated 93% of their historical range18. Of the nine tiger subspecies, four are extinct 
(P. tigris sondaica, P. Tigris balica, P. tigris virgata, and P. tigris amoyensis). The remaining five subspecies have 
experienced intense population bottlenecks (e.g. 90% decline in the Indo-Chinese tigers)19, 20 in historical times 
and prolonged reduction in distribution21. Tiger conservation and recovery is a global priority as exemplified 
by several international efforts (e.g. Global Tiger Forum). Recent surveys suggest an increase in tiger numbers22 
indicating the success of such initiatives.

The Indian subcontinent is home to more than 60% of all tigers and harbors over half the global genetic 
diversity of the species23. Securing the future of Indian tigers is critical for survival of the species. From a time 
when tigers were widespread24, today tigers survive in small (median = 19, mean = 35)25, often isolated popu-
lations, many of which may not be viable on their own. Tiger monitoring is conducted at the scale of protected 
areas or geographically defined landscapes (e.g., central India) with clustered protected areas. Data on historical 
occupancy of Indian tigers24 reveals relatively continuous distributions. This implies that tiger genetic clusters 
may have wider geographical extents than currently monitored landscape units, as supported by microsatellite 
data20. However, tiger monitoring surveys indicate that tiger populations within some geographic landscapes have 
become isolated and habitat connectivity between others is tenuous25. Additionally, these landscapes represent 
different biogeographic zones, such as the Semi-Arid or the Western Ghats, with distinctive habitats26 such as 
grasslands, subtropical moist forests, mangroves and tropical dry forests27. Given their wide distribution, tigers 
may be categorized as generalist species. However, tiger populations living in different habitats may potentially 
be locally adapted; in such cases genetic rescue may not be considered a valid conservation strategy17. Therefore, 
understanding the spatial extent of genetic clusters as determined by genetic connectivity and local adaptation is 
essential for conservation.

In this paper, we collect genome-wide SNP data from wild tigers to better understand how protected 
area-based populations in India are segregated into genetic clusters. We investigate the following questions: (i) 
what are the genetic clusters for tigers in India? (ii) how is genetic variation distributed among these genetic clus-
ters? (iii) are there any signatures of differential local adaptation between these clusters?

Results
Sequencing Data, SNP calling, and Filtration.  The total number of retained reads per sample varied 
from 4,869 to 12,882,482, with an average of 4,118,660 (as seen in the output of process_radtags command from 
the program Stacks28). After alignment, the program Stacks was used to assess the depth at unique loci obtained 
per individual. The number of unique loci (as called by Stacks) obtained per sample (Table S2) was also highly 
variable, ranging from 1 to 693,476, with an average of 268,964. The raw vcf file (after calling SNPs in Freebayes29) 
had 1,527,595 loci. This vcf file was passed through several filters, as mentioned in the methods. In the final data-
set, only individuals with less than 25% missing data (although the average percentage of missing data was much 
lower at 4.2%) and SNPs with less than 5% missing data were retained. Details of samples removed are presented 
in Table S3.

Genetic Differentiation.  Genetic differentiation was assessed using 10,184 SNPs from 38 samples. Tigers 
from across India (Fig. 1) were partitioned into three major clusters in all analyses. Further sub-structuring 
within one cluster was indicated by most analyses. The three clusters identified by Admixture (best support for 
K = 3) and PCA (Fig. 2a,c), geographically coincided with individuals in the northwest, central and southern 
India. The first cluster, designated as the ‘NW’ cluster, was solely composed of individuals from a single protected 
area in the northwest region - Ranthambore (Fig. 1). The third cluster, designated ‘SI’, was comprised of all sam-
ples from southern India (Fig. 1). The remaining individuals formed a single cluster designated as ‘C’. Within this 
cluster, northeast samples (Arunachal, Kaziranga and Morigaon), Bandhavgarh and Simlipal derived between 12 
and 21% of their ancestry from the other two clusters.

Cluster C was further subdivided into ‘N’ (comprising individuals from the North), ‘NE’ (northeast individ-
uals from Kaziranga, Morigaon and Arunachal) and ‘CI’ (remaining individuals from central India), supported 
to varying degrees by different analyses. The phylogenetic network (Fig. 2d) showed two further splits in the C 
cluster separating out N and NE, although these were shallower splits in comparison to SI and NW. Network 
analysis also supported the presence of hierarchical structure (Fig. 3a). At a low threshold of genetic similarity 
(0.16), three clusters were inferred, consistent with our clustering analyses. However, two individuals from central 
India were assigned to the NW cluster (albeit with very low affinity – Fig. S11). Community detection at higher 
thresholds (0.163, 0.165), identified four clusters, splitting C into a north- northeast (N-NE) and a CI cluster. A 
further increase in threshold (0.167) separated individuals from the northeast, Bandhavgarh and Simlipal into a 
fifth cluster. Admixture results for higher values of K (Fig. 2a) also supported this inference. Estimates of ancestry 
coefficients (range: 0.00001–0.99998, at K = 3) are provided in supplementary materials (Table S6).

Summary Statistics.  Theta (H) was highest for C (0.48), intermediate for SI (0.35) and lowest for NW 
(0.22) (Table 1). Mean heterozygosity (He, Table 1) followed a similar trend. Inbreeding coefficients (Fig. S5) were 
higher in NW (mean = 0.48) compared to other clusters. Pair-wise relatedness estimates (Supplementary Fig. S4) 
revealed two samples from Ranthambore were identical (pair-wise relatedness = 0.9) and hence one of these indi-
viduals was removed from all analyses. Overall, relatedness was high in NW as well (range = 0–0.5, mean = 0.27) 
compared to those in other protected areas, e.g. Kanha (0) and Wayanad (range = 0–0.45, mean = 0.19), and other 
genetic clusters (C: range = 0–0.65, mean = 0.08).

Pair-wise FST, estimated assuming three clusters (NW, C, SI), was highest for the NW–SI comparison (0.35, 
Table 2). When assuming five genetic clusters (NW, N, NE, CI and SI), with N, NE and CI combined as a 
group (Table 3), AMOVA revealed that 65.32% (Vd) of the total variation observed was due to variation within 
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individuals (p value = 0). Variation contributed by differences among groups (Va), although not statistically sig-
nificant (p value = 0.09), was much lower (9.26%). FIS was higher in CI and NE clusters (Table 4).

Isolation by Distance.  A Mantel test revealed a positive correlation between genetic (DPS, based on propor-
tion of shared alleles) and geographic distances (Mantel’s R = 0.62, p-value = 0.001). This positive relationship was 
observed only at short distances (Fig. S6). The Mantel’s correlogram (Fig. S7) confirmed this positive relationship 

Figure 1.  Map depicting tiger reserves in India. The total number of samples obtained for the study was 54 
from across 21 locations (Table S1). Sample size from each location is denoted by ‘N’. Of these samples however, 
only 38 were used for the final analyses. The map was generated using the ArcGIS software (Desktop), an 
ESRI product version 10.2. (http://www.esri.com/software/arcgis/arcgis-for-desktop). The forest cover map, 
published in the State of Forest report-2013 (http://fsi.nic.in/cover_2013/sfr_forest_cover.pdf), was purchased 
from the Forest Survey of India, and the Protected Area boundaries from the Wildlife Institute of India, 
Dehradun.
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Figure 2.  Genetic clusters inferred using multiple methods. (a) Genetic clusters inferred at different values of 
K (2–5) in Admixture. Each vertical bar indicates a single individual, with the Y axis depicting the proportion 
derived from each cluster. The optimal suggested value of number of clusters was K = 3. The cluster names above 
indicate clusters detected at K = 3, and K = 5. (b) An illustration to depict the geographical extant of the three 
clusters inferred at K = 3. The figure was generated in QGIS version 2.0.1. (https://qgis.org/downloads/). The 
polygons have been added just for illustrative purposes. (c) Principal components analysis depicting the first 
and second principal components. The percentage of variation explained is given in brackets. (d) A phylogenetic 
network constructed in SplitsTree4. Sample names have been coloured for the purpose of representation only.

Figure 3.  Networks plotted at four thresholds of genetic similarity. (a) Each panel (i–iv) in the figure depicts 
the threshold of genetic similarity used to connect individuals – 0.160–0.167, With increasing thresholds, 
dissimilar populations break off into separate modules. NW and SI separate into modules at a low threshold. 
Differentiation within C is evident at higher thresholds. Individuals are geographically placed. (b) Test of 
significance of modularity at each genetic similarity threshold. 5000 permutations were done to generate the 
distribution of the permuted data. The red line indicates the observed modularity.
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over distances of less than 500 km (Mantel’s R = 0.79, p-value = 0.001). Further increase in geographic distance 
did not result in increase in the genetic distance.

Genetic Diversity.  For almost all sample sizes, NW had the lowest genetic diversity and C had the highest 
(Fig. 4a). Much of the diversity (Venn diagram, Fig. 4b) was shared across all groups (~62%) with private varia-
tion being much lower (NW - 2%, SI - 4% and C - 8.6%, when considering three clusters). Individually, the NW 
and C clusters represented the lowest and the highest proportion (~73% and ~91% respectively) of total diversity 
in Indian tigers. Therefore, the combined diversity of NW and SI accounts for about 91% of the total genetic 
diversity (Fig. 4c). However, CI and SI together account for 97% of the total diversity.

Climate and vegetation based differentiation of tiger reserves.  The PCA including all points across 
India showed a gradient of separation of tiger reserves along PC2 – mainly driven by precipitation (Figs S13 and 
S14). When only points falling within tiger reserves were plotted, the protected areas showed a north to south 
gradient, while the northeast regions showed separation along a different axis (Fig. S16). Multiple temperature 
and precipitation variables contributed to the two PC axes (Fig. S15).

Loci under Selection.  The Bayescan analysis did not identify any outlier loci (Fig. S8) at a false discovery 
rate (FDR) of 0.05.

Discussion
In this study, we investigated population differentiation and genetic diversity of Indian tigers using 10,184 SNPs 
typed for 38 wild individuals from 17 protected areas (PAs). Bayesian clustering, PCA plots and isolation by 
distance tests establish genetic differentiation within the Indian subcontinent. Our data and analyses reveal that 
tiger populations in India cluster into three genetic groups that broadly map onto geographic tiger landscapes and 
represent groups of proximate protected areas. A large proportion of genetic diversity is shared between clusters, 

NW C SI

Theta (H) 0.22 0.48 0.35

Mean He (sd) 0.18 (0.22) 0.33 (0.16) 0.26 (0.2)

Mean Ho
#(sd) 0.38 (0.22) 0.25 (0.15) 0.33 (0.19)

Table 1.  Summary Statistics. The table summarizes summary statistics (He, Ho, Pair-wise FST and Theta (H)) 
for the three main population clusters inferred at K = 3. #These values are estimated based only on the number 
of polymorphic loci in each cluster (NW = 4482, C = 9601, SI = 7272).

NW C SI

NW 0

C 0.24* 0

SI 0.35* 0.16* 0

Table 2.  Pair-wise FST comparisons. (*) indicates values are significant at p < 0.05.

variation (%) F statistics p

Among groups (Va) 9.26 FCT 0.09 0.09

Among populations within groups (Vb) 16.48 FSC 0.18 0

Among individuals within populations (Vc) 8.94 FIS 0.12 0

Within individuals (Vd) 65.32 FIT 0.35 0

Table 3.  AMOVA (assuming 5 populations; N, NE, CI one group).

Pop FIS p value

NW 0.03 0.36

N 0.08 0.18

NE 0.24 0.15

CI 0.18 0

SI 0.08 0.09

Tablee 4.  Population-specific FIS indices.
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while population specific diversity is variable but low. Importantly, from a conservation perspective, our study 
reveals an isolated tiger population with low genetic diversity.

Our analyses reveal that tigers from the NW cluster (Ranthambore) are genetically isolated. Such genetic iso-
lation is supported by the fact that they form a distinct cluster in structure analysis (Fig. 2a) and have the highest 
pair-wise FSTs (Table 2) with other genetic clusters. They separate from other individuals in the network analy-
sis, even at low thresholds of genetic similarity (Fig. 2, 0.16). Geographically, Ranthambore is poorly connected 
to other tiger conservation landscapes30. Historically, tigers extended further northwest of Ramthambore into 
Pakistan, but went locally extinct in the early 1900s31. Genetic data reveal that northwest tigers and these extinct 
populations were connected to other tiger populations in the past20. More recently, tiger populations from the two 
closest PAs to Ranthambore, Panna and Sariska, were extirpated (2009 and 2004 respectively)32, 33. Together, this 
makes Ranthambore the western-most extant population of wild tigers today.

Our data also suggest that genetic diversity in Ranthambore is much lower in comparison to all other genetic 
clusters (theta (H) = 0.21), possibly due to small effective size and/or isolation. Low genetic variation contributes 
to higher extinction risk in wild populations14. Deleterious mutations also accumulate in small populations (e.g. 
Woolly mammoths (Mammuthus primigenius)34). While we point out that our data contain some related indi-
viduals (as measured by the p^ statistic, Fig. S4), we reanalyzed population structure excluding these (supple-
mentary materials). Ranthambore individuals (2 samples) still form a separate cluster at the most likely value of 
K (Fig. S18). Our results suggest that the Ranthambore population is isolated and that inbreeding depression is a 
realistic possibility in this population. Future research efforts can further investigate this possibility.

Samples from southern India form a distinct genetic cluster (supported by Admixture, PCA, network anal-
ysis, and high pair-wise FST). This is in contrast to a previous microsatellite-based study20 that found no evi-
dence for differentiation within peninsular India, but consistent with a report on tiger monitoring in India25. Our 
genome-wide SNP data was able to reveal this cryptic population structure35, 36. We caution that our final dataset 
did not include the only large PA in the Eastern Ghats (Nagarjunsagar Srisailam Tiger Reserve - NSTR, Fig. 1), a 
population that could mediate connectivity between South and central Indian clusters. Admixture analysis with 
one sample from NSTR was not conclusive as very few reads from the sample passed quality filtering (Fig. S12).

Northeastern tigers were previously assigned to a common cluster with central India23. In contrast, a recent 
report that extensively sampled northeast tigers suggests that they form a distinct genetic cluster25. Owing to 
our limited sampling in this region, our data is unable to resolve the genetic status of northeastern tigers. These 
individuals show varied genetic affinity in different analyses – part of the central cluster (Admixture analysis), 
an independent cluster (phylogenetic network) and part of a North – northeast cluster (the network analysis). 
Further, tigers from this region also have high genetic diversity (high heterozygosity – Table S5 and FIS– Table 4). 
Northeast tigers could be genetically closer to southeast Asian tigers. Evaluating range-wide genomic diversity 
for tigers (including samples from southeast Asia) may better resolve the population status of the northeast tigers.

The central genetic cluster harbors the highest diversity. High effective size and/or gene flow with neighbour-
ing clusters could explain this. Our results are also consistent with theoretical37 and empirical studies (based on 

Figure 4.  Private and shared genetic diversity between the genetic clusters. (a) Mean private allelic richness 
of each cluster (Y axis) at different sample sizes of alleles (X axis). Alleles were sub-sampled for all possible 
combinations of loci. The error bars represent standard error values. (b) A Venn diagram depicting proportion 
of private and shared richness in each cluster and their combinations. (c) Using the data from the Venn diagram, 
a bar plot depicting the proportion of genetic diversity retained for two different combinations of clusters.
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microsatellite data) that show greater diversity in centrally located populations, including in endangered species, 
such as the Cross River gorilla38 (Gorilla gorilla diehli) and violets39 (Viola pumila, V. stagnina).

Despite relatively continuous historical tiger distributions, we observe a signal of genetic isolation by distance. 
Ecological theory predicts that large-bodied carnivores like tigers may move far (~450 km40). On the other hand, 
a genetic study found support for even higher dispersal distances (~650 km41). Our results support ecological 
theory, with isolation by distance operating at the scale of 300–400 km (Fig. S6). However, loss of connectivity 
and genetic differentiation can be observed at short distances, as in the case of Ranthambore, and even in central 
India, as has been reported in previous studies42, 43. Overall, if functional connectivity (e.g. through corridors) 
is maintained between PAs within the identified (or between) clusters, further genetic differentiation can be 
avoided.

The widely distributed North American grey wolf (Canis lupus) occurs over varied environments and reveals 
signatures of local adaption despite high gene flow44. Tigers occur across a range of vegetation types and climatic 
gradients across India. However, while we do find high genetic differentiation among the clusters, we do not 
find evidence of adaptive divergence (based on outlier tests). In summary, the clusters identified do not appear 
to merit the status of conservation units45. Our analyses suggest that assisted gene flow between genetic clusters 
could potentially be a viable conservation strategy if genetic rescue is required. We caution that methods such as 
ddRAD usually sample only about 1–10% of the genome46 and data from whole genomes may be better able to 
identify signatures of selection.

Population structure can arise through the interplay of multiple factors including population history, selection 
and connectivity. Disentangling the effects of each of these is often challenging. However, understanding their 
relative contributions can have important consequences for species survival. For instance, while it is generally 
understood that small populations are at greater risk of inbreeding and extinction, the duration of time for which 
the population has been small may have important consequences. Recently bottlenecked populations may be of 
greater conservation concern than populations that have remained small for a long time47. Further, understanding 
whether population change has occurred in response to older climatic fluctuations, as opposed to more recent 
anthropogenic effects is important to consider when deciding endangerment status (IUCN criteria) and planning 
species recovery45.

In the case of Indian tigers, we find evidence for population structure. While the southern Indian cluster 
includes several populations, the northwestern cluster is restricted to a single tiger population, Ranathambore. 
The observed genetic differentiation between Ranathambore and the central cluster could signify the lack of gene 
flow relatively recently and/or older population divergence. Additionally, differential population size changes 
through historical time could impact the magnitude of differentiation. We attempted to understand the demo-
graphic history of the genetic clusters we identified using a site frequency spectrum-based approach. However, 
the estimated site frequency spectrum had very few singletons and none of the models fit our data well (supple-
mentary materials, Fig. S19). This could be due to a combination of our small sample size, as well as the fact that 
tigers from the Indian subcontinent have undergone a very recent bottleneck about 200 years ago23, making it 
difficult to accurately infer demographic history48. In summary, we cannot explain which parameters (changes in 
population size, changes in connectivity, or both) are responsible for the northwestern differentiation we observe. 
Whole genome sequencing and higher sample sizes may allow better detection of low frequency alleles and more 
accurate reconstruction of demographic history in the future.

Because it is difficult to sample wild tigers invasively, our sampling is opportunistic. As a result, our sample 
sizes are low and tend to be clustered in space, both of which may impact our results49, 50. It is possible that we may 
be underestimating the number of genetic clusters due to underrepresentation of populations. Similarly, higher 
sample sizes in the northeast may resolve admixture signatures51. However, while our sample sizes are small, the 
number of loci is high, providing greater power to detect population structure50, 52. Future studies that acquire 
genome-wide data from non-invasive sources such as tiger scat will enhance our ability to sample geographi-
cally53, allowing us to detect existing and on-going changes in population structure and connectivity.

Population genomics of wild species is being increasingly used to inform conservation practice, including 
to make recommendations on reintroduction (e.g. wolves (Canis lupus)54), to set up breeding programs (e.g. 
Tasmanian devils (Sarchophilus harrisii)7) and to designate management/conservation units55. Our population 
genomic study of wild Indian tigers finds evidence for a small and isolated population of tigers in northwest India. 
The long-term persistence of this population may require connectivity with neighboring populations, such as 
with central India. In summary, our study reveals how genome-wide data and analyses can flag populations that 
may require urgent conservation attention (such as Ranthambore) and identify strongholds of variation (such as 
central India). Such inference has significant impacts for on-ground conservation practice.

Methods
Samples and DNA Extraction.  Tissue samples of wild tigers are difficult to obtain since capturing them is 
logistically challenging in India. However, multiple laboratories working on tiger population genetics have access 
to post-mortem samples and these constitute the bulk of our sampling. In some cases, samples were obtained 
from captured tigers (e.g. individuals involved in conflict). The list of samples is provided in supplementary 
Table S1. Geographical locations of samples are shown in Fig. 1. We were able to acquire a total of 54 samples, 50 
samples representing 17PAs (out of 49 tiger reserves) and four samples from outside PAs. Samples were preserved 
in absolute ethanol and stored at −20 °C. DNA extraction was conducted using the spin column method follow-
ing the manufacturer’s instructions (Qiagen).

Library preparation.  Double-digested RAD libraries were prepared as outlined in Peterson et al.56. A com-
bination of two frequent cutters, Nla III and MluC I (NEB), was used to maximize coverage by getting more 
fragments. DNA concentration of all extracts was measured using Qubit (Invitrogen) and the initial quantity for 
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library preparation was standardized to 200 ng. DNA quality was not uniformly high, especially in samples that 
had been preserved for a long time. Some samples were processed despite poor quality if they were single repre-
sentatives of their population and were usually included in the library twice. Extended ligation was carried out for 
13 hours, as standardized by Chattopadhyay et al.51. Library quality was assessed based on the bioanalyzer profile. 
A total of ten libraries was prepared and sent for paired-end sequencing on three lanes of an Illumina HiSeq. 1000 
machine. The low diversity issue encountered with ddRAD samples during sequencing was circumvented by the 
addition of 30% phiX genome into the sequencing run (as suggested by Illumina).

Processing the Raw Data.  The sequencing quality of reads was initially assessed using the program 
FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The data was demultiplexed into individ-
ual samples using the program Stacks28. Reads with one mismatch in the index were rescued. Demultiplexed 
data were filtered to remove reads with poor quality (option –q) and the presence of uncalled bases (option –c), 
and were also truncated to 80 base pairs (option –t). The read numbers retained per sample varied considerably. 
The quality-filtered reads were aligned to the reference genome57 using Bowtie258. Both paired and unpaired 
reads were aligned with default criteria. Technical replicates were merged and Samtools59 was used to process the 
aligned data. Read group information was added using Picard tools (http://picard.sourceforge.net) to reflect the 
unique sample identity. Reads were realigned to account for indels using the GATK package60. Since data from 
samples that had been sequenced twice were combined after alignment, the number of unique loci/regions iden-
tified in each sample (instead of raw reads per sample) was used to compare data obtained per sample. Depth and 
coverage stats were calculated using Stacks and Bedtools61, 62.

SNP Calling and Filtering.  Unique regions were identified in the program Stacks for each sample. 
Samples that had fewer than 100,000 loci were eliminated from further analysis. Our data had low average 
depth (Supplementary Fig. S1), and therefore Freebayes29 was used to call SNPs, as it considers multiple sam-
ples from a population simultaneously to call variants with high confidence. Only reads supported by at least 
8x depth of coverage in the population were considered to identify an allele. Additionally, only dinucleotide 
variants (excluding indels, MNPs and complex variants) were retained. To filter loci with low data, we calcu-
lated the missing data per sample using vcftools63. To optimize the tradeoff between the number of samples 
retained and the number of loci with low missing data, the dataset was filtered multiple times. The vcf file 
obtained was subjected to filtering based on missing data (<5% per SNP), mapping quality (>= 30) and minor 
allele frequency (>= 0.05). Thinning of loci within 500 bp of each other was done to remove SNPs that might 
be in linkage disequilibrium. SNPs that were not in Hardy-Weinberg equilibrium (p < 0.01) were filtered out. 
Additionally, SNPs were also filtered based on mean depth of coverage across samples. However, as the results 
obtained with this set of loci (7741 SNPs) were qualitatively similar to those observed with the larger dataset 
(comparison of datasets based on FST and Admixture results), the smaller dataset was not utilized in the final 
analysis (data not shown).

Genetic Differentiation.  Multiple methods were used to infer tiger genetic clusters. A phylogenetic network 
was constructed in the program SplitsTree464. A NeighborNet network was computed based on p-distance gen-
erated from the input data in the form of fasta sequences. A maximum likelihood based approach implemented 
in the program Admixture65 was used to identify the number of population clusters supported by the data. The 
program was run with 10-fold cross-validation for K values ranging from 1 to 6. The best K was inferred based 
on the value of K that had the least cross-validation error. For a more visual interpretation of population struc-
ture, a principal components analysis (PCA) was performed using an R package66. Additionally, a network-based 
approach was also used to infer hierarchical clustering as implemented in NetStruct67. The program constructs a 
network by connecting individuals above a genetic similarity threshold. This is followed by community detection 
to identify groups of individuals much more closely related to each other than to those in other groups – a process 
analogous to detecting genetic clusters. Based on the observed range of genetic distance, the network was plotted 
at multiple thresholds, followed by community detection using a fast-greedy algorithm. A permutation test was 
done to test the significance of the observed network.

Pair-wise FST was calculated between clusters using the Weir and Cockerham estimator in Arlequin68. 
Summary statistics, including heterozygosity (He) values and theta (H), were computed in Arlequin68. Pair-wise 
relatedness (p^) and individual inbreeding coefficients (f) were estimated in Plink69. AMOVA68 was used to test 
for hierarchical structure. Theta (H) was estimated as a proxy for effective size (Ne) of each genetic cluster.

Isolation by Distance.  A Mantel test was performed to check for isolation by distance in R66. Genetic 
(DPS = 1− proportion of shared alleles) and geographic distance were calculated for all pairs of individuals. To 
test for significance of the observed Mantel’s R a randomization was done with 999 replicates. A Mantel’s correlo-
gram (package vegan) was used to identify the distance classes at which the correlation was significant.

Distribution of Genetic Diversity between Clusters.  To see how genetic diversity is distributed across 
the populations, private allele richness was estimated for each cluster, as well as for combinations of clusters. Since 
diversity measures can be influenced by sample size, these were standardized across clusters using rarefaction. 
Private allele richness was estimated for each standardized sample size using the program ADZE70 and plotted. 
To visualize sharing of diversity, the results were plotted as a Venn diagram by calculating the proportion for total 
diversity in each (or combination of) cluster(s).

Climate and vegetation based differentiation of tiger reserves.  In order to visually inspect whether 
the available habitats in tiger reserves were differentiated based on climate and/or vegetation, a PCA was run for 
19 bioclimatic variables (bioclim), aridity (FAO Global Aridity Index http://www.fao.org/nr/aboutnr/nrl/en/) 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://picard.sourceforge.net
http://S1
http://www.fao.org/nr/aboutnr/nrl/en/
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and land cover classification (GlobCover Land Cover v2.2 - http://geodata.grid.unep.ch/options.php?selecte-
dID = 2054&selectedDatasettype = 16). Regular points were placed on an outline of the India map (grid spac-
ing 0.1) in QGis (v2.0.1). Multiple climate layers (http://www.worldclim.org/bioclim), aridity and vegetation 
(GlobCover) were used to define the environmental space for the sampled points. The ‘point sampling tool’ was 
used to extract data for the previously generated points. Points falling within tiger reserves were marked in the 
attribute table. This table was exported to the software R (v3.3.2) and after centering and scaling the data, a PCA 
was performed with all points. To closely examine the separation between the tiger reserves, a PCA of only points 
falling in tiger reserves was performed.

Test for Loci under Selection.  A Bayesian approach was used to test for SNPs that might be under selec-
tion among the different genetic clusters identified using the software tool Bayescan71. A 5% false discovery rate 
was used to identify outlier loci. The Bayescan analysis was run with prior odds for the neutral model set to 1000; 
higher odds lower the possibility of obtaining false positives. It is recommended to set the prior odds high (1000) 
when using thousands of markers.

Data Accessibility.  The sequences are available on GenBank and can be obtained from the SRA database 
with the accession number SRP114885.

Ethical Approval.  Our study does not involve any experiments with live animals. Further, while we use tissue 
samples, none of these were directly obtained for the purpose of this study. We only used samples from tissue 
previously collected for other studies/purposes. Therefore, ethical clearance regarding sample collection is not 
applicable to our study.
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