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Painful neuropathy is one of the complications of diabetes mellitus that adversely affects
patients’quality of life. Pharmacological treatments are not fully satisfactory, and novel approaches
 needed. In a preclinical mouse model of diabetes the effect of both human mesenchymal stromal cells
from adipose tissue (hASC) and their conditioned medium (hASC-CM) was evaluated. Diabetes was
induced by streptozotocin. After neuropathic hypersensitivity was established, mice were intravenously
injected with either 1 x 10° hASC or with CM derived from 2 x 106 hASC. Both hASC and CM (secretome)
reversed mechanical, thermal allodynia and thermal hyperalgesia, with a rapid and long lasting
effect, maintained up to 12 weeks after treatments. In nerves, dorsal root ganglia and spinal cord of
neuropathic mice we determined high IL-13, IL-6 and TNF-o and low IL-10 levels. Both treatments
restored a correct pro/antinflammatory cytokine balance and prevented skin innervation loss. In spleens
. of streptozotocin-mice, both hASC and hASC-CM re-established Th1/Th2 balance that was shifted
. toTh1 during diabetes. Blood glucose levels were unaffected although diabetic animals regained
© weight, and kidney morphology was recovered by treatments. Our data show that hASC and hASC-CM
: treatments may be promising approaches for diabetic neuropathic pain, and suggest that cell effect is
likely mediated by their secretome.

Diabetes mellitus (DM) is one of the most common and serious chronic diseases around the world' and diabetic
. peripheral neuropathy is one of the most frequent complications of DM. Sixty-six percent of people with Type
1 DM and 59% of people with Type 2 DM have objective evidence of peripheral neuropathy?. The pathophysiol-
ogy of diabetic neuropathy (DN) remains complex and not fully elucidated and it has multipathogenic mecha-
nisms that cause a diversity of physical symptoms: allodynia, hyperalgesia, numbness and cutaneous ulceration®.
Persistent neuropathic pain interferes significantly with quality of life, impairing sleep, and emotional well-being,
and it is a significant causative factor for anxiety, loss of sleep, and non-compliance with treatment. Unfortunately,
most of the available analgesic drugs are not satisfactory in controlling diabetic neuropathic pain,for both insuf-
ficient efficacy and side effects® 2
Recently, we and others have demonstrated that pro- and anti-inflammatory cytokines, produced by immune
. cells as well as by glia and microglia in nerve, dorsal root ganglia and spinal cord, are involved in neuropathic
. pain*®. They start a cascade of neuroinflammation-related events that may maintain and worsen the original
© injury, participating in pain generation and chronicization*. A large activation of inflammatory cascade, proin-
flammatory cytokine upregulation, and neuroimmune communication pathways plays a vital role in structural
and functional damage of peripheral nerves, leading to the diabetic peripheral neuropathy®°.
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Figure 1. Experimental design. STZ: streptozotocin; hASC: human adipose-derived stem/stromal cells (1 x 10°
cells). hASC-CM: hASC-conditioned medium (from 2 x 10° cells).

Mesenchymal stem/stromal cells (MSCs) and in particular adipose-derived stromal cells, known to have
therapeutic potential and likely translational advantages'®!!, may offer a novel therapeutic option to treat DN.
MSCs modulate the nervous system injured environment and promote repair as they secrete anti-inflammatory
and anti-apoptotic molecules, and trophic factors to support axonal growth, immunomodulation, angiogene-
sis, remyelination, and protection from apoptotic cell death!!. Transplanted MSCs not only directly differentiate
into neurons and endothelial cells, but also secrete a broad range of biologically active factors and extracellular
vesicles (EVs), generally referred as MSC secretome. Secretome analysis demonstrates that it contains elevated
concentrations of FGE, VEGF-A, and nerve growth factor which are involved in nerve and vascular tissue health.
Furthermore, ASCs are known to be immunomodulatory through the regulation of immune cells by mechanisms
which include both direct cellular contact and release of soluble factors such as TGF-3, IL-10, leukemia inhibitory
factor (LIF) and others'?. It has been shown that ASCs reduce allogeneic lymphocytes response by displaying
potent immunosuppressive effects and that MSCs suppress both effectors T cell and inflammatory responses'> 1°.

We previously demonstrated that human ASC treatment reduced both allodynia and hyperalgesia and nor-
malized neuroinflammation in a murine model of neuropathy induced by sciatic nerve chronic constriction
injury (CCI)™.

Despite the fact that MSCs were initially proposed for cell therapy based on their differentiation potential, the
lack of correlation between functional improvement and cell engraftment or differentiation at the site of injury
has led to suggest that MSCs exert their effects primarily through their secreted products and not only through
their differentiation potential. Many studies provide pivotal support for this paracrine hypothesis and MSC ther-
apy is increasingly rationalized on MSC secreted factors rather than on their differentiation ability’®.

Here we analyze the therapeutic effect of hASC-conditioned media (secretome, hASC-CM) and compare it
with cell treatment in a streptozotocin mouse model of Type 1-diabetes. Animal behavior was evaluated through
mechanical or cold allodynia and thermal hyperalgesia, together with the profile of the main pro and antin-
flammatory cytokines involved in nociception transmission at the main neural sites relevant for pain. Cytokines
produced by peripheral lymphocyte are also studied. We also evaluated the effect of hASC-CM and hASC on skin
thickness and innervation and on renal injury, evident in this preclinical model'®'”.

We demonstrate that just a single intravenous injection of either hASC or hASC-CM irreversibly reverts
the established neuropathic hypersensitivity, blunts neuroinflammation, restores skin innervation and reduces
peripheral immune activation. Furthermore, the induced nephropathy is counteracted by both treatments, pro-
viding evidence for kidney damage protection, too.

Results

In STZ-diabetic mice hASC-conditioned medium and hASC treatments exert a fast and long
lasting relief of sensory hypersensitivity. A scheme of the experimental protocols of the study is
described in Fig. 1.

One week after STZ the paw withdrawal thresholds (PWT) of diabetic mice were reduced compared to control
and they were maintained significantly lower up to 14 weeks (Fig. 2, panel a, two way ANOVA, p < 0.001 vs CTR).

Two weeks after STZ, when mechanical allodynia was fully developed, hASC or hASC-CM were i.v. injected.
As reported in Fig. 2, panel a, both treatments were able to significantly reduce mechanical allodynia (two way
ANOVA, p <0.001 vs STZ), although the effect of hASC was significantly stronger than that elicited by hASC-CM
(two way ANOVA, p <0.001). A significant reduction of mechanical allodynia was evident already 3 hours after
treatments (Fig. 2, panel b, p < 0.001). Their anti-allodynic effect was maximal at 2 weeks and was extremely long
lasting since allodynia was maintained significantly reduced up to 12 weeks after a single hASC and hASC-CM
injection (Panel a, p < 0.001 vs STZ).

Moreover, 4 weeks after the first treatment (6 weeks after STZ) a group of diabetic animals was adminis-
tered a second time with either hASC or hASC-CM. As shown in Fig. 2 panel ¢, the second hASC-CM injection
increased the PWT restoring sensitivity to the level reached after the first treatment and prolonging its effect. The
anti-allodynic effect was potentiated few hours after the second hASC-CM injection (Fig. 2, panel d; PWT 3 hours
after second injection vs. PWT before second injection, p < 0.001) and its trend completely mimicked both the
rapid effect evoked by the early treatment (compare panels b and d) and the hASC effect up to 10 weeks after
diabetes- induction (panel c). The repeated hASC treatment did not further ameliorate allodynia.
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Figure 2. hASC and hASC-CM treatments reduce allodynia in STZ mice. (a-f) Effects of i.v. hASC (1 x 10°) or
hASC-CM (obtained from 2 x 10° cells) treatments on mechanical allodynia in STZ mice. (a,b) Mice received a
single hASC or hASC-CM injection, 2 weeks after STZ, and the effects were monitored up to 14 weeks after STZ
(long-lasting effects) (a) or few hours (3 to 72h) after the injection (short-term effects) (b). (c,d) Mice received two
repeated hASC or hASC-CM administrations 2 and 6 weeks after STZ. Long-lasting effects (c) and short-term effects
after the second administration (d). (e,f) Mice received a single hASC or hASC-CM injection, 6 weeks after STZ.
Long-lasting effects (e) and short-term effects (f). (g) Effect of hASC-CM and CM obtained from human fibroblasts
(hF-CM), administered 2 weeks after STZ. Data represent mean & SEM of 6-8 mice per group. Two-way ANOVA
followed by Bonferron’s test was used for multiple comparisons. ***p < 0.001 vs CTR; °°°p < 0.001 vs STZ; *p < 0.05,
#p<0.01,"p < 0.001 vs STZ+hASC; $%5p < 0.001 vs STZ4+hASC-CM; *£p < 0.001 vs. W6. (h,i) effect of hASC
and hASC-CM on thermal allodynia (h) and hyperalgesia (i). Treatments were performed 2 weeks after STZ and
cold allodynia and hot plate thesholds were evaluated after 3, 24, 72hours and 1 week after treatments. Values are
mean & SEM of 6 mice per group, and were compared with Mann-Whitney U-test (cold allodynia) and two-way
ANOVA followed by Bonferronis test for multiple comparisons (thermal hyperalgesia). *p < 0.05, ***p < 0.001 vs
CTR; °p <0.05, °*°p < 0.001 vs STZ.
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Figure 3. hASC tracking by human ALU sequence detection. Summary of the Alu PCR products observed in
lung, liver, pancreas and sciatic nerve after 1 and 3 days and 1, 2 and 3 weeks from hASC administration (a).
Representative gels showing human ALU sequence detection in STZ and naive (CTR) mice tissues collected 1
week (W1) and 2 weeks (W2) after treatment (b). Lu: lung; Li: liver; P: pancreas; N: sciatic nerve; +: positive
control; —: negative control.

In order to elucidate whether hASC and hASC-CM treatments were also therapeutically effective at a later
time point, animals were treated 6 weeks after diabetes induction. Also this late treatment was able to provide
a fast and irreversible antiallodynic effect (Fig. 2, panels e and f, p <0.001 vs STZ). In addition, 13 weeks after
STZ, the effect of hASC appeared significantly more pronounced than the one exerted by CM (p < 0.001 hASC
vs.hASC-CM).

To provide evidence that hASC-CM effect was due to the specificity of the cell source we treated STZ-mice
with conditioned media derived from human fibroblasts (hF-CM). As shown in Fig. 2 panel g, hF-CM does not
counteract mechanical allodynia, indicating that specific factors contained in the secretome of adipose-derived
mesenchymal stem/stromal cells are responsible of the effect observed in vivo.

Since the sensory alterations associated to diabetes neuropathy in patients are often diverse and associated
to modified response to several stimuli, we also decided to test the action of hASC and hASC-CM treatments
on cold allodynia and thermal hyperalgesia during the first week after injection. As shown in Fig. 2 panel h, the
cold allodynia displayed by STZ-diabetic animals was significantly reduced by both treatments (p < 0.05 vs STZ).
Similarly, as reported in panel i, administration of both hASC and hASC-CM rapidly reverted thermal hyperalge-
sia, and their effect was still present 1 week later (p < 0.001 vs STZ), demonstrating the ability of hASC and their
conditioned media to relieve hypersensitivity to different stimuli that are peculiar of diabetic pain.

Localization of hASC. We monitored the fate of the injected hASC, and investigated the localization of
infused hASC up to 3 weeks after injection. The presence of human DNA was assessed in lungs, liver, pancreas
and sciatic nerve of both diabetic (STZ) and healthy (CTR) mice (Fig. 3, panels a and b). As expected, at day 1
after treatment, human DNA was present in filter organs such as lungs and liver, at 3 days only in lung and it was
not detectable in the damaged tissues such as pancreas and nerve (Fig. 3 panel b, and data not shown).

However, when the antiallodynic effect was well established (week 1 and week 2 after injection), human DNA
was noticeable only in pancreas and sciatic nerve of STZ-mice, confirming the tropism and recruitment of hASC
to the injured tissues, and not to the CTR-undamaged ones (Fig. 3, panels a and b). At later time, 21 days after
injection, human DNA was undetectable in all the tested tissues (Fig. 2, panel b and data not shown).

hASC-CM and hASC treatments restore cytokine levels in sciatic nerve, Dorsal Root Ganglia
(DRG) and spinal cord. It is well known that in diabetic neuropathy a neuroinflammatory cascade, charac-
terized by altered levels of pro- and anti inflammatory cytokines, is present in the main sites involved in nocicep-
tion transmission. To verify an anti-inflammatory or immunomodulatory mechanism for hASC- and hASC-CM
mediated anti-hypersensitivity action, we checked IL-13, IL-6, TNFa and IL-10 levels in the sciatic nerve, DRG
and spinal cord of STZ mice.

Panels a-d of Fig. 4 illustrate cytokine levels 3 weeks from neuropathy induction and 1 week after hASC and
hASC-CM injection. Proinflammatory cytokines IL-13, IL-6 and TNF-« (Fig. 4, panel a—c) were overexpressed
in the peripheral (sciatic nerve and DRG) and central (spinal cord) nervous system of diabetic mice (p < 0.01
vs non diabetic mice). Both hASC and hASC-CM treatments were able to restore IL-103, IL-6 and TNF-« basal
levels, 1 week after treatment (p < 0.05 vs diabetic animals). In addition, IL-10 levels (Fig. 4 panel d) appeared
significantly reduced in diabetic animals in sciatic nerve (p < 0.05), DRG (p < 0.001) and spinal cord (p < 0.01),
and both hASC and hASC-CM significantly increased IL-10 concentrations in DRG (p < 0.05) and spinal cord
(p <0.001). In the sciatic nerve of treated animals the antinflammatory cytokine was significantly elevated in
comparison with STZ animals with both treatments (p < 0.001). Indeed after hASC, IL-10 increased over basal
levels (p < 0.05), indicating a rapid switch towards an antinflammatory environment in all these areas involved
in pain transmission.

SCIENTIFICREPORTS |7: 9904 | DOI:10.1038/s41598-017-09487-5 4



www.nature.com/scientificreports/

a OCR WSTZ [[STZ+hASC [ STZ+hASC-CM
600+

c 4004

2 okk

°

5, 100

2

=8 —— °

2 504 = —_

0 E
SCIATIC NERVE DRG SPINAL CORD

b 3500

ek

IL-6 pg/ mg protein
1)
o
2

0 I |
SCIATIC NERVE DRG SPINAL CORD
c 200+ -
£ ek ok
£ 150+
o o
B
2 100+
oo
2 000
g 50
E S
0
SPINAL CORD
600
d
.% ° -
£ 400
5
j=]
£
§=2]
o sk
© 200
2
0 5
SCIATIC NERVE DRG SPINAL CORD
e f
£ £
2 k]
° ]
o Q
D j=2)
£ £
o0 j=)
o {3
= °
3 o

SPINAL CORD

Figure 4. hASC and hASC-CM maintain a correct pro- and anti-inflammatory cytokine balance in sciatic
nerves, DRG and spinal cord of STZ mice. IL-1f3, IL-6, TNFa and IL-10 protein content in nervous tissues

was evaluated by ELISA and reported as pg cytokine/mg total protein. (a-d) IL-13 (a) IL-6 (b), TNF-a (c)

and IL-10 (d) in sciatic nerve, DRG and spinal cord of STZ mice treated 2 weeks after STZ with hASC or
hASC-CM; cytokines were evaluated after 1 week from treatments. (e,f) IL-13 (e) and IL-10 (f) levels in spinal
cord, measured 14 weeks after STZ in animals treated with hASC or hASC-CM either 2 weeks (W2) or 6 weeks
(W6) after STZ. Data represent mean & SEM of 6 mice per group. One-way ANOVA was used for statistical
evaluation, followed by Bonferroni’s post hoc test for multiple comparisons. *p < 0.05, **p < 0.01, ***p < 0.001
vs CTR; °p < 0.05, °°p < 0.01, °°°p < 0.001 vs STZ; **p < 0.001 vs STZ+hASC.
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Figure 5. hASC and hASC-CM prevent alteration of DRG CGRP, thickness reduction and nerve fiber

loss in paw skin of STZ mice. (a) DRG and spinal cord levels of CGRP measured 3 weeks after STZ in

diabetic mice treated with hASC or hASC-CM 2 weeks after STZ. Data represent mean - SEM of 6 mice

per group. One-way ANOVA was used for statistical evaluation, followed by Bonferroni’s post hoc test for
multiple comparisons. ***p < 0.001 vs CTR; °°p < 0.01 vs STZ. Microphotographs of plantar skin after

PGP9.5 4+ immunohistochemistry and counterstaining with haematoxylin at 3 (b) and 14 weeks (e) after STZ,
in CTR, STZ, STZ+hASC and STZ +hASC-CM groups. Animals were treated 2 weeks after STZ. Nerve fibers
are stained in brown; arrow heads indicate PGP9.5" fibers. Quantitative evaluation of epidermal thickness at 3
weeks (c) and 14 weeks (f) and of PGP9.5 immunopositivity as percentage of immunopositive area in epidermal
and subepidermal area at 3 (d) and 14 (g) weeks after STZ. Data represent mean 4= SEM and were compared by
One-way ANOVA followed by a Bonferroni’s multiple comparison test. *p < 0.05, **p < 0.01, ***p < 0.001 vs
CTR; °p < 0.05, °°°p < 0.001 vs STZ; ***p < 0.001 vs STZ+hASC.

Fourteen weeks after STZ, spinal cord IL-1 levels were still significantly elevated (p < 0.001) and IL-10 levels
were reduced (p < 0.001) in diabetic, indicating the persistence of neuroinflammation, as shown in panels e and
f of Fig. 4. As previously described for the antiallodynic effect (Fig. 2), the modulation of cytokines induced by
hASC and hASC-CM was long lasting. Twelve weeks after treatments (W2), the levels of IL-1(3 were still sig-
nificantly reduced by hASC and hASC-CM (p < 0.001, panel e), while only in animals treated with hASC we
observed a significant normalization of IL-10 (p < 0.001, panel f).

Both treatments were still effective when administered at a later stage of the pathology (W6 after STZ); as
reported in Fig. 4 panels e and f, 8 weeks after administration both hASC and their CM significantly modulated
cytokine levels (p < 0.001), although the effect on IL-13 was more evident with hASC than with hASC-CM treat-
ment (p <0.001 hASC vs hASC-CM).

Finally, to investigate a rapid effect on cytokine modulation, we measured IL-1(3 and IL-10 levels in sciatic
nerve, DRG and spinal cord 2 weeks from STZ, 3 hours after hASC and hASC-CM treatment. The results are
reported in Supplementary Figure S1. Two weeks after STZ, IL-10 levels were significantly elevated and IL-10 lev-
els decreased in all nervous system. The acute treatments were already able to positively modulate cytokine levels,
since they were not any more different from CTR, although a complete restoration was evident only for IL-13 in
sciatic nerve and IL-10 in DRG (p < 0.05vs. STZ, Supplementary Figure S2).

Effect of hASC and hASC-CM on DRG and spinal cord Calcitonin Gene Related Petide(CGRP)
levels. In order to further confirm the effect of treatments on hypersensitivity, we measured the effect of
h-ASC and hASC-CM on CGRP protein levels in DRG and spinal cord of STZ mice. CGRP levels were signifi-
cantly elevated in DRG of STZ mice 3 weeks after diabetes induction, and both treatments were able to signifi-
cantly re-establish them one week after administration (Fig. 5, panel a). We did not find any CGRP modification
in spinal cord of diabetic mice (Fig. 5, panel a).
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Figure 6. Effect of hASC and hASC-CM on body weight and blood glucose levels in STZ mice. (a,b) Body
weight of STZ mice treated with hASC or hASC-CM 2 weeks (a) and 6 weeks (b) after STZ. (c,d) Blood glucose
levels of STZ mice treated with hASC or hASC-CM 2 weeks (c) and 6 weeks (d) after STZ. Data are means + SD
of 6/8 animals. Two-way ANOVA was used for statistical evaluation, followed by Bonferroni’s test for multiple
comparisons. *p < 0.05, **p < 0.01, ***p < 0.001 vs CTR; °p < 0.05, *°p < 0.01, °*°p < 0.001 vs STZ.

hASC and hASC-conditioned media normalize skin thickness and PGP9.5"nervous fibers.
Neuropathic pain is associated with epidermal thinning and reduced innervation, measured as expression of
Protein Gene Product 9.5 (PGP 9.5) in axons of the epidermis and dermis'”. Both skin thickness and cutaneous
innervation of the plantar skin were evaluated 3 and 14 weeks after STZ diabetic induction, corresponding to 1
and 12 weeks after hASC and hASC-CM treatment (Fig. 5 panels b-g). Three weeks after STZ, skin thickness was
not yet altered in the STZ mice and neither treatments had any effect (Fig. 5, panels b and c). At fourteen weeks,
STZ animals showed a significant decrease of skin thickness (Fig. 5, panels e and f, p < 0.001). Both hASC and
hASC-CM prevented this decrease since the skin thickness of treated mice was significantly greater than diabetic
mice one (p < 0.001; Fig. 5, panels e and f).

In addition, the high density of PGP9.5" nervous fibers distributed both in epidermis and in subepider-
mal layer in CTR mice is progressively decreased in STZ mice. The PGP9.5" nervous fibers were significantly
decreased 3 (panels b and d) and 14 (panels e and g) weeks after STZ (p < 0.001). One week after hASC treatment,
neuropathic animals showed a density of PGP9.5" fibers significantly higher respect to the STZ group (p < 0.05)
but still lesser respect to the CTR (p < 0.05; Fig. 5, panel d). No significant effect of hASC-CMs on density was
observed. Fourteen weeks after STZ (12 weeks from treatments, panel g) hASC-treated animals recovered the
density of PGP9.5" nerve fibers to the same level of the CTR group (p < 0.001 vs STZ). In hASC-CM-treated
animals, a significantly higher density of PGP9.5" nervous fibers was present, especially at subepithelial levels,
respect to STZ group (p < 0.05), although it never reached the CTR values (Fig. 5, panels e and g).

Effect of hASC-conditioned media and hASC on weight loss, hyperglycemia,and glomerulop-
athy in STZ-mice. Three weeks after diabetic induction body weight significantly decreased in STZ mice
(Fig. 6, panel a, p < 0.001). Surprisingly, both the hASC and hASC-CM administration significantly prevented
the loss of body weight (p < 0.05, Fig. 6, panel a), despite the fact that neither hASC nor hASC-CMs were able to
revert the body weight loss if administered 6 weeks after diabetes induction, as shown in panel b. In addition, no
treatments modified blood glucose levels that were always elevated in STZ mice over time (Fig. 6, panels c and d).
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Figure 7. hASC and hASC-CM treatments modulate cytokine release from splenocytes. IFN-~ (a and b), IL-2
(cand d), IL-4 (e and f) and IL-10 (g and h) were evaluated by ELISA, and reported as protein concentrations
in culture media. (a,c,e and g) depict the levels of cytokine evaluated 3 weeks after STZ and 1 week after hASC
or hASC-CM treatments. (b,d,f and h) Report cytokines levels measured 14 weeks after STZ in animals treated
with hASC or hASC-CM either 2 weeks (W2) or 6 weeks (W6) after STZ. Data represent mean + SEM of 6
mice per group, and have been statistically analyzed with One-way ANOVA, followed by Bonferroni’s test for
multiple comparisons. *p < 0.05, **p < 0.01, ***p < 0.001 vs CTR; °p < 0.05, *°p < 0.01, °*°p < 0.001 vs STZ.

Since renal injury is a well known diabetes complication, we also focused our attention on glomerulopathy,
which is a primary evidence of type I diabetes nephropathy. Analysing hematoxylin/eosin kidney sections, an
evident expansion of Bowman’s space of about 114% was observed in diabetic mice compared to CTR animals,
and both hASC and hASC-CM treatments restored it (Supplementary Figure S2).

hASC and hASC-CM modulate splenocyte cytokine production. The STZ multiple low-doses pro-
tocol used in our study is known to develop an autoimmune response against pancreatic tissue which is sustained
by a Th1 pattern of activation'® °. For this reason we decided to investigate whether a T-helper polarization was
present in splenocytes from diabetic mice and whether hASC or hASC-CM did exert any immunomodulatory
activity.

As reported in panels a, ¢, e and g of Fig. 7, 3 weeks after STZ, ConA-stimulated splenocytes released higher
levels of IFN-~ (panel a, p < 0.001 vs. CTR), while IL-10 release (panel g) was reduced (p < 0.05 vs CTR). In one
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week, hASC and hASC-CM treatments were able to re-establish both IFN-~ (p < 0.01 vs STZ) and IL-10 (p < 0.05
vs STZ) normal levels (Fig. 7, panels a and g, respectively).

When cytokine levels were measured 14 weeks after diabetes induction, a clear shift toward a Th1 pattern was
present, characterized by higher IFN-~ and IL-2 secretion (Fig. 7, panels b and d, respectively, p < 0.001) and
lower IL-4 (panels f, p < 0.05) and IL-10 levels (panel h, p < 0.01). hASC and hASC-CM treatments were able to
normalize cytokine levels, as demonstrated by the IFN-~ and IL-2 decrease (panels b and d, p <0.001 vs STZ)
and IL-10 and IL-4 increase when treatments were performed 6 weeks after diabetes induction and cytokines
measured 8 weeks later (Fig. 7, panels f and h). When the effect was evaluated 12 weeks after administration,
both hASC and hASC-CM were able to restore IFN-~ and IL-2 (Fig. 7, panels b and d, p < 0.001 vs STZ). IL-4
and IL-10 reached basal levels only in hASC-treated mice (IL-4 p < 0.05 and IL-10 p < 0.01 vs STZ) while in
hASC-CM-treated animals the recovery was not complete (Fig. 7, panels f and h), suggesting that the effects
exerted by hASC is more long lasting than the hASC-CM one. Altogether, our data indicate that both hASC and
hASC-CM treatments are able to counteract the Th1 polarization developed in this experimental diabetes model.

Discussion

Diabetic neuropathic pain is characterized by sensory alterations, including hypoaesthesia, tactile and thermal
allodynia, and current treatments are often active on only some of them?. Our results demonstrate that hASC
and their secretome can control diabetic complications such as neuropathic hypersensitivity, acting on several
peripheral and central mechanisms involved in the development and maintenance of this condition, such as
neural and immune elements.

Systemic treatments with either hASC or hASC-CM are able to significantly relieve tactile and cold allodynia
as well as heat hyperalgesia, although the effect of cells remains significantly higher than CM one. The concept that
MSC’s secretome may be responsible for the beneficial effects of stem cell therapy is now a prevalent theory'* 2122,
However,this is the first report demonstrating that the conditioned medium of hASC also results in quite similar
therapeutic effects in diabetic neuropathic condition and comparing simultaneously the effect of CM and of the
stem cells from which it has been produced.

One of the most striking result of our study is related to the time course of the antiallodynic effect exerted by
both hASC and hASC-CM. In fact, their antiallodynic effect was not only rapid but also extremely long lasting, an
effect that is hardly reached by any analgesics clinically used? .

Furthermore, the long lasting antiallodynic effect of hASC-CM, up to 14 weeks, may lead to speculate that a
direct engrafment of stem cells in the nervous tissue has to be excluded, favouring the hypothesis of a precocious
reprogramming of the immune and neuronal environments that, once activated, changes the course of the neu-
ropathy. In a juxtacrine or paracrine fashion hASC can crosstalk and modulate endogenous stem cells that may
also induce nerve regeneration, as previously described in a different model of neuropathy®.

Similarly, the biologically active substances contained in the hASC-CM can activate/deactivate specific sig-
naling pathways with a final protective outcome. It must be underlined that CM derived from human dermal
fibroblasts are completely inactive on allodynia, confirming that the mesenchymal stem feature is a fundamental
pre-requisite in this novel approach.

The ability of hASC and their secretome to modulate the host cell response is demonstrated by the effect
on the cytokine levels in the nervous tissue exerted by both treatments. IL-13, IL-6, TNF-a and IL-10 in the
peripheral (nerves, DRG) and central (spinal cord) nervous system are now recognized as a pivotal signal for
maintenance of neuropathic pain, regardless of its origin®?%?’. Here we demonstrated that one week after hASC
and hASC-CM treatment, neuroinflammation is significantly blunted and a correct balance between IL-13, IL-6,
TNF-a and IL-10 is re-established. Interestingly, the levels of IL-10 after treatments in the sciatic nerves are even
more elevated than those measured in normal animals, confirming the relevant role for this cytokine in con-
trolling sensory hypersensitivity. In parallel with the long lasting modulation of allodynia, also the effect of hASC
on IL-103 and IL-10 in spinal cord is fully maintained up to 12 weeks after treatment, suggesting that once the
switch toward an antinflammatory program has been started, it is permanently sustained. Interestingly, at later
times after administration, the effect of hASC-CM on IL-10 is not as evident as the one of stem cells themselves.
Moreover, we also demonstrate that the modulation of cytokine levels begins almost immediately after hASC or
hASC-CM, since 3 hours after treatment we already observed a trend to restoration of IL-13/10 balance in nerv-
ous tissues, (Supplementary Figure S1), that becomes fully significant 1 week after treaments.

Since clinical diabetic neuropathy is a progressive disorder, and its manifestation may need several years to
develop?, it was important to assess whether hASC and hASC-CM were able to modify allodynia and neuroin-
flammation also when administered at a later stage of the disease. In our model, hyperglycemia and abnormal
sensitivity are developed soon after STZ injection, while longer time is necessary for structural nerve modifica-
tions?®. Interestingly both hASC and hASC-CM were fully effective in reverting allodynia and restoring IL-13, /
IL-10 spinal cord balance also when injected 6 weeks after diabetes induction. This result is particularly relevant
since, although a tight control of glucose in the patients may successfully slow the progression of NP, no estab-
lished curable treatment is available during the progressive stage**. Quantifying the density of intraepidermal
nerve fiber to assess cutaneous innervation is considered a reliable mean of both diagnosing and staging diabetic
neuropathy!”2%3%, We decided to measure PGP-9.5 expression, since as shown in prior studies®-*, anti-PGP 9.5
labels all known types of peripheral innervation. Here we showed that a nerve fiber damage began in 3 weeks and
was gradually aggravated in untreated diabetic group. These results are in agreement with previous findings in
diabetic rats®. We observed that both treatments were able to ameliorate the loss of nerve fiber density detected
by PGP9.5" nerve fiber, further supporting a neuroprotective activity in diabetes.We are however aware that
further immunohistochemical analysis with specific fibersmarkers would be important to assess which fibers are
lost and eventually recovered by treatments.
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This significant effect on diabetic pain is also corraborated by the restoration of CGRP levels that we observe
in DRG of diabetic mice, further demonstrating that both hASC and hASC-CM are able to modulate several
important mediators or neurotransmitters involved in pain sensitivity.

MSCs carry out pleiotropic effects on the immune system by both secreting bioactive molecules and by cell-cell
contact involving dendritic cells, B and T cells*®**. A possible explanation of the efficacy of hASC and hASC-CM
in alleviating allodynia may be an immediate modulation of peripheral immune responses. Inflammation and
immune activation have been recognized as fundamental mechanisms in the pathophysiology of diabetes and
of its complications®. An autoimmune reactivity characterized by a T helper 1 profile is consistently present in
clinical diabetes. We find that a progressive polarization of peripheral immune response towards a Th1 profile
is present in our STZ model and we demonstrate that hASC are involved in modulating the peripheral immune
response. In fact, hASC treatment reduced IL-2 and IFN-~ release by peripheral splenocytes and increased IL-10
and IL-4 secretion, keeping an optimal Th1/Th2 balance. Moreover, this effect is almost completely mimicked also
by hASC-CM, indicating that cell-cell contact is not absolutely necessary for immune modulation, that appears to
be mainly due to a paracrine mode of action.

Based on these results we can envisage that hASC, when i.v. injected in diabetic animals, may start to
release bioactive factors that immediately modulate allodynia, immune responses and thereafter convert a
pro-inflammatory/neuro-destructive environment to an antinflammatory/neuroprotective one. We showed that
hASC are recruited at the site of lesioned tissue, such as pancreas and nerves of diabetic mice, while they are
undetectable when the cells are i.v. injected in naive animals. Furthermore, we suggest that hASC disappear after
reprogramming the tissue cells, since cellular life span in the lesioned tissue (2 weeks) is shorter than the duration
of their effects (12 weeks), as already reported®. In the case of hASC-CM, the cocktail of bioactive mediators may
exert a similar precocious modulation of host tissue, that is maintained over-time. However, at longer time after
the single injection, the hASC positive effect on the antinflammatory cytokines appears stronger, suggesting that
either the recruitment of cells at the injured sites or the cell to cell contact with endogenous immune cells may be
useful. The positive long lasting effect of hASC-CM have been already described in different models of patholog-
ical conditions, such as liver disease, urological disfunction and Alzheimer**-*, and here we demonstrated that a
repeated injection of hASC-CM promotes a higher antiallodynic response and further extends its duration, giving
promising indications for a future clinical treatment.

At the moment, we cannot exclude that the neuroprotective effects of hASC and hASC-CM might also
be mediated by an improvement of neural vascularity that is induced by the angiogenic factors contained in
hASC secretome. Nonetheless, this aspect, previously suggested by others*»*4, can be combined with the effects
described here of the hASC and their CM.

The content and the relevance of hASC-CM factors is still under study. Our CM obtained from hASC main-
tained in similar culturing conditions as previously described by others!* 2144, should contain a wide range of
cytokines, chemokines, and growth factors such as BDNE VEGE, IGE. Recently a paper by Chen et al.*’, suggested
that the release of TGF-(3 by bone marrow stromal cells may be particularly involved in the modulation of neuro-
pathic pain in the CCI and spare nerve injury models. From preliminary analysis conducted, we know that also
our hASC-CM contain high levels of TGF-(3 (Sacerdote and Brini, unpublished observation), that may play an
important role also in diabetes neuropathic pain.

We also detected the presence of exosomes in hASC-CM (Brini, unpublished observations), and the secreted
exosomes carry specific mRNA or miRNA, which could potentiate the reparative process and heal the injured
tissues®> 5. Although it is possible that for different pathological conditions, diverse mediators may be responsible
for the beneficial effect, we think that what makes the secretome unique is just the simultaneous presence of all
these multiple factors. To confirm our hypothesis, we have also shown the hASC-CM effect on another diabetes
alteration such as renal injury. This diabetes complication is due to the progressive inflammation and immune
activation promoted by the formation of advanced glycation-end products, oxidative stress, and activation of
renin-angiotensin-aldosterone system within the kidney*>*. Indeed, inflammation activated by the metabolic,
biochemical and haemodynamic derangements plays a key role in the development and progression of diabetic
nephropathy®’. Since in STZ-mice kidney damage is ameliorated by both treatments, we hypothesize that hASC
and hASC-CM may control several aspects of diabetes linked to inflammation and immune activation. Weight
loss is also a classical symptom associated to the STZ diabetes models, and a general positive effect of hASC and
hASC-CM treatments is demonstrated by the prevention of weight loss in treated mice?® 3. Several factors may
contribute to the prevention of weight loss that we observed in treated mice. In STZ mice, altered protein and
lipid catabolism due either to hyperglycemia, to the inflammatory condition and oxidative stress are likely at
the basis of weight loss?®. Moreover, it has been suggested that the presence of allodynia and painful symptoms
may affect the locomotor activity and modify energy expenditure®?. Interestingly, as in our work, a reduction of
body weight loss has been observed also in the absence of modification of the hyperglycemic state in STZ rats®.
It can be suggested that the reduction of systemic inflammation and hypersensitivity may have a role. It can also
be hypothesized that hASC and hASC- CM may contribute with hormones and mediators directly involved in
the control of adipogenesis and body weight®>. This hypothesis, however, deserves to be studied in future work.

No significant change in blood glucose levels was observed, suggesting that the efficacious relief of nociceptive
hypersensitivity is independent of glycemia. The use of mesenchymal stem cells of several origin, including hASC,
has been reported to induce beta cell protection in the STZ models'® **->7. We indeed observed the presence of
hASC in lesioned pancreas starting from day 7 after administration. However, this discrepancy can rely on the
different administration route, systemically or intra-pancreatic resulting in different numbers of cells reaching the
pancreas, and, most of all, the timing of administration. In our study in fact, hASC and hASC-CM were injected
2 weeks after STZ, when hyperglycemia was developed and pancreas already damaged.

In the near future, we plan to extend our experiments with other routes of administration of either hASC
or their CM. In particular results obtained after intraplantar and intratechal route of administration will be
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compared to the present ones after i.v administration, in order to better understand the peripheral vs. central
sites of action.

Both here and in our previous study'! we never observed any significant variability among the in vivo effect of
the different lots of hASCs and their conditioned medium used in all the treatments. However to overcome the
different cells growth of the, in the future we might consider to set a more standardized production of cells and
CM pooling several ASC populations, as also suggested by Bodle et al.s.

In conclusion, we confirm and explain the ability of i.v. hASC to exert a long lasting control of diabetic neu-
ropathic hypersensitivity showing, for the first time, that the effect of the hASC is mimicked by their secretome,
confirming the general view that stem cells act mainly throughout a paracrine action.

The safety of autologous MSCs has been documented by a number of clinical trials!® > and the use of
secretome could be further safer. In addition, considering all the studies on the effects of MSCs on diabetes, and
knowing that peripheral neuropathy affects up to 60% of diabetic patients?, we believe that advanced diabetic
neuropathy could become a first clinical target for this type of medicine cellular product. Thinking about the
future, a novel therapeutic option with hASC secretome might be suggested for treating advanced peripheral
painful neuropathy.

Materials and Methods
Isolation and culture of human Adipose-derived Stem/Stromal Cells (hASC) and human dermal
fibroblasts (hDFs).  All methods involving human specimens were performed following relevant guide-
lines and regulations. Human tissues were waste materials from abdominoplasty and liposuction performed at
IRCCS Galeazzi Orthopaedic Institute. We followed the procedure PQ 7.5.125, version 4, 22.01.2015, approved
by IRCCS Galeazzi Orthopaedic Institute, regarding waste materials to be used for research purpose. As required
by the procedure mentioned above, written informed consent was obtained from all patients and all the sam-
ples were anonymized. Adipose-derived stem/stromal cells were isolated from subcutaneous adipose tissue of
6 healthy donors (1 male and 5 females, age range 26-53y/0), as previously described®’. Adipose tissue sam-
ples were digested with 0.75 mg/ml type I Collagenase (250 U/mg, Worthington Biochemical Corporation);
stromal vascular fraction was filtered and deriving cells were cultured (10° cells/cm? 37 °C, 5% CO,) in control
medium (cDMEM: DMEM supplemented with 10% FBS - ThermoFisher Scientific Hyclone-, 2mM L-glutamine,
50 U/ml penicillin, 50 pg/ml streptomycin). Upon reaching 70-80% confluence, cells were detached with 0.5%
trypsin/0.2% EDTA and expanded (reagents, when not otherwise indicated, were provided by Sigma-Aldrich).
Characterized hASCs!'® ¢! were administered between the third and seventh-passage.

Human dermal fibroblasts (hDFs) were obtained from de-epidermized dermis of one healthy donor (female,
26y/0). The tissue fragments were digested with 0.1% collagenase type I at 37 °C for 6 hours then centrifuged and
the pellet resuspended in cDMEM and seeded for the expansion.

Conditioned media production. Upon reaching 80-90% confluence, cells were washed and cultured in
serum-free DMEM (phenol-free DMEM supplemented with 2 mM L-glutamine, 50 U/ml penicillin, 50 ug/ml
streptomycin) for 72 hours. Conditioned media were then centrifuged at 800 g for 10 minutes to remove cell
debris, and concentrated by a factor of about 45 times using Amicon® Ultra-15 centrifugal filter columns with
3-kDa molecular weight cutoff (Millipore). The volume of CM is indicated respect to the cell number.

Animals and in vivo study design. All animal care and experimental procedures complied with the
International Association for the Study of Pain and European Community (E.C.L358/118/12/86) guidelines and
were approved by the Animal Care and Use Committee of the Italian Ministry of Health (Permission 21/2014
to AP and 470/2016 to PS). All efforts were made to minimize animal suffering and to reduce the number of
animals used. Studies involving animals are reported in accordance with the ARRIVE guidelines for reporting
experiments involving animals®. A total of 120 animals were used in the experiments described here. Each exper-
iment consisted of 6-8 mice/group (see Statistic for details). C57BL/6 ] male mice weighing 20-25g, 9 weeks old
(Envigo, Italy) were housed with light/dark cycles of 12 hours, temperature of 22 2 °C, humidity of 55+ 10%,
food and water ad libitum.

Upon receipt, animals were randomized in cages of 3 mice each. After 1 week cages were randomly allocated
to the different experimental groups (diabetes or vehicle controls).

Diabetes was induced by intraperitoneal (i.p.) administration of Moderate Low Doses of streptozotocin (STZ)
(80 mg/kg daily for three consecutive days)®, (Sigma Aldrich, Italy), in citrate buffer 0.1 M, pH 4.55. Control mice
were injected with citrate buffer.

Tail-vein blood glucose concentration was assessed using a glucometer (GLUCOCARD G + meter, Menarini
diagnostics, Italy). Animals with glucose values above 250 mg/dl were considered diabetic. Animal weight was
monitored every week.

Experimental protocol. Experimental protocol is depicted in Fig. 1. Diabetic mice were randomly allo-
cated to different groups of treatment. Two weeks after STZ treatment (W2), either CM derived from 2 x 10°
hASC (hASC-CM) or 1 x 10° hASC resuspended in 200 ul of PBS supplemented with 2.5% heparin, were injected
intravenously through the caudal vein. Control animals were administered with PBS + 2,5% heparin only'* .

Moreover, 6 weeks after STZ (W6) two groups of mice received a second hASC or hASC-CM treatment (4
weeks after the first treatment), and further STZ-groups were treated for the first time at this advanced stage of
disease.

Mechanical allodynia was evaluated before diabetes induction, 1 and 2 weeks after streptozotocin administra-
tion, 3, 24 and 72 hours after either hASC-CM or hASC treatment, and every 7 days up to 14 weeks. Cold allody-
nia and thermal hyperalgesia were determined at 3, 24 and 72 hours and 1 week after treatments.
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Biochemical analyses were performed at different time points from hASC/hASC-CM treatment.

Animals were sacrificed: 3 hours after hASC/hASC-CM treatment (2 weeks from STZ); 3 weeks after STZ,
corresponding to 1 week after hASC/hASC-CM treatment; 14 weeks after STZ corresponding to either 12 or 8
weeks after hASC-CM or hASC treatment.

Mechanical Allodynia. Mechanical allodynia was tested evaluating the mechanical touch sensitivity with a
blunt probe on the mid plantar surface of the hind paw, using the Dynamic Plantar Aesthesiometer (Ugo Basile,
Italy)!®17. Responses to mechanical stimuli, (paw withdrawal thresholds, PWT) were measured before neuropa-
thy induction (0), and after STZ on both hind paws by researchers who were blind to treatments.

Cold allodynia. Cold allodynia was evaluated as previously described®*. Briefly, a drop (50 ul) of acetone
was placed in the middle of the plantar surface of the hind paw. The mouse behaviour was monitored during the
first 20 s. If the mouse did not withdraw, flick or stamp the hindpaw within this 20 s period, then no response was
recorded (0). However if within this 20 s period the animal responded to the cooling effect of the acetone, then
its response was assessed for an additional 20s. Responses to acetone were graded according to the following 4
points scale: 0, no response; 1, quick withdrawal, flick or stamp of the paw; 2, prolonged withdrawal or repeated
flicking (more than twice) of the paw; 3, repeated flicking of the paw with licking directed at the plantar surface
of the hind paw. Acetone was applied alternately 3 times to each hind paw and the responses were scored. Mean
scores were then generated for each mouse. Researchers were blind to treatments.

Thermal hyperalgesia. The hot-plate test was used to assess thermal hyperalgesia. The apparatus was set
at a temperature of 54 +0.5°C. Each animal was placed on the heated surface, and the time interval (seconds,
s) between placement and the simultaneous licking of both fore paws was recorded. The cut-off time, chosen to
avoid tissue damage, was 30s.

Tissue collection and storage. Mice were killed by CO, inhalation for spinal cord (L4-L6), dorsal root
ganglia (L4-L6), sciatic nerves, kidney, lung, liver, pancreas, plantar skin and spleen dissection. Tissues were
either immediately frozen in liquid nitrogen and stored at —80 °C until use or fixed for histological analysis.

Measurement of cytokines and CGRP level in nervous tissues. For cytokine extraction, spinal cord,
dorsal root ganglia (DRG) and sciatic nerves samples were homogenized in lysis buffer (ice-cold PBS + protease
inhibitor cocktail, Roche Diagnostics, Italy). Tissues were centrifuged at 1000 g for 15 min at 4 °C and superna-
tants used to measure cytokines levels and total protein content (Lowry’s method). For CGRP extraction, DRG
and spinal cords were homogenized in 2N acetic acid, heat at 90 °C for 10 minutes, centrifuged, dried and the
supernatant dissolved in EIA assay buffer (Cayman Chemical, SpiBio, Italy).

Splenocyte collection and in vitro Stimulation for Cytokine Assay. Splenocytes were adjusted in
24-well plates at the final concentration of 4 x 106 cells/ml of culture medium (RPMI 1640 with 10% FCS, 1%
glutamine, 2% antibiotics and 0.1% 2-mercaptoethanol) and incubated at 37°C in 5% CO, and 95% air with
10pug/ml Concanavalin A (ConA) for T helper (Th)1 and Th2 cytokine stimulation. After 24 (for IFN-~ and IL-2)
or 48 hours (for IL-4 and IL-10) of culture, times of maximum release® ®>, supernatants were stored at —80°C.

ELISA. Cytokine concentration was determined using ultra-sensitive ELISA kits according to the manufac-
turer’s instruction. DuoSet ELISA development systems for mouse IL-2, IFN-~ and IL-4 were from R&D Systems
(Minneapolis, USA) while mouse IL-1f, IL-6, TNFa and IL-10 ELISA Ready-SET-Go from eBioscience (San
Diego, CA). Cytokine concentrations were reported as pg cytokine/mg total protein content in sciatic nerve,
DRG and spinal cord. Cytokine production by splenocytes was reported as concentrations in media of stimulated
cultures.

CGRP was assayed with mouse/rat CGRP Enzyme Immunoassay Kit (EIA, Cayman Chemical, SpiBio, Italy)
and data reported as pg/mg total protein content.

Skin Immunohistochemistry. The plantar skin was collected from 3 mice/group, and fixed in 10% buffered
formalin for 24 hours. The skin was embedded in paraffin according to standard procedures and cut at 8 um by
a microtome (Microm HM 325). Alternate paraffin sections from the middle part of plantar skin were evaluated
by immunohistochemistry. The sections were deparaffinised, rehydrated and subjected to antigen retrieval in
0.05M sodium citrate buffer (pH 6.0) in hot water bath (98 °C for 20’). Endogenous peroxidase activity was
blocked by incubation with 3% hydrogen peroxide. Sections were immunostained with the monoclonal antibody
anti-mouse PGP9.5 (protein gene product 9.5, dilution 1:250, EMD Millipore, Darmstadt, Germany), a marker
of nerve fibers. All sections were processed using UltraVisionQuanto Detection System horseradish Peroxidase
(HRP; ThermoScientific, Bio-Optica, Milan, Italy), followed by development with diaminobenzidine (Amresco,
Prodotti Gianni, Milan, Italy). Finally, the sections were dehydrated and mounted and some of them was pre-
viously counterstained with hematoxylin. The immunohistochemical control was performed by omitting the
primary antibody, in presence of isotype matched IgGs and performing pre-adsorption using the related peptide.
Digitally fixed images of slices were analyzed using an image analyzer (Image Pro-Premier, Immagini e Computer,
Milan, Italy). The density of nerve fibers was evaluated measuring the percent area occupied by positive PGP9.5
nerve fibers in epidermal area including the sub-basal one. The data of all animals were analyzed at a final 400X
magnification measuring three randomly collected fields for each section by researchers unaware of the animal
group assignment.
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Morphological evaluation of epidermal thickness. Digitally fixed images of slices were analyzed using
an image analyzer (Image Pro-Premier, Inmagini e Computer, Milan, Italy). The epidermal thickness was eval-
uated by means of the distance (um) from basal membrane to stratum granulosum at a final 400X magnifi-
cation measuring three randomly collected fields for each section by researcher unaware of the animal group
assignment.

Kidney histological analysis. Kidneys were fixed in 10% buffered formalin (Sigma-Aldrich) and then pro-
cessed for paraffin embedding. Morphological analysis was performed on 2-3 pm Harris hematoxylin and eosin
(Bio Optica) stained sections (images acquired by Olympus BX51, Japan). Bowman’s space area® in at least five
randomly collected fields were quantified by Image] software at a final 200X magnification, by researchers una-
ware of the animal group assignment. At least 30 glomeruli/group were analyzed.

hASC localization by Alu sequence detection. Genomic DNA from lungs, livers, pancreas and sci-
atic nerves of STZ and control mice was collected at day 1, 3, 7, 14 and 21 after 1 x 10° hASC i.v. injection.
Briefly, 25 mg of each tissue (except for the sciatic nerve) were homogenized and lysed in 0.5 ml of lysis buffer
(1% SDS, 400 mM NaCl, 5mM EDTA [pH 8.0], 100 mM Tris [pH 8.0]) containing 0.2 mg/ml of Proteinase K
(Sigma-Aldrich). Differently, both sciatic nerves from each mouse were lysed in 50 pl of lysis buffer. Samples were
incubated overnight at 56 °C and following phenol/chloroform extraction, DNA was precipitated in ethanol and
resuspended in MilliQ water. Primate specific ALU sequences were amplified by PCR using appropriate primers:
(forward, 5-TGGGCGACAGAACGAGATTCTAT-3'; reverse, 5'-CTCACTACTTGGTGACAGGTTCA-3') that
produce DNA amplicons of 224 bp. Human DNA isolated from hASC was used as positive control.

Statistic. Statistical analysis was performed using GraphPad Prism 5 Software (San Diego, CA, U.S.A). Data
were tested for equal variance before choosing statistical analysis.

Data from mechanical allodynia measurements and thermal hyperalgesia were analyzed by mean of two way
ANOVA considering the type of treatment and the time as factors. Baseline values, i.e. responses before STZ
injection, were not included in the analysis. If an overall test comparing group was significant, Bonferroni’s test
was used for between-group comparisons in the post hoc analysis. Cold allodynia scores were compared with
Mann-Whitney U-test.

Cytokines and CGRP results were analyzed using one-way Anova, followed by Bonferroni’s post hoc test for
multiple comparison. Body weight and blood glucose levels were statistically evaluated by Two-way ANOVA
considering the type of treatment and the time as factors. If an overall test comparing group was significant,
Bonferroni’s test was used for between-group comparisons in the post hoc analysis.

Data from histological experiments (skin thickness and kidney damage) and of immunohistochemistry
(PGP9.5) were analyzed and compared by one-way ANOVA and by a Bonferroni’s multiple comparison test.

The overall significance level was 0.05 for each hypothesis. Each group consisted of 6 animals. The group size
was chosen on the basis of the results obtained in our previous studies. For antiallodynic response, considering
an expected difference in means of 40%, SD of 10%, number of treatments 4, power 0.95 and « 0.05, a number of
3 animals for group could have been enough. However, considering also cytokines as important outcome, where
the SD can be estimated in 30%, the number must be increased to 6 animals.

Results are expressed as mean & SD or SEM.
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