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Linoleic acid metabolite leads to 
steroid resistant asthma features 
partially through NF-κB
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Studies have highlighted the role of nutritional and metabolic modulators in asthma pathobiology. 
Steroid resistance is an important clinical problem in asthma but lacks good experimental models. 
Linoleic acid, a polyunsaturated fatty acid, has been linked to asthma and glucocorticoid sensitivity. 
Its 12/15–lipoxygenase metabolite, 13-S-hydroxyoctadecadienoic acid (HODE) induces mitochondrial 
dysfunction, with severe airway obstruction and neutrophilic airway inflammation. Here we show 
that HODE administration leads to steroid unresponsiveness in an otherwise steroid responsive model 
of allergic airway inflammation (AAI). HODE treatment to allergic mice further increased airway 
hyperresponsiveness and goblet metaplasia. Treatment with dexamethasone was associated with 
increased neutrophilic inflammation in HODE treated allergic mice; unlike control allergic mice that 
showed resolution of inflammation. HODE induced loss of steroid sensitivity was associated with 
increased p-NFkB in mice and reduced GR-α transcript levels in cultured human bronchial epithelia. In 
summary, HODE modifies typical AAI to recapitulate many of the phenotypic features seen in severe 
steroid unresponsive asthma. We speculate that since HODE is a natural metabolite, it may be relevant 
to the increased asthma severity and steroid insensitivity in patients who are obese or consume high fat 
diets. Further characterization of HODE induced steroid insensitivity may clarify the mechanisms.

Linoleic acid, a dietary polyunsaturated fatty acid (PUFA), and its lipid metabolites are known to mediate several 
inflammatory pathways in asthma. Dietary intake of ω-6 and ω-3 fatty acids determines the lipid composition of 
the cell and its membrane, which in turn affects the cell health. It has been well established that while ω-6 fatty 
acid and its metabolites are pro-inflammatory, ω-3 fatty acids are majorly anti-inflammatory1. Previous studies 
have shown a positive association between dietary components rich in ω-6 fatty acid such as margarine and veg-
etables oils (soy, safflower, sunflower and corn), and asthma prevalence2–8.

Asthma, which was initially thought to be a Th2 dominant disease, is now considered a heterogeneous syn-
drome with respect to clinical phenotypes and treatment responses9, 10. Among which, obese-asthma (lacks 
Th2 biomarker) and neutrophil dominant asthma phenotype represent a significant proportion in asthma and 
respond poorly to corticosteroid treatment11, 12. Although, steroid resistance is seen in only 5–10% of the asth-
matic population, it consumes significant health resources and contributes to substantial mortality and morbid-
ity13. Despite being a major hindrance to the treatment, very little is understood of steroid resistance phenotype 
and its molecular regulators. The lacunae in the understanding of the mechanism could be partially attributed 
to the lack of good experimental model. Currently available steroid resistant mouse models are induced by using 
various external triggers or insults such as OVA and House dust mite14–17. However, there are very limited stud-
ies with endogenous factors, present upstream of the phenotype observed in steroid resistance. In this context, 
studying the role of endogenous factors (e.g, lipid metabolites) present in asthmatics may provide better insights 
into the molecular mechanisms underlying steroid resistance in humans and would be more clinically relevant.

Linoleic acid (ω-6 fatty acid), is known to increase the levels of cytokines which leads to neutrophilia18. These 
are also known to negatively modulate the binding of synthetic glucocorticoids with glucocorticoid-receptor19, 20. 
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Its 12/15–lipoxygenase metabolite, 13-S-hydroxyoctadecadienoic acid (hereafter written as HODE), is not only 
increased in asthmatic lungs but also induces mitochondrial dysfunction, severe airway obstruction with neutro-
philic inflammation in naïve mice21. Role of dietary lipids and its metabolites is not known in steroid resistance. 
Hence, in this study, we explored the involvement of HODE in the development of steroid resistance like features 
of asthma.

Here, we demonstrate for the first time, the importance of a metabolic intermediate, HODE, in the develop-
ment of steroid resistance. We further provide evidence to support the role of NF-κB and GR-α in the HODE 
induced steroid insensitivity.

Results
Airway inflammation induced by 13-S-HODE, a dietary lipid metabolite, is resistant to ster-
oid treatment.  To investigate the effect of HODE on steroid resistance, HODE (0.6 mg/kg or 2.02 mM) was 
administered to OVA induced allergic mice intranasally (Fig. 1A). As compared to SHAM, OVA induced mice 
showed increased infiltration of inflammatory cells and goblet cell metaplasia (GCM), which were alleviated with 
DEX (dexamethasone, a steroid) treatment. However, DEX was unable to reduce inflammatory cell infiltration 
and GCM in HODE administered allergic mice (OVA + HODE + DEX) (Fig. 1B–E).

In bronchoalveolar lavage (BAL) fluid, HODE-treated allergic airway inflammation (AAI) mice showed 
significant increase in eosinophils, lymphocytes and neutrophils. Treatment with DEX was able to reduce the 
percentage of eosinophils, but not neutrophils (Fig. 2A). In fact, it increased the number of neutrophils in 
HODE-treated AAI mice. Myeloperoxidase assay suggested that the active neutrophils were significantly reduced 
by DEX treatment in OVA mice, but not in HODE-treated OVA mice (Fig. 2B). Further, DEX could not reduce 
airway hyper-responsiveness (AHR) in response to methacholine in OVA mice administered with HODE 
(OVA + HODE + DEX) when compared to OVA alone mice (OVA + DEX) (Fig. 2C).

HODE administration reduced GR-α and its activity in human bronchial epithelial cells.  To 
determine whether HODE-mediated steroid resistance was through direct effects on the glucocorticoid response, 
we studied the effect of HODE on glucocorticoid receptor. Glucocorticoid response is mediated by glucocorti-
coid receptor (GR) that binds to glucocorticoid response element (GRE) and modulates the expression of the 
downstream genes22. To examine whether HODE affects GR activation, binding of GR to synthetic GRE oligonu-
cleotides was estimated in nuclear extracts of dexamethasone pretreated bronchial epithelia (BEAS-2B), which 
were induced with HODE. HODE reduced the GR activation when compared to dexamethasone alone, and this 
reduction was not restored with addition of dexamethasone (Fig. 3A). Downstream effects of dexamethasone, 
such as suppression of IL-8 and MCP-1α, were also abolished by HODE (Fig. 3B,C). To determine whether 
HODE-mediated reduction in GR activation was due to decrease in the GR-α receptor expression, we measured 
the transcript levels of GR-α in BEAS-2B cells. HODE treatment led to a significant decrease in the levels of GR-α 
expression (Fig. 3D).

HODE induced inflammation upregulated p-NFκB in allergic mice.  To determine whether 
HODE-mediated steroid resistance is via the transient receptor potential cation channel subfamily V member 1 
(TRPV1), which may mediate HODE-induced asthma like features21, we knocked down TRPV1 in our steroid 
resistant model. However, siRNA mediated knock down of TRPV1 did not resolve AHR, AAI or MPO activity in 
this model (Supplementary Fig. 1). Since NF-κB activation is previously reported in steroid resistant asthma23, we 
next performed immunohistochemical measurement of p-NFκB p65 (Ser 536). We found that OVA challenge led 
to a DEX-sensitive p-NFκB increase in airway epithelium. HODE treatment was associated with lack of p-NFκB 
decline post DEX treatment. HODE neutralization was associated with a significant reduction in p-NFκB, along 
with a trend towards restoration of IκBα levels (Fig. 4A–D).

Inhibition of NF-κB alleviated HODE induced steroid resistant inflammation in allergic 
mice.  To verify the role of NF-κB in HODE mediated steroid resistance, we tested whether the steroid resist-
ance was reversible by pyrrolidinedithiocarbamate (PDTC, 50 mg/kg), a potent NF-κB inhibitor (Fig. 5A). 
PDTC increased the sensitivity to DEX in HODE-treated steroid resistant mice. Infiltration of inflammatory 
cells as well as GCM were reduced in lung sections of PDTC treated OVA + HODE + DEX mice compared to 
OVA + HODE + DEX mice (Fig. 5B–D). Cells in BAL fluid indicated that PDTC specifically reduced neutro-
philic airway inflammation. We also found a significant reduction in myeloperoxidase activity in PDTC treated 
OVA + HODE + DEX mice, when compared to HODE-treated OVA mice (Fig. 6A,B). PDTC administered mice 
also showed reduced AHR in response to 25 mg/ml methacholine than HODE-treated OVA mice (Fig. 6C).

Discussion
While there are numerous reports on the effect of dietary lipids and its metabolites on the pathogenesis and 
increased incidence of asthma2–8, there are no studies indicating its role in steroid resistant asthma. We, for the 
first time, show that 13-S-HODE, the 12/15 LOX metabolite of linoleic acid, leads to steroid resistance. This was 
shown in mice with AAI and in cultured human bronchial epithelial cells. OVA induced AAI mice, which are typ-
ically sensitive to steroids, showed steroid resistant airway hyperresponsiveness and goblet cell metaplasia upon 
HODE induction. In human bronchial epithelial cells, HODE led to decreased GR-α transcript. GR-α mediates 
the effects of glucocorticoids by further binding to positive or negative glucocorticoid response elements that 
mediate activation or repression of downstream genes, respectively22. Decrease in the transcript levels of GR-α, is 
expected to lead to reduced activity of steroids and hence, steroid insensitivity. GR-β, the decoy receptor of GR-α, 
has also been studied in steroid resistant asthma patients. These studies suggest an increase in the expression of 
GR-β in the neutrophils24–27. However, in our study, we did not find any significant changes in the expression 
of GRβ in HODE induced bronchial epithelial cells (data not shown). As for the murine model, the presence of 
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GRβ and its role in steroid resistance remains equivocal. It has been demonstrated using in-vitro cellular systems 
that unsaturated fatty acids like linoleic acid negatively modulate the binding of triamcinolone acetonide or dex-
amethasone, a synthetic glucocorticoid, with glucocorticoid-receptor19, 20. With respect to the current study, it 
would be interesting to investigate the direct or indirect mechanism with which HODE could modulate GR-α.

There are numerous metabolites derived from linoleic acid through its downstream fatty acids like gamma 
linolenic acid, and arachidonic acid and certain enzymes like Δ6-desaturase, elongase, Δ5-desaturase, lipoxygen-
ases, cyclooxygenase and cytochrome P45028. Many of the linoleic acid metabolites like leukotoxin, isoleukotoxin, 

Figure 1.  Dexamethasone fails to attenuate airway inflammation and goblet cell metaplasia induced by 
HODE in allergic mice. (A) Schematic representation of experimental design/protocol as described in 
methods. (B and C) Representative photomicrographs (20 X magnifications) of bronchovascular regions of 
different groups of mice stained with haematoxylin and eosin (H & E) and periodic acid–Schiff (PAS). Arrows 
indicate the infiltrated inflammatory cells in (B) and goblet cell metaplasia in (C). Mean inflammation score 
(D) and mean intensity of mucin content (E) estimated from the images of H and E and PAS stained lung 
sections. Data represents mean ± SE; n = 4–6 each group; ***p < 0.001, NS, non-significant (OVA versus 
OVA + HODE + DEX), Br: bronchi, V: vessel.
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leukotrienes are pro-inflammatory mediators29. Though 5-lipoxygenase/leukotrienes pathway are known to be 
crucial in causing bronchospasm, the role of 15-lipoxygenase and its downstream metabolites were not well 
explored. In this context, we have shown the involvement of 15-LOX and its metabolites in causing mitochon-
drial dysfunction in asthma pathogenesis30, 31. Though there are numerous metabolites of linoleic acid,we focused 
on 13-S-HODE as we found highly increased levels of this in asthmatic patients in our earlier study21. As we have 
demonstrated the involvement of IL-4/IL-13/15-LOX pathway on mitochondrial dysfunction21, 31, we were inter-
ested to see the effects of 13-S-HODE, a downstream metabolite of this pathway on airway function and further 
steroid resistance. It would be interesting to study the effects of linoleic acid rich diet on the airway function and 
steroid resistance. These supplementation studies have to demonstrate the levels of linoleic acid and its metabo-
lites in the airway before dissecting the role of linoleic acid diet supplementation on steroid resistance as asthma 
predominantly affect the airways in general. In this context, it has been shown that linoleic acid supplementation 
indeed worsens the cystic fibrotic conditions with increased levels of pro-inflammatory mediators like IL-832. So it 
would be interesting to see the effects of high fat especially linoleic acid diet rich diet on steroid resistance. In any 
event high fat fed mice had shown the steroid resistant features (Singh VP et al., unpublished data from our lab).

Our group has administered intranasal 13-S-HODE to demonstrate its relation with severe asthma. We indeed 
calculated the intranasal dosage from the 13-S-HODE levels present in the BAL fluids of human asthmatics in ref-
erence to IL-4 and IL-13 levels in BAL fluids of human and mice asthmatic conditions as 13-S-HODE is the prod-
uct IL-4 and IL-13 signaling. It has been shown in a number of studies that though the BAL fluid concentrations 
of IL-4 and IL-13 do not differ at basal conditions in asthmatic conditions, it reaches up to 200–400 pg/ml after 
allergen challenge33–35. To mimic IL-4 or IL-13 mediated human relevant asthmatic condition in mice, 3–5 µg of 
recombinant IL-4 or recombinant IL-13 per day has been widely used36, 37. So we have used 15 µg of 13-HODE 
to approximately 25 gram mouse (0.6 mg/kg) as we found approximately 1200 pg/ml of 13-S-HODE in the BAL 
fluids of human asthmatics21.We did not check the levels of HODE in blood of mice that were administered intra-
nasal HODE and so we are not sure whether intranasal HODE reached bloodstream or not. But there is a good 
possibility that it might spill over to bloodstream as we administered HODE in the OVA induced inflamed lungs. 
In addition, we found increased levels of endogenous HODE in sera of human asthmatics21.

Our previous report demonstrates that naïve mice treated with HODE had increased neutrophilia and high 
Th17 cytokines, which are often seen in patients with steroid resistant asthma12, 13. Though the chemotactic activ-
ity of 13-hydroxy-linoleic acid on the isolated exogenous neutrophils is known38, we have shown the in vivo 

Figure 2.  Dexamethasone fails to alleviate HODE induced neutrophilic inflammation and AHR in allergic 
mice. (A and B) Neutrophil percentage and myeloperoxidase activity in BAL fluid. (C) The percentage baseline 
airway resistance in response to increasing concentrations of methacholine in HODE administered allergic 
mice. Data represents mean ± SE; n = 4–6 mice each group; *p < 0.05, **p < 0.01, NS, non-significant (OVA 
versus OVA + HODE + DEX).
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demonstration of HODE induced airway neutrophilia. In the present study, HODE induced steroid resistance in 
mice with AAI was not associated with any change in IL-17A, IL-21 or IL-22 (data not shown), suggesting that 
there may be different mechanisms of action of HODE in uninflamed and inflamed lungs. This is supported by 
our observation that TRPV1 inhibition, which attenuates the effects of HODE in naive mice21, had no effect in 
the steroid resistant AAI model. Also, it would be interesting to investigate the effects of DEX in HODE admin-
istered naïve mice as this could reveal the possible effects of DEX on non-allergic steroid resistant inflammatory 
conditions with increased levels of 13-S-HODE. However, in human bronchial epithelial cells, DEX treatment 
in presence of HODE was unable to reduce the steroid responsive cytokines such as IL-8 and MCP-1α. While 
IL-8 and MCP-1α are steroid regulated cytokines, these cytokines are also known to be regulated by NF-κB. And 
interestingly, GR-α inhibits NF-kB mediated pro-inflammatory cytokines by physically interacting with p65 sub-
unit (Rel-A), creating a competition for the binding of coactivators and preventing the phosphorylation of RNA 
polymerase II39. In this scenario, the reduced GR-α in HODE induced BEAS-2B implies the loss of inhibition of 
GR-α on NF-κB, thereby increasing the expression of cytokines driven by NF-κB. There are substantial reports 
suggesting the involvement of NF-κB in multiple inflammatory pathways of asthma, some of which also converge 
with steroid mediated pathways. Similar to these, we also observed that the loss of steroid sensitivity in mice was 
associated with increased p-NFκB. NF-κB is known to regulate the expression of cytokines such as KC (mouse 
homologue of IL-8) and G-CSF which helps in neutrophil chemotaxis and survival. We show that pyrrolidin-
edithiocarbamate (PDTC) administration specifically inhibited the neutrophilic inflammation in HODE induced 
steroid resistant mice and increased the sensitivity towards steroids, therefore, resolving the steroid resistant 
features. Although, we clearly observed that HODE induced steroid resistance was due to activated NF-kB, we 
did not find any significant change in the transcript levels of RelA/p65 in HODE induced BEAS-2B cells (data 

Figure 3.  HODE reduces GR-α and its activation in BEAS-2B cells. (A) Glucocorticoid receptor (GR) 
activation was estimated in nuclear extract of HODE induced Beas2B cells (details in methods). (B and C) 
Levels of IL-8 and MCP1-α in the supernatants of cultured human bronchial epithelia, induced with HODE and 
DEX. (D) Transcript levels of GR-α normalized to α-tubulin. Data represents mean ± SE; n = 3–5; *p < 0.05, 
NS: non-significant.
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not shown). Thus, the mechanisms underlying HODE mediated NF-kB activation are yet to be investigated.In 
any event, the interplay of reduced GR-α and increased p-NFκB thus appears to be critical in the development of 
HODE-induced steroid resistance (Fig. 7).

In the present study, we have focused only on the NF-kB pathway. However, the involvement of other path-
ways relevant to steroid resistance like ERK1/2, JNK, and p38 mitogen-activated protein kinase signaling path-
ways40 in this steroid resistance model needs to be explored. So, the existence of NF-κB independent mechanisms 
to regulate the expression of GR has to be investigated in details. However, we envisage the involvement of nuclear 
receptors regulated by lipid metabolites. Also, it would be interesting to compare the levels of lung HODE among 
steroid resistant and steroid sensitive patients, although the levels of HODE are known to be increased in sera 
of asthmatic patients. We speculate that such studies will lead to a greater mechanistic understanding of steroid 
resistance in asthma and clarify the role of dietary lipids with respect to steroid sensitivity. There is an increase in 
the dietary ω-6/ω-3 fatty acid ratio due to the westernization of food consumption patterns41. This gradual change 
in the fatty acid composition of the diet, including an increase in the level of ω-6 fatty acids and ω-6/ω-3 fatty acid 
ratio with time is associated with increased risk and prevalence of obesity41, which emerges as a risk factor for 
asthma development42–45. Obese-asthma phenotype requires greater deal of attention and studies as it is typically 
refractive to steroid treatment43, 45 and this is where we speculate our study can bridge the gap. Moreover, it would 
be interesting to check the levels of HODE in obese-asthmatic patients and correlate it with the steroid respon-
siveness to further strengthen the hypothesis. Our study would help in understanding the pathogenesis of steroid 
resistance, overarching all the phenotypes including obese-asthmatics.

Methods
Mice grouping.  The male BALB/c mice (6–8 weeks) were procured from Central Drug Research Institute, 
Lucknow, India and maintained in Institute of Genomics and Integrative Biology (IGIB), Delhi, India. The 
Institutional Animal Ethical Committee at IGIB approved all mice experiments and all methods were per-
formed in accordance with the relevant guidelines and regulations of Committee for the Purpose of Control 

Figure 4.  HODE administration increases p-NFκB in AAI mice. (A and C) Representative IHC images (20X 
magnifications) and quantification of the expression of p-NFκB in HODE induced steroid resistance model. 
(B and D) Representative IHC images (20X magnifications) and quantification of p-NFκB and IκB-α in the 
lung sections of HODE neutralized allergic mice. Data represents mean ± SE; n = 3–6; **p < 0.01, NS: non-
significant. Br: Bronchi. Arrows indicate the positive expression
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and Supervision of Experiments on Animals (CPCSEA). Two different allergic models were utilized; first being, 
OVA model with five groups: SHAM (mice that were PBS sensitized, PBS challenged and treated with vehi-
cle, 50% ethanol), OVA (mice that were OVA, grade V chicken egg ovalbumin, sensitized, OVA challenged and 
treated with vehicle), OVA + DEX [allergic mice treated with dexamethasone (0.75 mg/kg) orally], OVA + HODE 
[allergic mice administered with intranasal HODE (0.6 mg/kg or 2.02 mM) and treated with vehicle] and 
OVA + HODE + DEX [allergic mice administered with intranasal HODE (0.6 mg/kg or 2.02 mM) and treated 
with dexamethasone (0.75 mg/kg) orally]. The second model had following groups: SHAM, OVA, OVA + DEX, 

Figure 5.  NFκB inhibitor treatment increases steroid sensitivity, reduces airway inflammation and goblet 
cell metaplasia in HODE induced steroid resistant mice. (A) Schematic representation of experimental 
design. PDTC (50 mg/kg) was administered intraperitoneally on day 24th and day 26th, 2 hrs and 4 hrs after the 
administration to HODE and DEX respectively (details explained in material and methods). (B and C) The 
representative photomicrographs of H and E (20x magnifications) and PAS, respectively. (D) Mean intensity of 
PAS calculated by Image J software. Data represents mean ± SE; n = 3–6; **p < 0.01, NS: non-significant. Br: 
bronchi, V: vessel, Arrows indicate the goblet cell metaplasia.
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OVA + HODE + DEX, and OVA + HODE + DEX + PDTC [OVA + HODE + DEX mice administered with 
PDTC dissolved in DMSO (50 mg/kg) intra-peritoneally].

OVA-immunization and challenge.  Mice were sensitized with three intraperitoneal injections of 50 µg 
OVA adsorbed in alum for three weeks and challenged with 3% OVA in PBS for 7 days as described earlier21, 46, 47.

Administration of 13-S-HODE, Dexamethasone, and PDTC.  13-S-HODE (Cayman, Michigan,USA) 
or VEH (50% ethanol) was instilled to the nasal openings of each isoflurane anesthetized mouse. Based on our 
previous publication21 we have selected the dose of 0.6 mg/kg or 2.02 mM for each mouse. 13-S-HODE was 
administered intranasally on days 24, 26 and 28 as shown in Fig. 1A. Dexamethasone (Sigma-Aldrich, MO, USA), 
dissolved in 50% ethanol, was given orally (0.75 mg/kg) to mice from day 24 to 28 as shown in Fig. 1A. PDTC 
(Sigma-Aldrich, USA) was dissolved in DNAase and RNAase free H2O, and was administered intraperitoneally 
into mouse (50 mg/kg) on days 24, 26 and 28, 2 hrs after the administration of HODE (Figs 1A and 5A).

Airway hyperresponsiveness measurement and bronchoalveolar lavage (BAL).  Airway 
hyper-responsiveness was estimated with invasive flexiVent (SCIREQ, Montreal, Canada) as previously 
described21, 46, 47. BAL was performed and differential cell counts were made as described earlier21, 46, 47.

Lung histopathology.  Formalin-fixed lung sections were stained with Haematoxylin & Eosin (H & E), 
Periodic acid-Schiff and morphometric analysis was performed using publicly available Image J software21, 46, 47.

In vitro experiments.  Human bronchial epithelial cells (Beas-2B) were obtained (ATCC, Manassas, VA, 
USA), maintained in HAM’s F12 (Sigma-Aldrich, MO, USA) with 10% fetal bovine serum (FBS). The cells were 
pretreated with dexamethasone (10−6 M, Sigma, MO, USA) for 3 hrs before stimulating with vehicle (ethanol) 
or 13-S-HODE (35 μM, Cayman, Ann Arbor, Michigan, USA) for 16 hrs. These cells were harvested for further 
experiments and supernatants were stored for cytokine assays.

Figure 6.  NFκB inhibitor treatment alleviates neutrophilic inflammation and airway hyperresponsiveness in 
HODE induced steroid resistant mice. (A) The counts of neutrophils and eosinophils in BAL fluid of steroid 
resistant mice administered with PDTC. (B) The myeloperoxidase activity in mouse BAL fluid supernatants. 
(C) The percentage baseline airway resistance in response to 25 mg/ml methacholine dose. Data represents 
mean ± SE; n = 3–6 each group; *p < 0.05,***p < 0.001, NS: non-significant.
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ELISAs.  IL-8, MCP1-α (E-biosciences, CA, USA), myeloperoxidase assay (Cayman chemicals, Michigan, 
USA) were performed according to manufacturer’s instructions from culture supernatants (IL-8, MCP1-α) and 
BAL Fluid respectively.

For measuring GR activity (Active Motif, CA, USA) BEAS-2B cells obtained after HODE and DEX treatment 
(as described above), were processed for nuclear extract. Elisa was performed using manufacturer’s protocol with 
20 μg of nuclear extract. The O.D measured is plotted in arbitrary units (AU) in fold change, calculated by O.D 
test/O.D veh48.

Immunohistochemistry.  Immunohistochemical analysis for p-NFkB and IkB-α  (Santa 
Cruz Biotechnology, Texas, USA) was performed with respective secondary antibodies (Sigma, St. Louis, MO, 
USA).

Real Time PCR.  Cells harvested were lysed in RNA lysis solution and RNA was isolated (Qiagen, 
Germany). cDNA was isolated from RNA using the manufacture’s protocol (ABI, CA, USA). Further real time 
was performed using kappa FAST Syber green (Roche cycler) using the following primers. Human GR-α, FP: 
5′ACGGTCTGAAGAGCCAAGAG3′and RP: 5′CAGCTAACATCTCGGGGAAT3′; Human β-actin, FP: 
5′CCAACCGCGAGAAGATGA3′, RP: 5′ CCAGAGGCGTACAGGGATAG3′.

Figure 7.  13-S-HODE mediates steroid resistance via NF-κB and GR-α. Dietary lipids, absorbed through 
intestine are converted to long chain fatty acids which serve as a precursor for the formation of phospholipids. 
While, ω-6 fatty acids (red color phospholipid) are oxidized into pro-inflammatory lipid mediators, ω-3 is 
(green color phospholipid) oxidized to anti-inflammatory. 13-S-HODE is a lipid metabolite of linoleic acid (ω-6 
fatty acid), oxidized by 15-lipoxygenase. 13-S-HODE, causes airway remodeling and goblet cell metaplasia by 
mitochondrial dysfunction via TRPV1 channels. In another independent pathway, it increases p-NFκB and 
reduces GR-α leading to steroid resistant asthma.
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Statistical analysis.  All data represents mean ± SEM; n = 3–6 each group; *p < 0.05, **p < 0.01, 
***p < 0.001. A p-value more than 0.05 is considered non-significant (NS). Statistical significance of the dif-
ferences between paired groups was determined with a two-tailed Student’s t test. One-way analysis of variance 
was used to compare multiple groups by using PRISM software and was evaluated further with a nonparametric 
Mann-Whitney rank-sum test or Krusker-wallis test wherever appropriate.
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