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A novel approach for the 
prediction of species-specific 
biotransformation of xenobiotic/
drug molecules by the human gut 
microbiota
Ashok K. Sharma, Shubham K. Jaiswal, Nikhil Chaudhary & Vineet K. Sharma

The human gut microbiota is constituted of a diverse group of microbial species harbouring an 
enormous metabolic potential, which can alter the metabolism of orally administered drugs leading 
to individual/population-specific differences in drug responses. Considering the large heterogeneous 
pool of human gut bacteria and their metabolic enzymes, investigation of species-specific contribution 
to xenobiotic/drug metabolism by experimental studies is a challenging task. Therefore, we have 
developed a novel computational approach to predict the metabolic enzymes and gut bacterial species, 
which can potentially carry out the biotransformation of a xenobiotic/drug molecule. A substrate 
database was constructed for metabolic enzymes from 491 available human gut bacteria. The structural 
properties (fingerprints) from these substrates were extracted and used for the development of 
random forest models, which displayed average accuracies of up to 98.61% and 93.25% on cross-
validation and blind set, respectively. After the prediction of EC subclass, the specific metabolic enzyme 
(EC) is identified using a molecular similarity search. The performance was further evaluated on an 
independent set of FDA-approved drugs and other clinically important molecules. To our knowledge, 
this is the only available approach implemented as ‘DrugBug’ tool for the prediction of xenobiotic/drug 
metabolism by metabolic enzymes of human gut microbiota.

The human gut harbours more than 100 trillion microbial cells belonging to about 1,000 different bacterial spe-
cies, and hence, it constitutes a huge reservoir of metabolic enzymes in the gut capable of showing a vast array 
of metabolic activities in addition to those carried out by the host enzymes1. These bacterial metabolic activities 
affect human metabolism, physiology, nutrition uptake and immune system activities, and thus have significant 
implications for human health and diseases such as inflammatory bowel disease, obesity, and Type II diabe-
tes2–4. The diverse metabolic activities of gut microbes can modulate the host metabolic machinery by interfering 
with the processes of energy harvesting and extraction of essential nutrients from dietary food, and through the 
metabolism of xenobiotic/drug molecules5–12.

Reports on xenobiotic/drug metabolism by gut bacteria have been known since last three decades. However, 
the effect of gut microbiota on metabolism, bioavailability, bioactivity, and toxicity of xenobiotic/drug molecules 
is yet underexplored. Furthermore, the structure of gut microbiota in any individual is primarily shaped by envi-
ronmental factors such as diet, geography, antibiotics, and probiotics as well by genetic factors like minor genomic 
variations of host genome13. Thus, the metabolism of any xenobiotic/drug is likely to be influenced by individual 
and population-specific variations of the gut metagenome along with host-mediated metabolism.

Several drugs such as acetaminophen and digoxin have shown population-specific variations in drug response 
which correlates with the metabolic activities of bacteria in the human gut14–17. Similarly, at least 40 therapeutic 
drugs have been reported to be metabolized by the gut microbes in Pharmacomicrobiomics database. However, 
except for a few cases, the microbial species and metabolic enzymes are still uncharacterized18, 19. A few cases that 
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demonstrate the metabolism of a drug molecule has been shown to be carried out by a gut bacterial species are 
metabolism of chloramphenicol by Escherichia coli20, sorivudine by Bacteroides eggerthii and Bacteroides vulga-
tus21, cyclophosphamide by Firmicutes22 and olaquindox by Escherichia coli23.

The experimental methods of metabolic profiling such as Nuclear Magnetic Resonance (NMR) spectroscopy 
and Liquid Chromatography-Mass Spectrometry (LC-MS), can be utilized to determine the corresponding met-
abolic enzymes and bacteria responsible for the biotransformation of xenobiotic/drug molecule. However, the 
complex and dynamic metabolic interactions between host-bacteria and bacteria-bacteria have largely impeded 
the experimental determination of the species-specific contribution of gut microbes in the metabolism of xeno-
biotic/drug molecules. It is further limited by the time-consuming and tedious nature of experimental studies, 
which involve deep metabolic profiling of host gut microbiota for each xenobiotic/drug molecule. Therefore, for 
most of the orally administered drugs that encounter gut microbiota before their absorption, the gut microbial 
species and the corresponding enzymes capable of their metabolism are largely unknown. In this scenario, an 
efficient computational method is required for the prediction of microbial species and enzymes, which could 
potentially metabolize a xenobiotic/drug in the human gut.

Presently, a few tools which are available for predicting drug metabolism are primarily based on human 
phase-I (hydrolysis, oxidation and reduction reactions) and phase-II (conjugation reactions) metabolic pro-
cesses, namely MetaSite24, Metaprint2D25, ADMET predictor, Metabolism Module simulations Plus (http://www.
simulations-plus.com/), RS-WebPredictor26 and FAME27. To our knowledge, there is no tool or computational 
approach available to predict the biotransformation of xenobiotic/drug in human gut by the metabolic enzymes 
encoded by the gut bacteria. An enzyme is capable of acting on molecules which are structurally similar to their 
substrate, and this property is known as promiscuity. Therefore, the molecular properties of substrates of all 
known metabolic enzymes encoded by the gut microbiota can be used to predict the metabolic enzymes and 
gut bacteria which can potentially carry out the biotransformation of xenobiotic/drug molecules28–31. Therefore, 
in this work, we report a novel methodology developed by integrating chemoinformatics and machine learning 
methods for the prediction of the metabolic enzyme and the corresponding bacterial species capable of metabo-
lizing a given xenobiotic/drug molecule at the first/initial step.

Results
Metabolic enzymes and substrate databases.  To develop an approach for the prediction of metabolic 
enzymes and gut bacteria, which can potentially act on a xenobiotic/drug molecule, the first step is the construc-
tion of a comprehensive dataset of metabolic enzymes and their substrates from all known human gut bacteria. 
Therefore, a database of metabolic enzymes was constructed from 491 human gut bacterial genomes, which 
contained 324,697 metabolic enzymes assigned with EC numbers. For these metabolic enzymes belonging to dif-
ferent EC classes, the substrate database was constructed containing a total of 1,609 molecules (Figure S1a). Using 
this approach, we could identify the substrate molecules for metabolic enzymes of gut bacteria. These substrate 
molecules were utilized for constructing the training dataset for machine learning methods.

The distribution of substrates for enzymes present in different EC classes revealed an imbalance in their 
respective numbers in the different classes. The number of molecules metabolized by enzymes from the first two 
EC (EC1 and EC2) classes was the highest (65.75%), whereas enzymes from EC5 and EC6 classes are known to 
metabolize only 6.83% of the total number of molecules. The enzymes in EC1 and EC2 classes are oxidoreduc-
tases and transferases, respectively, which represent the common metabolic reactions in the human gut. Thus, a 
large number of substrate molecules are metabolized through these reactions. On the other hand, the enzymatic 
reactions in EC5 (isomerases) and EC6 (ligases) classes are less common, and hence, a lower number of substrate 
molecules are known to be metabolized by these classes. Similarly, the distribution of molecules for enzymes in 
different EC subclasses shows that out of 55 subclasses, 22 subclasses can metabolize less than five substrate mol-
ecules, whereas only three subclasses can metabolize more than 100 molecules (Figure S1b-g). The above analysis 
points towards ‘class imbalance’ as a result of the disparity in the number of molecules (instances) metabolized 
by different EC classes.

The performance of machine learning methods is known to be affected by class imbalance and thus, requires 
a considerable number of examples/instances during training for reliable prediction32. Therefore, to resolve the 
class imbalance problem upsampling strategy was employed using the upSample function of the ‘Caret Package’ 
in R (Text S1). The downsampling was also performed but showed poor performance in comparison to upsam-
pling and without-upsampling, and hence, was not considered for subsequent analysis in this study (Text S1). The 
final models were prepared using both datasets, i.e. with-upsampling and without-upsampling.

Fingerprints generated for each molecule.  The structural features of a substrate molecule can be rep-
resented through substructure-based fingerprints, which could be used as an input feature for constructing 
machine learning-based models or for performing molecular similarity search. Thus, for each molecule in the 
substrate database, 10 standard fingerprints were calculated using ‘PaDEL’33. The best attributes or bits from each 
fingerprint were selected and combined to create a new hybrid fingerprint (219 bits). In this case, the important 
attributes are the ones which can discriminate between the different EC classes and are also unrelated to each 
other. The detailed description of contribution from each fingerprint to the hybrid fingerprint is provided in 
Supplementary Table S1.

Diversity of substrate molecules in different EC classes and subclasses.  To identify the com-
ponents which show the highest variance among the six EC classes and subclasses of each EC class, Principal 
Component Analysis (PCA) was performed on all 1,609 molecules present in the substrate database using 
the hybrid fingerprint. For the six EC classes taken together, the variance is observed to decrease signifi-
cantly from PC-1 to PC-6 (Figure S2a). Similarly, for all EC subclasses belonging to an EC class, the variance 
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showed a significant decrease from PC-1 to PC-10, and the same trend was observed for all the six EC classes 
(Figure S2b). The variance between PC-1 and PC-2 for the six EC classes was 24.5% and 8.1%, respectively 
(Fig. 1). Similarly, the variance between PC-1 and PC-2 for the EC subclasses belonging to an EC class is as 
follows: EC1: PC-1 = 19.2% and PC-2 = 7.8%, EC2: PC-1 = 22.6% and PC-2 = 9.8%, EC3: PC-1 = 18.1% and 
PC-2 = 12.0%, EC4: PC-1 = 28.7% and PC-2 = 7.6%, EC5: PC-1 = 33.4% and PC-2 = 11.3%, EC6: PC-1 = 29.0% 
and PC-2 = 12.4% (Figure S3a–f). The results of PCA analysis indicate that the dataset is highly diverse for devel-
oping a prediction model, and since none of the principal component pairs add up to 50% of the variation, only a 
very limited amount of variable reduction can be done. Therefore, a robust machine learning method is required 
to develop reliable classification models.

EC class and subclass specific random forest (RF) models were constructed for classifica-
tion.  To select the best performing model for classification, the performances of different machine learning 
approaches were compared using Weka34. For this evaluation (using 10-fold cross-validation), the complete data-
set of molecules belonging to the six different EC classes was used as the input to calculate the percentage of 
correctly classified instances for all the six EC classes. Among the different machine learning approaches, random 
forest (RF) showed the best performance (Supplementary Table S2, Methods), and hence, was considered for 
further optimization using the randomForest package in R to achieve the lowest %OOB (Out of Bag) error and 
the highest classification accuracy. The optimization of parameters such as mtry, which is a subset of variables 
randomly selected at each node for the classification, and ntree, which is the number of classification trees (inde-
pendent models) in the forest, was carried out for each fingerprint. To choose the best fingerprint for constructing 
the RF model, the mtry values were optimized for each fingerprint using the tuneRF function of random forest 
package in R. The tuneRF function looks for the best mtry value with the lowest %OOB error in a range of mtry 
values around the specified mtry value, with a defined step size. The specified mtry values were calculated as the 
square root of the total number of bits (predictor variables) used for a given fingerprint. The ‘stepFactor’ (for step 
size) and ‘improve’ functions were kept constant for all the mtry optimizations, and were 2 and 0.05, respectively.

For each fingerprint, the %OOB (Out of Bag) error values were calculated at the optimized mtry values and 
at the ntree value of 500. This ntree value was selected based on the saturation of %OOB value (Supplementary 
Table S3). The above analysis was carried out for each fingerprint using both without-upsampling and with–
upsampling training datasets. In the case of six EC classes, among all the 10 fingerprints and hybrid fingerprint, 
the lowest (8.42) %OOB error was shown by the hybrid fingerprint (Fig. 2). It was also noted that the model pre-
pared using with–upsampling dataset displayed better performance for all fingerprints as compared to the model 
prepared using without-upsampling dataset. RF models for each EC class prepared using up-sampled data were 
optimized separately to achieve high accuracy for classification into their respective EC subclass. Similarly, for 
EC1, EC2, EC3, EC4, EC5 and EC6, the hybrid fingerprint displayed the lowest %OOB error of 2.97, 13.23, 2.96, 
7.77, 3.75 and 1.11, respectively (Figure S4). Based on the %OOB error, the three parameters (mtry, ntree and 
best fingerprint) were selected for constructing RF models for EC classes and subclasses (Fig. 2 and Figure S4). 
The finalized RF models constructed using hybrid fingerprint at optimized mtry and ntree were used for further 
validations.

RF models showed high classification accuracy on different validation datasets.  EC class-specific 
and subclass-specific RF models were constructed using hybrid fingerprint using both with-upsampling and 
without-upsampling datasets and were considered for the evaluation. The performance evaluation of these hybrid 
RF models was carried out using 10-fold cross-validation, splitting and testing, and blind set. For EC class, the RF 
model with-upsampling dataset displayed higher accuracy of 97.19, 95.75 and 91.18 and MCC values of 0.89, 0.84 
and 0.59 for 10-fold cross-validation, splitting and testing, and blind set, respectively, as compared to RF model 
without-upsampling dataset (Table 1). Similarly, for the EC subclasses, the RF model with-upsampling displayed 

Figure 1.  The distribution of substrate molecules into the six EC classes is shown by Principal Component 
Analysis. Each substrate molecule of a respective class is represented by colour coded circles.
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higher (80.83–100%) accuracy as well as higher (0.67–1) MCC values for 10-fold cross-validation, splitting and 
testing, and blind set as compared to RF model without-upsampling dataset (Table 2). It is apparent that the MCC 
values on blind set were lower only in the case of EC class-specific RF module (Table 1), whereas in the cases of 
all individual EC classes (Table 2), it was similar to the ten-fold cross-validation and splitting and testing sets. 
Considering the complex and heterogeneous nature of the data (also supported by the PCA analysis, Fig. 1), the 
reported MCC values were the maximum which could be achieved on the available data.

Additionally, the performance of EC1 and EC2 subclass-specific RF models was relatively better than EC5 and 
EC6 RF models due to the larger number of molecules available for training in the former classes as compared to 
the latter classes. In future, with the availability of more substrate molecules for EC5 and EC6 classes, the predic-
tion by corresponding models can be improved. The performance of RF models on different validation sets attests 
the strength of this approach in identifying the EC class and subclass capable of biotransforming the substrate 
molecule. Since the best performance (Tables 1 and 2) was shown by the RF models constructed using the hybrid 
fingerprint on with-upsampling dataset, the same has been used as the default in respective RF modules for the 
prediction on web server.

Web server for the prediction of metabolic enzymes and gut bacteria.  To facilitate the prediction 
of metabolic enzymes and the associated gut bacteria responsible for the biotransformation of any xenobiotic/
drug molecule, we have developed a web server ‘DrugBug’ by implementing predictive RF modules along with 
the similarity search module.

Construction of predictive RF modules.  Two different RF modules were constructed using best performing RF 
models and were included in DrugBug tool and web server (Text S2).

EC class-specific RF module (RF module 1).  This module was trained on fingerprints derived from all substrate 
molecules present in substrate database of all the six EC classes. This module predicts the EC class capable of 
carrying out the biotransformation of a query molecule (Fig. 3a).

EC subclass-specific module (RF module 2).  RF modules were constructed for each of the EC classes and were 
trained on fingerprints of substrate molecules belonging to a particular EC subclass. This module predicts the EC 
subclass capable of carrying out the biotransformation of a query molecule (Fig. 3a).

A three-step analysis is followed by the web server to predict the gut bacterial metabolic enzyme (EC) and the 
respective bacteria for the biotransformation of a query molecule. In the first step, the extracted features (finger-
prints) from the query molecule are analyzed through the RF module 1 to predict the EC class (out of any of the 
six EC classes) for the input molecule. After determination of the EC class, in the second step, the same molecular 
features pass through the RF module 2 for identification of EC subclasses (two-digit EC class) of the respective 
EC class for the query molecule. In both steps, the user has the flexibility to choose from the available RF models, 
sampling methods, and also the prediction probability threshold values (Text S3). In the third step, a molecule 

Figure 2.  Optimization of parameters to construct the final RF model for classification into six EC classes.

Validation on test sets

Hybrid Fingerprint

RF model without-upsampling dataset RF model with-upsampling dataset

TPR (%) TNR (%) PPV (%) ACC (%) MCC TPR (%) TNR (%) PPV (%) ACC (%) MCC

CV-10 FOLD 52.83 92.63 60.32 89.33 0.49 91.58 98.32 91.46 97.19 0.89

Splitting and Testing 60.84 92.71 49.05 88.94 0.46 87.02 97.49 87.25 95.75 0.84

Blind Set 55.52 94.17 66.15 92.14 0.54 67.41 94 63.19 91.18 0.59

Table 1.  Performance evaluation of EC class-specific RF model using three different methods. TPR = True 
Positive Rate or Sensitivity, TNR = True Negative Rate or Specificity, PPV = Positive Predictive Value or 
Precision, ACC = Accuracy, MCC = Matthews correlation coefficient.
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that is structurally similar to the input molecule is identified using molecular similarity search performed using 
‘Open Babel’ against the substrate database of the EC subclass predicted in the second step. Any of the four fin-
gerprints FP2, FP4, MACCSFP and hybrid (combination of results from FP2, FP4 and MACCSFP) can be chosen 
for the similarity search calculations using Open Babel. A user can also use the tanimoto coefficient cut-off value 
and similarity search parameters such as Identity, E-value, and Q-coverage, to act as filters among the identified 
hits. On the basis of the significant hit, the exact four-digit EC number which corresponds to the enzyme capable 
of carrying out the first/initial step in the biotransformation of the query molecule, and the information about gut 

Validation on 
test sets

Hybrid Fingerprint

RF model without-upsampling dataset RF model with-upsampling dataset

TPR (%) TNR (%) PPV (%) ACC (%) MCC TPR (%) TNR (%) PPV (%) ACC (%) MCC

EC1

CV-10 FOLD 62.41 97.1 65.11 95.9 0.61 97.03 99.82 97.17 99.67 0.97

Splitting and Testing 82.14 97.02 75.71 95.26 0.75 97.09 99.82 97.02 99.66 0.97

Blind Set 87.62 98.18 95.07 97.5 0.89 83.17 98.73 83.67 97.3 0.81

EC2

CV-10 FOLD 55.65 93.39 56.96 89.27 0.50 86.67 98.52 86.26 97.33 0.85

Splitting and Testing 66.94 94.23 64.75 90.34 0.6 85.36 98.44 85.83 97.17 0.84

Blind Set 81.76 94.36 81.75 91.02 0.76 83.09 96.12 80.95 92.86 0.77

EC3

CV-10 FOLD 65.38 97.38 78.82 96.3 0.68 97.04 99.63 97 99.34 0.97

Splitting and Testing 88.77 96.56 93.91 93.93 0.87 95.4 99.42 95.3 98.96 0.95

Blind Set 95 97.5 94.44 96.3 0.92 95 97.5 94.44 96.3 0.92

EC4

CV-10 FOLD 59.21 88.86 69.42 86.27 0.53 91.86 98.84 91.47 97.96 0.9

Splitting and Testing 70 76.98 48.91 73.15 0.34 88.83 98.48 89.06 97.26 0.87

Blind Set 78.57 82.5 80.55 83.33 0.63 80.83 91.22 75 86.54 0.67

EC5*
CV-10 FOLD 76.67 83.54 85 91.16 0.7 95.62 98.91 95.93 98.25 0.95

Splitting and Testing 88.89 75 93.75 86.36 0.62 97.77 99.39 97.5 99 0.97

EC6*
CV-10 FOLD 95.74 93.77 92.61 95.16 0.89 97.78 99.44 97.79 99.11 0.97

Splitting and Testing 95 95 90 92.86 0.85 98 99.46 97.78 99.11 0.97

Table 2.  Performance evaluation of EC subclass-specific RF models using three different methods. *For EC5 
and EC6 classes, the validation could not be performed on blind set due to less representation of molecules in 
these classes. The average accuracy of cross-validation, splitting and testing and the blind set was 98.61, 98.52 
and 93.25%, respectively. TPR = True Positive Rate or Sensitivity, TNR = True Negative Rate or Specificity, 
PPV = Positive Predictive Value or Precision, ACC = Accuracy, MCC = Matthews correlation coefficient.

Figure 3.  (a) Complete workflow for the construction of DrugBug. Figure 3 (b) Steps for the analysis of a 
query molecule through DrugBug web server. DrugBug consists of three different components namely, EC 
class-specific RF module (RF module 1), EC subclass-specific RF module (RF module 2) and a similarity search 
module. In the given example, the query molecule is analyzed by these modules to identify the EC number and 
the corresponding metabolic enzyme which was found in two bacterial genomes (M1 and M2). In each of the 
predicted bacteria (M1 and M2), two or more proteins (P1 and P2) similar to the EC enzyme were found.
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bacteria which harbour this enzyme is also provided. The complete flowchart showing the steps for prediction of 
the metabolic enzyme and the gut bacteria that can potentially carry out the biotransformation of a query mole-
cule is shown in Fig. 3b.

In the case of a query drug/xenobiotic molecule, which can be biotransformed by multiple EC classes, the 
classifier will predict only a single EC class and sub-class after the first and second steps of prediction. In the 
predicted EC subclass, multiple enzymes belonging to the same subclass can be predicted through Open Babel 
structural similarity search. Therefore, if a molecule is a substrate for multiple enzymes belonging to the same EC 
sub-class, then the DrugBug approach will predict all the enzymes. However, it will not predict the enzymes from 
a different EC class or EC sub-class.

Prediction of gut microbial enzymes for the biotransformation of known drugs using 
‘DrugBug’.  To assess the performance of DrugBug approach, FDA-approved drugs, and other clinically 
important molecules were used as the real dataset. DrugBug was used to predict the enzymes and gut bacteria 
harbouring these enzymes which could potentially metabolize these drug molecules. At present, the information 
about the metabolism of drugs by human gut bacteria is limited only to a few drug molecules. Some of these 
selected cases were analyzed using DrugBug, and the predictions were in agreement with their partially known 
biotransformation information (Table 3). Furthermore, for these cases, DrugBug could correctly predict the spe-
cific bacterial enzyme and the gut bacteria (with taxonomy) which could carry out their biotransformation. This 
is the first report for the prediction of gut bacteria and the metabolic enzymes for biotransformation of these 10 
drugs. Considering the variations in gut microbiota due to population differences, age, gender, etc. the knowledge 
of gut-microbe-linked drug metabolism could help in predicting the individual-specific metabolism of a drug 
which is significant for pharmacological studies and personalized medicine.

The case of Digoxin.  Digoxin is a cardiotonic glycoside which is mainly used for the treatment of multiple heart 
failure related ailments35, 36. However, a differential therapeutic effect of this drug has been observed in different 
populations16. The structure of digoxin consists of three sugar moieties and one aglycone digoxigenin (steroid) 
moiety. Based on the molecular structure of digoxin; the three potential sites for metabolic reactions are C-17 
attached lactone ring, 3β-OH group, and the sugar moieties. Redox reactions are known to occur at the lactone 
ring and 3β-OH group, whereas removal and subsequent addition are known for the sugar moieties37. Thus, 
Digoxin can be potentially metabolized by three distinct kinds of enzyme classes which are oxidoreductase (EC1) 
for the reduction of lactone ring, transferase (EC2) for the addition of sugar moieties and hydrolases (EC3) for 
the removal of sugar moieties.

The metabolism of digoxin by gut microbiota was first known almost 40 years ago where the saturation of 
lactone ring was reported by ex-vivo incubation with rat and human fecal samples38. In 1983, Saha et al. identi-
fied the gut bacterium ‘Eggerthella lenta’ (previously known as Eubacterium lentum) capable of reducing active 
digoxin into inactive dihydrodigoxin and also suggested the potential metabolism by other gut bacterial species39, 

40. Recently, Haiser et al. confirmed the role of ‘Eggerthella lenta’ in the reduction of digoxin and also identified 
the operon and corresponding genes, which get over-expressed in response to a low concentration of arginine 
and high concentration of digoxin in two different studies14, 40. They reported two potential enzymes, cytochrome 
c reductase (Cgr1) and FAD-binding fumarate reductase (Cgr2), based on the structural and sequence homol-
ogy analysis for the reduction of digoxin. In addition, the metabolism of digoxin by cytochrome P4503A (EC 
1.14.14.1) was also shown41. Moreover, human liver alcohol dehydrogenase (EC 1.1.1.1) is also known to catalyse 
the oxidation of 3β-OH group of digoxin to 3-keto derivatives42. The cleavage of sugar moieties of digoxin due 
to low intragastric pH and the following conjugation reaction by hepatic UDP-glucuronyl transferase (UDPGT) 
(EC 2.4.1.17 and EC 2.4.1.95), which are majorly responsible for the inter-individual variability in digoxin bio-
transformation43, was also shown.

Thus, taken together digoxin appears to be an interesting and important case study. To predict the poten-
tial metabolism of digoxin by gut bacteria, in the first step all the three (hybrid, fingerprinter, and pubchem) 
best-performing fingerprints available on the DrugBug web server were used. Both hybrid and fingerprinter pre-
dicted EC2, whereas pubchem predicted EC1 as the probable EC classes. In the second step, the output of all fin-
gerprints was analyzed using the best-performing hybrid fingerprint which predicted EC 2.4 and EC 1.14 as the 
EC sub-classes. Using molecular similarity search in the third step, the predicted EC were EC2.4.1.78, EC2.4.1.- 
and EC1.14.13.-. The corresponding enzymes for the predicted EC2.4.1.78 and EC2.4.1.- were glucosyltrans-
ferases and mannosyltransferase from the bacterial genus Escherichia, Lactobacillus, Klebsiella, Enterococcus, 
and Citrobacter, whereas, for EC1.14.13.-, the corresponding enzymes were FAD-dependent oxidoreductases, 
disulfide reductase and hydroxylases from the bacterial genus Escherichia, Klebsiella, Providencia, Streptomyces 
and Eggerthella (Fig. 4).

Thus, using DrugBug, we could predict the metabolic enzymes which were already known for the metab-
olism of digoxin such as FAD-dependent oxidoreductases and glucosyltransferases. In addition, we could also 
correctly predict the EC class and sub-class (EC 2.4 and EC 1.14) known to metabolize digoxin41, 43 along with 
Eggerthella as one of the genera capable of metabolizing digoxin. However, the species predicted by DrugBug 
was Eggerthela sp. 1 3 56FAA instead of Eggerthela lenta which is known to metabolize digoxin40. Since at the 
time of our local in-house database construction, the genome of Eggerthela lenta was not available thus, it was 
not included in the in-house constructed database and could not be predicted. However, the protein sequence 
of predicted FAD-dependent oxidoreductase of Eggerthela sp. 1 3 56FAA was found to be 100% identical to the 
corresponding protein of Eggerthela lenta which confirms the accuracy of results.
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Discussion
Several experimental studies have shown that the metabolic activities of human gut bacteria are crucial for metab-
olism of xenobiotic/drug molecules in the human gut14, 15. The capability of gut bacteria to alter the pharma-
cokinetic and pharmacodynamic properties of orally administered drugs is especially significant in the field of 
pharmaceutical research, since most of the orally administered drugs are first encountered by gut microbes, which 
can modify the overall activity and toxicity of a drug in the human gastrointestinal tract8–10, 44–47. Furthermore, 
several metagenomic projects have recently shown that significant diversity exists in the microbial distribution 
and composition of gut microbiota in different populations. Thus, the knowledge of bacterial species-specific 
metabolism of xenobiotic/drug molecule would be helpful in predicting the possible individual-specific drug 
response based on the gut metagenomic profile of an individual. Identifying the potential role of gut microbiota 
in xenometabolism of drugs is crucial for designing more effective drug molecules; however, limited knowledge 
is available until today. In this scenario, the current work presents an efficient and reliable computational meth-
odology to predict biotransformation of xenobiotic/drug molecules from the diverse and vast metabolic potential 
of the gut bacteria. In this work, we are predicting the enzyme from human gut bacteria which could carry out the 
first/initial step in the biotransformation of the given input molecule, and we are not predicting the later enzymes 
or the resultant metabolic products.

Furthermore, during the training set construction, the substrates which could be metabolized by enzymes 
from multiple EC classes were not included in the training dataset. This ensures that the training dataset contains 

Drug Previous Reports DrugBug Prediction

Ginsenoside Rb12

Organism: Human and Gut microbiota 
(Bacteroides and Bifidobacterium) Type of 
reaction: Hydrolysis EC: 3.2.1.192* Enzyme: 
Ginsenoside Rb1 beta-glucosidase* ref. 58

Organism: Escherichia coli MS 175-1, Bacteroides sp. 3 1 23, Citrobacter sp. 30 
2, Enterobacter cloacae subsp. Cloacae NCTC 9394, Bifidobacteium animalis 
subsp. Lactis-AD011 Enzyme class: Hydrolses EC: 3.21.21 Enzyme: Glycosyl 
hydrolase family 3, thermostable β-glucosidase B, periplasmic β-glucosidase.

Quercetin-3-glucoside2

Organism: Human and Gut microbiota 
(Eubacterium and Enterococcus) Type of 
reaction: Deglycosylation EC: 2.4.1.239* 
Enzyme: flavonol-3-O-glucoside 
glucosyltransferase* ref. 59

Organisms: Escherichia coli MS 187-1, Pseudomonas sp. 2 1 26, Streptococcus 
sp. 2 1 36FAA, Enterobacter cloacae subsp. Clocae NCTC 9394, Enterococcus 
faecium TX1330 Enzyme class: Transferases EC: 2.4.1.- Enzyme: 
Glucans biosynthesis glucosyltransferase H, rhamnosyltransferase 1 
subunit A, Accessory Sec system glycosylation protein GtfA, Membrane 
glycosyltransferase, glycosyltransferase group 2 family protein

LoperamideOxide1

Organisms: Human and Gut microbiota 
Type of reaction: Reduction EC: 1.14.13.97* 
Enzyme: taurochenodeoxycholate 6alpha-
hydroxylase* ref+. 60

Organisms: Escherichia coli MS 119-7, Citrobacter youngae ATCC 29220, 
Klebsiella sp. 4 1 44FAA, Listeria innocua ATCC, Paenibacillus sp. HGF7 
Enzyme class: Oxidoreductases EC: 1.14.-.-/1.14.13.- Enzyme: Rieske 
2Fe-2S domain potein, putative monooxygenase MoxC, FMN-dependent 
oxidoreductase

Methamphetamine1

Organisms: Human and Gut microbiota 
(Lactobacilli, Enterococci and Clostridia) Type 
of reaction: Oxidoreductase/ Demethylation 
EC: 1.14.11.-* and 1.14.13.-* Enzyme: 
Hydroxylases, monooxygenases, dioxygeases, 
demethylases ref. 61

Organisms: Escherichia coli MS 196-1, Ralstonia sp. 5 2 56FAA, Citrobacter 
freundii 4 7 47CFAA, Lactobacillus rhamnosus ATCC 21052, Enterococcus 
faecalis TX0104 Enzyme class: Oxidoreductases EC: 1.14.13.- and 1.14.14.1 
Enzyme: 2-polyprenyl-6-methoxyphenol 4-hydroxylase, 2-nonaprenyl-3-
methyl-6-methoxy-1,4-benzoquinol hydroxylase, 2-octaprenyl-3-methyl-
6-methoxy-1,4-benzoquinol hydroxylase, pyridine nucleotide-disulfide 
oxidoreductase family protein

Omeprazole1

Organisms: Human and Gut microbiota 
Type of reaction: Reduction EC: 1.14.13.48* 
and 1.14.13.49* Enzyme: (S)-limonene 
6-monooxygenase* and (S)-limonene 
7-monooxygenase* ref. 62

Organisms: Bacillus sp. 7 6 55CFAA CT2, Paenibacillus sp. HGF7, 
Paenibacillus sp. HGF5, Ralstonia sp. 5 7 47FAA Enzyme class: 
Oxidoreductase EC: 1.14.14.1 Enzyme: FAD binding domain protein, 
bifunctional P-450/NADPH-P450 reductase, FAD binding domain protein, 
Hypothetical protein (100% Identical with cytochrome P450 reductase of 
bacillus cereus)

Sorivudine1

Organism: Human and Gut microbiota 
(Bacteroides) Type of reaction: 
Phosphotransferase EC: 2.7.1.21* Enzyme: 
thymidine kinase* ref. 21

Organism: Escherichia coli MS 69-1, Lactobacillus reuteri MM2-3, Klebsiella 
sp. 4 1 44FAA, Proteus mirabilis WGLW6, Bacteroides sp. 3 1 23, Escherichia 
coli SE11 Enzyme class: Transferases EC: 2.7.1.48 Enzyme: uridine kinase, 
uridine/cytidine kinase

Lactulose1

Organism: Human and Gut microbiota 
(Bacteroides, Bifidobacterium, clostridium and 
lactobacillus) Type of reaction: Hydrolysis EC: 
Unknown Enzyme: Unknown ref. 58

Organism: Bifidobacterium longum subsp. longum 2-2B, Lactobacillus 
brevis subsp. gravesensis ATCC 27305, Megamonas hypermegale ART12 
1, Clostridium leptum DSM 753 Enzyme class: Hydrolases EC: 3.2.1.185 
Enzyme: Putative glycosylhydrolase

Zonisamide1

Organism: Human and Gut microbiota Type of 
reaction: Reduction EC: 1.14.13.97* Enzyme: 
taurochenodeoxycholate 6alpha-hydroxylase* 
ref. 63

Organism: Pseudomonas sp. 2 1 26, Ralstonia sp. 5 7 47FAA, Klebsiella sp. 
4 1 44FAA, Corynebacterium ammoniagenes DSM 20306 Enzyme class: 
Oxidoreductase EC: 1.14.12.- Enzyme: toluate 1,2-dioxygenase subunit beta, 
benzoate 1,2-dioxygenase, small subunit, benzoate 1,2-dioxygenase, large 
subunit

Cycasin2
Organism: Human and Gut microbiota Type 
of reaction: Hydrolysis EC: 3.2.1.21* Enzyme: 
Beta-glucosidase* [Google book] ref. 64

Organism: Klebsiella sp. MS 92-3, Escherichia sp. 4 1 40B, Bacteroides ovatus 
ATCC 8483, Lactobacillus helveticus DSM 20075, Bifidobacterium adolescentis 
L2-32 Enzyme class: Hydrolases EC: 3.2.1.23 Enzyme: glycosyl hydrolase 
family 2, beta-galactosidase

Cyadox3
Organism: Human and Gut microbiota Type 
of reaction: Reduction EC: 1.14.-.-* Enzyme: 
Catalase and cytochrome P450s* refs 65, 66

Organism: Escherichia sp. 4 1 40B, Citrobacter youngae ATCC 29220, Listeria 
innocua ATCC 33091, Paenibacillus sp. HGF7, Paenibacillus sp. HGF5 
Enzyme class: Oxidoreductase EC: 1.14.-.- Enzyme: Putative dioxygenase 
subunit alpha yeaW, putative transporting ATPase, rieske 2Fe-2S domain 
protein, putative monooxygenase MoxC, FMN-dependent oxidoreductase, 
polyketide biosynthesis cytochrome P450 PksS

Table 3.  Prediction of gut bacteria and the corresponding metabolic enzyme for biotransformation of some 
selected FDA-approved drugs and other clinically important molecules. *Enzyme was known in human host 
1FDA approved drug;2: Pharmacologically active plant derivative;3: Pharmacologically active synthetic molecule; 
Ref: Reference
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only those substrate molecules which can be metabolized by enzymes belonging to only one out of the six EC 
classes. Thus, in the case of a given query drug/xenobiotic molecule which shows its best match with a substrate 
that is acted on by enzymes from multiple EC classes, the classifier will predict only a single EC class and sub-class 
for the given query molecule after the first and second steps of prediction. In the predicted EC subclass, multiple 
enzymes of the same subclass can be predicted through Open Babel structural similarity search. Therefore, if a 
molecule is a substrate for multiple enzymes, and those enzymes belong to the same EC sub-class, then DrugBug 
approach will predict all the enzymes. However, it will not predict the enzymes from a different EC class or EC 
sub-class. Nonetheless, the predictions will still be made for a query molecule similar to a substrate which was 
not included during training since the substrate could be metabolized by enzymes from multiple EC classes. The 
resultant predictions will be from a single EC class, which showed the best hit for the biotransformation of that 
molecule.

For the successful implementation of this approach, the construction of a comprehensive dataset of metabolic 
enzymes and their substrates for known gut bacteria was the key. Further, the study demonstrated that finger-
prints derived from the substrate molecules could be successfully used for the development of RF models and 
among these, the hybrid fingerprint showed the best results. The higher performance of the with-upsampling RF 
models as compared to the without-upsampling RF models showed that the upsampling strategy could resolve 
the data imbalance issue in the original dataset, though it could also lead to some selection bias and overfitting.

We successfully developed a three-step methodology for the prediction of specific enzymes and the corre-
sponding gut bacterial species capable of biotransforming the xenobiotic/drug molecule. To help the user to 
predict the metabolic enzymes and gut bacteria, the above approach has been implemented as ‘DrugBug’ web 
server tool where the input is the mol/sdf file of the query molecule. The current version of the DrugBug approach 
incorporates data from 491 human gut bacterial genomes and their 324,697 metabolic enzymes. The availability 
of a larger number of human gut microbial genomic sequences and their corresponding metabolic enzymes in 
the future is likely to improve further the accuracy, sensitivity and the scope of predictions using the DrugBug 
approach.

The prediction of specific enzyme and bacterial species which could potentially carry out biotransformation of 
the selected cases of FDA-approved drugs and other clinically important molecules further attests the significance 
of this approach, and provides leads for experimental validation. Thus, by using this approach, the identification 
of gut bacterial species and the potential enzyme which could carry out the biotransformation of a drug can be 
correlated with the abundance of that protein in the gut metagenome of an individual. This drug-bacteria linked 
metabolism would be helpful in predicting the individual-specific metabolism of that drug which is a step closer 
towards the goal of precision medicines. The web server is available at http://metagenomics.iiserb.ac.in/drugbug.

Figure 4.  Schematic representation of digoxin metabolism. (a) Structure of digoxin, (b) Metabolism of digoxin 
by gut microbe, (c) Metabolism of digoxin at low gastric PH in human host, (d) Metabolism of digoxin in 
liver, (e) Previous reports on the metabolism of digoxin and (f) Prediction of digoxin metabolism by DrugBug 
approach.

http://metagenomics.iiserb.ac.in/drugbug
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Methods
To develop a tool for the prediction of gut microbial enzymes which could potentially biotransform a xenobiotic/
drug molecule, two key information were required: i) a set of known microbial metabolic enzymes along with 
their EC numbers and ii) their corresponding substrate molecules. The above information was used for the con-
struction of predictive machine learning random forest (RF) modules (Fig. 3a). These steps are described in detail 
in the following sections.

Construction of gut bacterial enzyme database.  A total of 491 available gut bacterial genomes 
sequences were retrieved from different sources including NCBI genomes (http://www.ncbi.nlm.nih.gov/
genome/), HMP reference genomes (http://hmpdacc.org/reference_genomes/reference_genomes.php) and 
EMBL-EBI bacterial genomes (http://www.ebi.ac.uk/genomes/) (Supplementary Table S4). All potential meta-
bolic enzymes from each gut bacterial genome were identified and assigned with their corresponding four-digit 
EC using the following strategy. The reviewed enzymatic protein sequences with their corresponding EC were 
downloaded from UniProt database (http://www.uniprot.org/uniprot/), and a reference database containing the 
EC along with their corresponding protein sequences was constructed. This database was used as the reference 
database for carrying out the BLAST-based protein alignment of all the proteins retrieved from different gut bac-
terial genomes48. The best hit for a gut bacterial protein was identified using the cut-off values of Identity > 40%, 
Query coverage > 80% and E-value < 10−15. The best hit could be identified for 324,697 (12.39%) proteins out of 
1,571,442 total proteins, and the resultant protein sequences of metabolic enzymes were assigned with a four-digit 
EC as per the EC of their corresponding best hit. The identified metabolic enzymes along with their EC and bac-
terial genome annotation were pooled together to create a database of metabolic enzymes for the gut bacterial 
metagenome. Further, the taxonomy information for each bacterial genome was added to the above database.

Construction of gut bacterial substrate database.  For each bacterial metabolic enzyme, the metabolic 
reactions (using their EC) were fetched from the KEGG database (www.genome.jp/kegg). The substrates for the 
above-identified reactions were pooled together and tagged with their corresponding EC number. To prepare 
the substrate database, cofactors and other supporting molecules for enzyme functioning such as water, metal 
ions, ATP, etc. were removed by manual curation and only the principal substrate compounds were considered. 
This resulted in a total of 2,324 molecules in the substrate database. Further, the substrate database was divided 
into subsets based on their respective EC tags. These subsets were termed as “EC class-specific databases and EC 
subclass-specific databases.” An all-against-all structural similarity search was performed for all 2,324 molecules 
using Open Babel (v2.3.2) to remove redundancy and pick the representative molecules (tanimoto coefficient 
>0.95) for training49. This step was necessary to create a non-overlapping training set which is essential for the 
development of random forest classification models. Furthermore, the substrates which could be metabolized by 
enzymes belonging to multiple EC classes were also removed. Thus, out of 2,324 molecules, 1,609 representative 
molecules were considered for developing the RF models. The resultant 1,609 molecules were further used for the 
development of RF models.

Calculation of fingerprints.  For the development of RF models, the molecular information is required 
to be translated into machine-readable features (fixed length pattern: mostly numerical data) for each substrate 
molecule. To achieve the same for each molecule, ten different fingerprints were calculated using ‘PaDEL’ soft-
ware50. The fingerprints along with their respective bit size were: Fingerprinter – 1024 bits, Estate Fingerprinter 
(EstateFP) – 79 bits, Graph Only Fingerprinter (GraphFP) – 1024 bits, MACCS Fingerprinter (MACCSFP) 
– 166 bits, PubChem Fingerprinter (PubChemFP) – 881 bits, Substructure Fingerprinter (SubFP) − 307 bits, 
Substructure Fingerprint Count (SubFPC) – 307 bits, Klekota Roth Fingerprinter (KRFP) – 4860 bits, Atom 
Pairs 2D Fingerprinter (AP2D) – 780 bits and Atom Pairs 2D Fingerprint Count (APC2D) − 780 bits. For all 
the 10 fingerprints, the variable importance was calculated for each bit using two attribute selection modules of 
Weka, i.e. Remove Useless* (re-useless) and CfsSubsetEval* with best-fit algorithm34. The RemoveUseless filter 
implemented in Weka removes the attributes (bits) that do not provide significant information such as the attrib-
utes, which do not vary or show insignificant variation. The CFS attribute subset evaluator (CfsSubsetEval) is a 
function implemented in Weka which carries out correlation-based subset selection of the features. This function 
helps to calculate the subsets of features that are highly discriminatory among the given groups.

The Weka output provided the list of bits out of the total bits present in a fingerprint that were important for 
classification and these bits were selected further. The selected bits of each fingerprint were combined to create a 
hybrid fingerprint containing a total of 219 bits (Supplementary Table S1 and Figure S5). In the subsequent anal-
ysis, the ten fingerprints and the hybrid fingerprint were considered.

Principal Component Analysis (PCA).  Principal component analysis (PCA) is used to analyze 
high-dimensional data by reducing data dimensions into a manageable space, and hence, it is a powerful approach 
to select components in a dataset which are used to assess the variation. To compute variance among the six EC 
classes and the subclasses of each EC class, PCA was performed on all 1,609 molecules of substrate database using 
the hybrid fingerprint. The principal components were calculated using the ‘prcomp’ function in R version 3.1.2. 
Further, the graphs were generated using the library ‘ggbiplot’. PCA analysis was also used to find out the distri-
bution of these molecules among different EC classes and subclasses.

Construction of training dataset.  The original substrate dataset was highly imbalanced in which 
65.75% of the substrate molecules were known to be metabolized by enzymes from EC1 and EC2 classes 
and only 6.83% substrate molecules could be metabolized by enzymes from EC5 and EC6 classes. As it is a 

http://www.ncbi.nlm.nih.gov/genome/
http://www.ncbi.nlm.nih.gov/genome/
http://hmpdacc.org/reference_genomes/reference_genomes.php
http://www.ebi.ac.uk/genomes/
http://S4
http://www.uniprot.org/uniprot/
http://S1
http://S5
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well-known fact that imbalanced data has a significant negative impact on the performance of RF models, a 
balanced dataset was created by employing upsampling strategy using ‘Caret’ package in R51. Upsampling 
method is one of the sub-sampling methods where the minority classes are up-sampled by random sampling 
with replacement (Text S1). Overall, two training sets were prepared- (i) original imbalanced data referred to as 
‘without-upsampling data’ and (ii) the up-sampled data referred to as ‘with-upsampling data’.

Selection and implementation of machine learning method.  The performances of different machine 
learning classification approaches including Naïve Bayes, AdaBoost, Bagging, IBk, Multiclass classifier, Random 
Forest and Support Vector Machines were compared using Weka, and the results are provided in Table S2. As 
apparent, the best classification accuracy was shown by the random forest model.

Thus, the random forest (RF) was implemented in the study using the randomForest package in R (http://
cran.r-project.org//). RF classification models are widely used methods for binary and multiclass classification of 
large data52–55. RF provides the flexibility to optimize the number of randomly selected subsets of variables (mtry) 
at each node, and the number of independent models (trees) in the forest56. At each split node, these specified 
subsets of variables play an important role in the calculation of variable information gain. Both the parameters, 
mtry and ntree, have a significant impact on the performance of the model. Thus, the mtry optimization was 
carried out using the tuneRF function present in the random forest package of R at a fixed ntree values of 100. The 
performances of RF models at optimized mtry values were further assessed at different ntree values from 100 to 
500 with a step size of 100. These optimized values of mtry and ntree were used for the construction of RF models. 
The RF classification model constructed using optimized parameters with lowest %OOB error (error rate on out 
of bag data) i.e. highest prediction accuracy, was used for performance evaluation on different test datasets such 
as blind set and an independent set. The performance was evaluated using the following parameters.

=
+

TPR TP
TP FN (1)

=
+

TNR TN
TN FP (2)

=
+

PPV TP
TP FP (3)

=
+

+ + +
ACC TP TN

TP FP FN TN
( )

( ) (4)

=
× − ×

+ + + +
MCC TP TN FP FN

TP FP TP FN TN FP TN FN( )( )( )( ) (5)

where, TP = True Positive, FP = False Positive, FN = False Negative, TN = True Negative, TPR = True Positive 
Rate or Sensitivity, TNR = True Negative Rate or Specificity, PPV = Positive Predictive Value or Precision, 
ACC = Accuracy, MCC = Matthews correlation coefficient.

Selection of fingerprint.  To select the best fingerprint for constructing the RF model, for each fingerprint the 
mtry values (number of randomly selected variables) at each node were optimized, and the %OOB (Out of Bag) error 
values were calculated at the optimized mtry values and at the ntree (number of tress in the forest) value of 500. This 
analysis of each fingerprint was carried out using both without-upsampling and with–upsampling training datasets. 
Based on the %OOB values, the best fingerprint was chosen for further RF model construction and validation.

Construction and evaluation of RF models.  Seven different RF models (one for the classification among 
EC classes and six for the classification among EC subclasses of each EC class) were constructed for each dataset 
(without-upsampling dataset and with-upsampling dataset). The RF model constructed for classification into the 
six EC classes was called “EC class-specific RF model”. Similarly, for each EC class, RF models were constructed 
for classification into the EC subclasses of that particular EC class and were termed as “EC subclass-specific RF 
models”. Thus, one EC class-specific and six EC subclass-specific RF models were prepared. Each RF model was 
evaluated using the following three evaluation methods.

Cross-validation.  The most commonly used technique to assess the performance of a given RF model is 
leave-one-out cross-validation. In this study, ten-fold cross-validation strategy was used to evaluate and con-
struct the final models. This strategy randomly divides the data into 10 equal-sized subsamples out of which nine 
sets are used for training, and the remaining tenth set is used for testing. This validation was performed using the 
function cv.fold = 10 of randomForest package in R. The overall mean performances obtained using this function 
for all the EC class-specific and sub-class specific RF models were reported in this study.

Randomly selected data for training and testing.  The complete data was divided into two parts such that 75% of 
the data was used for training and the remaining 25% was used for testing. The performance on 25% of the data 
using training model was computed.
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Blind set.  The unbiased performance of the RF models was assessed using a Blind set of 162 molecules (ran-
domly selected 10% of molecules from each EC class). These 162 molecules were removed from the training 
dataset and labelled as ‘Blind set’ (Supplementary Table S5). The remaining 1,447 molecules were used for the 
development of RF models. The performance of each RF model was evaluated on the blind set, following which 
these molecules were again included in the whole data, and the complete final RF models were constructed using 
all data (1,609 molecules).

Molecular similarity search for the assignment of complete EC.  Open Babel, a chemoinformatics 
tool, was used to carry out molecular similarity search for query molecules against each EC subclass-specific 
substrate databases. The molecular similarity was quantified using the value of similarity coefficient known as 
‘tanimoto coefficient’ (formula is mentioned below). Open Babel provides three different fingerprints namely 
FP2, FP4 and MACCSFP for calculating the respective tanimoto coefficient. If two or more than two fingerprints 
out of the three gave the same molecule as the top hit, then that molecule was considered as the molecule similar 
to the query. In cases where the three fingerprints provided three different molecules as the top hit, the molecule 
with the highest tanimoto coefficient was considered as most similar to the query molecule. Tanimoto coefficient 
between any two molecules (e.g. X and Y) can be calculated using the following formula.

=
+ −

TC z
x y z (6)

where, TC = Tanimoto coefficient, x = number of bits set to 1 in X, y = number of bits set to 1 in Y and z = num-
ber of bits set to 1 in both X and Y57.

Prediction of gut bacteria and metabolic enzyme.  Using the above step, the four-digit EC number 
(enzyme) is identified, which can carry out the biotransformation of a query molecule if the query molecule shows 
structural similarity with its known substrate. Considering the promiscuous nature of the metabolic enzymes, all the 
gut microbial metabolic enzymes belonging to a particular four-digit EC number were identified as the metabolic 
enzymes capable of biotransforming the xenobiotic/drug molecule. Furthermore, all the gut bacteria harbouring the 
identified enzymes were considered as the gut bacteria capable of metabolizing the query molecule.
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