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Abstract

The intrinsic limits of conventional cancer therapies prompted the development and application of 

various nanotechnologies for more effective and safer cancer treatment, herein referred to as 

cancer nanomedicine. Considerable technological success has been achieved in this field, but the 

main obstacles to nanomedicine becoming a new paradigm in cancer therapy stem from the 

complexities and heterogeneity of tumour biology, an incomplete understanding of nano–bio 

interactions and the challenges regarding chemistry, manufacturing and controls required for 

clinical translation and commercialization. This Review highlights the progress, challenges and 

opportunities in cancer nanomedicine and discusses novel engineering approaches that capitalize 

on our growing understanding of tumour biology and nano–bio interactions to develop more 

effective nanotherapeutics for cancer patients.

The growing interest in applying nanotechnology to cancer is largely attributable to its 

uniquely appealing features for drug delivery, diagnosis and imaging, synthetic vaccine 

development and miniature medical devices, as well as the therapeutic nature of some 

nanomaterials themselves1–6 (BOX 1). Nanotherapies that incorporate some of these 

features (for example, improved circulation and reduced toxicity) are already in use today, 

and others show great promise in clinical development, with definitive results expected in 

the near future. Several therapeutic nanoparticle (NP) platforms, such as liposomes, albumin 

NPs and polymeric micelles, have been approved for cancer treatment, and many other 

nanotechnology-enabled therapeutic modalities are under clinical investigation, including 

chemotherapy, hyperthermia, radiation therapy, gene or RNA interference (RNAi) therapy 

and immunotherapy (TABLE 1).
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Box 1

Distinctive features of nanotechnology in oncological applications

• Improvement of the drug therapeutic index by increasing efficacy and/or 

reducing toxicities

• Targeted delivery of drugs in a tissue-, cell- or organelle-specific manner

• Enhancement of the pharmaceutical properties (for example, stability, 

solubility, circulating half-life and tumour accumulation) of therapeutic 

molecules

• Enabling of sustained or stimulus-triggered drug release

• Facilitation of the delivery of biomacromolecular drugs (for example, DNA, 

small interfering RNA (siRNA), mRNA and protein) to intracellular sites of 

action

• Co-delivery of multiple drugs to improve therapeutic efficacy and overcome 

drug resistance, by providing more precise control of the spatiotemporal 

exposure of each drug and the delivery of appropriate drug ratio to the target 

of interest

• Transcytosis of drugs across tight epithelial and endothelial barriers (for 

example, gastrointestinal tract and the blood–brain barrier)

• More sensitive cancer diagnosis and imaging

• Visualization of sites of drug delivery by combining therapeutic agents with 

imaging modalities, and/or real-time feedback on the in vivo efficacy of a 

therapeutic agent

• Provision of new approaches for the development of synthetic vaccines

• Miniaturized medical devices for cancer diagnosis, drug screening and 

delivery

• Inherent therapeutic properties of some nanomaterials (for example, gold 

nanoshells and nanorods, and iron oxide nanoparticles) upon stimulation

Along with enormous progress in the field of cancer nanomedicine (FIG. 1), we have also 

gradually realized the challenges and opportunities that lie ahead. Foremost, the complexity 

and the heterogeneity of tumours make it clear that careful patient selection is required to 

identify those most likely to benefit from a given nanotherapy. This is analogous to the 

targeted therapies approved or under development for use in specific biomarker-defined 

patient populations. Most therapeutic NPs for solid tumour treatment are administered 

systemically; they accumulate in the tumour through the enhanced permeability and 

retention (EPR) effect7–10, which is generally thought to be the product of leaky tumour 

vasculature and poor lymphatic drainage. However, this interpretation of EPR is somewhat 

oversimplified, as multiple biological steps in the systemic delivery of NPs can influence the 

effect, such as NP–protein interaction, blood circulation, extravasation into and interaction 
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with the perivascular tumour microenvironment (TME), tumour tissue penetration and 

tumour cell internalization. In turn, NP properties (for example, size, geometry, surface 

features, elasticity, stiffness, porosity, composition and targeting ligand) can influence these 

biological processes, thus determining the EPR effect and therapeutic outcomes (FIG. 2). 

Nevertheless, it is important to point out that most of our current understanding of NP 

behaviour in vivo is based on animal data, and its translation to NP behaviour in humans 

remains largely unexplored. Although several studies have examined the pharmacokinetics 

(PK) of nanotherapeutics across species in preclinical and clinical studies11–13, relatively 

few have correlated data across species to determine whether and how NP safety and 

efficacy in humans can be better predicted from preclinical animal models.

This Review aims to identify gaps in our understanding of why cancer nanomedicine has yet 

to fulfil its promise in prolonging patient survival, and to offer an overview of our current 

grasp of tumour biology and nano–bio interactions as they relate to maximization of the 

impact of cancer nanotherapeutics. Given the presumed crucial role of EPR, we present 

recent progress in exploring this effect and identifying markers to predict responses to 

nanotherapies, and in developing new strategies to enhance systemic NP delivery for more 

pronounced EPR and therapeutic benefit. We also examine the fundamentals behind the 

development of nanotechnologies to target the TME, which has such an important role in 

tumour progression and metastasis14,15, and lastly, provide our perspective on challenges to 

the clinical translation of cancer nanomedicines.

Arsenal of nanomedicine platforms

Nanotechnology has made important contributions to oncology over the past several decades 

(FIG. 1; TABLE 1). Liposomes (for example, liposomal doxorubicin (LD); Doxil and 

Myocet) were the first class of therapeutic NPs to receive clinical approval for cancer 

treatment16, and along with other lipid-based NPs, still represent a large proportion of 

clinical-stage nanotherapeutics. Although encapsulating drugs in liposomes has been 

broadly shown to improve PK and biodistribution, as yet no marketed liposomal therapeutic 

agents have exhibited an overall survival (OS) benefit when directly compared with the 

conventional parent drug17. The recent phase III results of liposomal cytarabine–

daunorubicin (Vyxeos; also known as CPX-351) compared with the standard of care 

regimen of cytarabine and daunorubicin in patients with high-risk acute myeloid leukaemia, 

showed improved OS of 9.56 months versus 5.95 months18. This is encouraging for the field 

of cancer nanomedicine and regulatory filing for the approval of Vyxeos is projected in late 

2016. NP albumin-bound paclitaxel (nab-paclitaxel; Abraxane) was the second class of 

nanomedicines to be commercialized. The nab platform enables formulation of hydrophobic 

drugs while largely mitigating the need to use toxic excipients. The result may be a better-

tolerated drug that can be used at higher doses and administered more quickly, thus enabling 

a higher drug Cmax and plasma area under the curve (AUC). Upon intravenous infusion, nab-

paclitaxel rapidly dissociates into its albumin and paclitaxel constituents and has not been 

demonstrated to substantially alter the PK and biodistribution of paclitaxel. Although the 

every-3-week dosing schedule of nab-paclitaxel is superior to paclitaxel in terms of response 

rate and time to progression for patients with breast cancer19, a once-per-week dosing 

schedule did not show similar trends in progression-free survival (PFS) or OS and 
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furthermore, showed increased toxicity20. Polymeric micelles (for example, Genexol-PM21 

and NK105 (REF. 22)) and polymeric NPs (for example, CRLX101 (REF. 23), BIND-014 

(REF. 11) and AZD-2811 Accurin24) are two newer classes of cancer nanotherapeutic agent. 

Most recently, disappointing clinical results have been reported for BIND-014, CRLX101 

and NK105, underscoring the need to rethink development strategies, including potential 

patient selection to identify those most likely to respond to nanotherapeutics. Inorganic 

nanomaterials (for example, gold nanoshell25, iron oxide NP26 and hafnium oxide NP27) are 

also being investigated for use in cancer patients, with the iron oxide NP-based 

NanoTherm26 already marketed in Europe for glioblastoma.

More intriguingly, our understanding of nano–bio interactions and the arsenal of 

nanomedicine platforms are expanding rapidly. The total number of papers related to 

‘nanoparticle’ on PubMed nearly doubled every 2 years between 2000 and 2014, surpassing 

the remarkable rise of the number of publications on ‘monoclonal antibody’ (mAb) in the 

1980s. In the case of mAb this translated to the development of important therapeutics, and 

we expect a similar transformative impact from the rise of nanomedicine in the years to 

come.

Beyond their widely reported use as carriers for chemotherapeutics, NPs have shown 

potential for the delivery of various new anticancer therapeutic agents, including molecularly 

targeted agents24, antisense oligonucleotides28,29, small interfering RNA (siRNA)30–33, 

mRNA34 and DNA inhibitor oligonucleotides35. Furthermore, the use of viral NPs for 

therapeutic delivery has been facilitated by genetic and chemical engineering techniques36. 

Examples include the use of adeno-associated virus, approved by the European Commission 

for lipoprotein lipase deficiency37, lentivirus currently in various clinical trials for cell-based 

gene therapy and immunotherapy of various diseases including cancer38, and engineered 

plant viruses (for example, tobacco mosaic virus and potato virus X) for cancer therapy in 

animal models39,40. With their endogenous origin and organ tropism, exosomes have also 

been proposed for carrying anticancer payloads to target tumours41. Lastly, novel inorganic 

NPs such as nanodiamond42,43 and graphene44,45 have received considerable attention for 

cancer therapy.

We are also already seeing in-depth innovation in nanomedicine strategies. By integrating 

diagnostic and therapeutic functions into a single NP formulation, theranostic nanomedicine 

offers a promising strategy to monitor the PK and accumulation of therapeutics and the 

progression of disease, giving important insights into heterogeneities both within tumours 

and between patients for potential personalized treatment46,47. By co-delivering multiple 

active pharmaceutical ingredients (APIs), NPs have also facilitated synergistic cancer 

therapy and avoided some mechanisms of drug resistance, as evidenced by the large number 

of in vivo examples (TABLE 2). In addition to drug delivery, nanotechnology is gaining 

momentum in the area of cancer immunotherapy. NPs have become increasingly attractive 

as potent antigen or adjuvant carriers for the development of synthetic vaccines, with 

enhanced tissue penetration and/or access to lymphatics, preferential uptake by antigen-

presenting cells, sustained release of antigens or adjuvants and NP-mediated phagosome 

escape of antigens for cross-presentation4,48–50.
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Nanotechnology may also hold great potential for addressing the shortcomings associated 

with biologics, including mAbs that are used for cancer immunotherapy. For example, the 

administration of biologic drugs can induce the formation of antidrug antibodies (ADAs) 

that may adversely affect their safety and efficacy51. Recently engineered tolerogenic NPs 

carrying rapamycin were shown to abolish the formation of ADAs for biologics in mice and 

non-human primates52, and human clinical trials are currently ongoing53. Our expectation is 

that by gaining a deeper insight into nano–bio interactions and the personalization of 

nanomedicines, and through the application of nanotechnology to existing and emerging 

therapeutic modalities, we will begin to realize the true potential of nanomedicine in cancer 

and beyond.

The EPR effect in predictive nanomedicine

Despite efforts to develop non-invasive administration (for example, oral, pulmonary, nasal 

and transdermal) of NPs54–56, most cancer nanotherapeutics are delivered intravenously for 

systemic transport to tumours. The preferential accumulation of NPs in tumours is generally 

ascribed to defective tumour vessels and impaired lymphatics in the tissue: enhanced 

permeability of the abnormal tumour microvasculature enables NPs to enter the tumour 

interstitial space, while suppressed lymphatic drainage causes retention within the tissue. 

The EPR effect7–10 has become the foundation of NP delivery to solid tumours. 

Nevertheless, it is increasingly clear that EPR varies substantially between both patients and 

tumour types, and even within the same patient or tumour type over time. However, little 

effort has been made to address the effect of EPR on nanotherapeutic efficacy. Several 

preliminary clinical studies have already suggested the value of stratifying subpopulations of 

cancer patients according to their likelihood of accumulating NPs through EPR57–59, 

implying that predictive markers for EPR may have a role in the clinical success of cancer 

nanotherapies.

In our previous review of EPR9, we discussed the parameters of the TME, some of which 

are well characterized for their interactions with NPs, whereas others are considered a ‘black 

box’ requiring extensive investigation. Recently, there has been growing emphasis on the 

role of tumour-associated macrophages (TAMs) in NP–TME interactions60–63. TAMs have 

also been proposed as a reservoir of nanotherapeutics from which the payload is gradually 

released to neighbouring tumour cells62. Using high-resolution intravital imaging 

microscopy, a recent work systematically studied the extravasation and intratumoural 

distribution of two different types of NP63: the clinically approved 30 nm magnetic NP 

(MNP) ferumoxytol64 and a 90 nm polymeric NP composed of poly(D,L-lactic-co-glycolic 

acid)-b-poly(ethylene glycol) (PLGA-PEG)11,65,66. Despite differences in both size and 

composition, MNP and polymeric NP exhibited similar PK after simultaneous intravenous 

injection, and colocalized to varying degrees in cancer cells and TAMs. Furthermore, after 

co-administration of MNPs and docetaxel-encapsulated PLGA-PEG NPs, tumour MNP 

levels showed a significant correlation with NP payload levels. Consequently, the MNP 

accumulation level successfully predicted the anticancer efficacy of the therapeutic 

polymeric NPs. A pilot clinical study was also recently initiated to assess ferumoxytol as a 

marker to predict tumour response to the nanoliposomal irinotecan MM-398 (REFS 

57,61,67). Preliminary analysis of lesion size reduction in six cancer patients suggests a 

Shi et al. Page 5

Nat Rev Cancer. Author manuscript; available in PMC 2017 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



positive association with ferumoxytol levels in the lesions at 24 hours57, although a larger 

study is required for validation. We expect further similar findings to pave the way for 

companion imaging particles, such as ferumoxytol, to be used in patient selection and 

predictive nanomedicine (FIG. 3a).

Therapeutic NPs labelled with radioisotopes (for example, 111In, 99mTc, 123I and 64Cu) have 

also been used to monitor biodistribution and tumour accumulation through non-invasive 

imaging techniques that include single-photon emission computed tomography (SPECT), 

computed tomography (CT) and positron emission tomography (PET)58,59,68–71. A recent 

clinical study demonstrates that high tumour accumulation of LD as determined by 

quantitative imaging of [99mTc]LD, is positively associated with the response and survival of 

patients with unresectable pleural mesothelioma treated with a combination of LD and 

cisplatin59. A high degree of heterogeneity in tumour accumulation was also revealed by 

PET–CT imaging of 64Cu-loaded liposomes in canine cancers, with six of seven carcinomas 

compared with only one of four sarcomas displaying high uptake of liposomes72. These 

results highlight the potential of radioisotope-labelled therapeutic NPs to assess patient 

suitability for nanotherapies (FIG. 3b). Although incorporation of contrast agents in 

therapeutic NPs can provide important insights into tumour heterogeneities and EPR, the 

development of such theranostic NPs may pose additional complexity in terms of design, 

synthesis, scaling and regulatory considerations47.

Aside from developing imaging NPs as potential markers of therapeutic efficacy, few studies 

have aimed to identify EPR-predictive gene, protein or cell biomarkers (FIG. 3c). The ratio 

of matrix metalloproteinase 9 (MMP9) to tissue inhibitor of metalloproteinase 1 (TIMP1) in 

the circulation, as well as vessel wall collagen content, has been shown to predict EPR for 

liposomes73,74. Various circulating biomarkers associated with angiogenesis, such as 

angiogenic factors (for example, vascular endothelial growth factor A (VEGFA), fibroblast 

growth factor 2 (FGF2), MMP9, interleukin-8 (IL-8), IL-6 and hepatocyte growth factor 

(HGF)), proteins and peptides (for example, endostatin and tumstatin), and endothelial cells 

and endothelial progenitor cells, have been described75,76. However, their role, along with 

other potential biomarkers in predicting EPR, needs further investigation in preclinical and 

correlative clinical studies.

Enhancing drug delivery to the tumour

NP–protein interactions

When a NP enters a biological environment (for example, blood, interstitial fluid or 

extracellular matrix (ECM)), its surface is rapidly covered by various biomolecules 

(typically proteins), leading to the formation of a ‘corona’ (REFS 77–81) (FIG. 2b). The 

adsorption of proteins alters the particle size, stability and surface properties and, more 

importantly, provides the NPs with a biological identity that determines the physiological 

responses they elicit, ranging from cellular uptake and intracellular trafficking to PK, 

biodistribution and toxicity (FIG. 2c–f). For instance, the binding of opsonins can trigger 

recognition and clearance by the mononuclear phagocyte system (MPS)79. Conversely, it has 

also been suggested that a corona rich in dysopsonin proteins (for example, apolipoproteins 

and albumin), which inhibit phagocytic uptake, could contribute to the stealth effect of 
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NPs82–84. While ligand-functionalized NPs might lose targeting capability when a protein 

corona forms on their surface85, decoration of NPs with some particular plasma proteins 

could improve delivery to specific organs. One recent example is the finding that 

apolipoprotein E is essential for some siRNA lipoplexes to target hepatocytes in vivo86. In 

contrast, NP–protein interactions in clinical settings can also trigger hypersensitivity 

reactions in patients by activating the complement system87.

Using various analytical techniques, several studies have extensively characterized the 

protein corona (for example, its composition, density, conformation, thickness, affinity and 

dynamics) on certain nanomaterials (for example, gold, silica and polystyrene NPs and 

liposomes)88. It is now clear that NP–protein interactions are highly dependent on the NP 

physicochemical properties, exposure time as well as protein source and concentration. 

However, we still do not have a clear picture of how NP properties (FIG. 2a) and protein 

adsorption patterns (FIG. 2b) correlate with specific physiological responses (FIG. 2c–f). 

With high-throughput characterization of the serum protein corona fingerprint in a library of 

105 different gold NPs, a quantitative multivariate model was developed to predict 

interaction of NPs with cells89. Protein corona fingerprints and physicochemical properties 

of 17 liposomal formulations were recently used to predict multiple biological interactions 

including cellular uptake and viability of various tumour cells90. Attention was also paid to 

the crucial role of human disease type on the composition of the protein corona and its 

effects on cellular uptake and toxicity of NPs91. Nevertheless, most of these studies were 

focused on NP–protein interactions in vitro, and little effort has been made to study protein 

corona formation in vivo and its correlation with PK, biodistribution and therapeutic 

efficacy. It is noteworthy that the very few in vivo evaluations of the protein corona 

demonstrated significant differences between in vitro and in vivo results92.

Moreover, we think that this field could be further advanced by addressing the following 

questions. Do we need specific protein-knockout mouse models to validate and explain the 

observations from in vitro studies and normal mice? In addition to the widely studied 

proteins in serum, how do the proteins in other biological environments, such as the TME, 

affect the corona, NP interactions with tumour cells and NP penetration across the tumour 

ECM? What new techniques will we need to more precisely characterize and quantify the in 
situ protein corona? We expect that by extending the methodology of quantitative structure–

activity relationships to diverse NP platforms and biological responses, such nanomics 

approaches could facilitate a deeper understanding and better control of the nano–bio 

interface and prompt more rational design of safe, effective and even patient-specific 

nanomedicines.

Blood circulation

There is a relationship between blood circulation half-life (FIG. 2c) and the efficiency with 

which a NP passively extravasates from the microvasculature into the TME. For tissues with 

relatively large blood flow and particles that efficiently extravasate from the 

microcirculation, a relatively short blood circulation half-life may be sufficient for the 

desired accumulation in the tumour. Conversely, for poorly perfused tissues or particles with 
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low extravasation efficiency, a longer circulation half-life may be necessary to enhance 

exposure in the tumour microvasculature, enabling extravasation to occur progressively.

One major factor limiting circulation time is the non-specific interaction between NPs and 

serum proteins discussed above, which can promote opsonization and recognition by the 

MPS. Among various approaches to developing long-circulating NPs, the most widely used 

is PEG grafting on to the NP surface93,94, such as Doxil, a ‘stealth liposome’ with a 

circulation half-life of approximately 2 days95. Although pegylation can reduce protein 

adsorption through hydrophilicity and steric repulsion effects to avoid MPS clearance, such 

a simplistic view of ‘stealth’ long-circulating particles, which was coined more than 25 years 

ago (‘Stealth’ being a trademark of Liposome Technology, Inc., Menlo Park, California, 

USA), is becoming outdated. For example, increasing the density of PEG on a gold NP 

surface can decrease the amount and change the types of protein that bind to the NPs, 

reducing macrophage uptake in vitro82. More recently, pegylation of polystyrene NPs has 

been shown to selectively enrich the adsorption of clusterin to the NP surface, contributing 

to the decreased nonspecific macrophage uptake in vitro96. The mechanical stiffness and 

elasticity of particles has also been recognized to influence MPS sequestration97,98.

Another biologically inspired strategy to extend residence time in blood is to modify NPs 

with ‘self’ markers that prevent normal cells from activating the MPS. The bottom-up 

approach is chemical conjugation of self markers such as CD47 peptides99 to the NP 

surface, which can inhibit phagocytosis. The top-down method is to coat NPs with a 

membrane of erythrocytes, leukocytes or thrombocytes, thus ‘camouflaging’ them to help 

reduce MPS elimination100–103. Although the circulation half-life of cell membrane-coated 

NPs is longer than that of ‘bare’ NPs, it is still much shorter than that of the cells 

themselves. Therefore, more efforts are required to examine the changes in the cell 

membrane, including its components and elasticity, after the NP surface has been coated.

Extravasation to the TME

Extravasation of NPs from the systemic circulation to tumours (FIG. 2d,e) can be influenced 

by aberrant tumour vasculature, the perivascular TME and the NP itself. The metabolic 

demands of rapidly dividing cancer cells result in the formation of neovasculature that is 

architecturally abnormal and exhibits a ‘leakiness’ distinct from that occurring with 

inflammation. Unlike the endothelial lining of normal vasculature, which has a turnover of 

approximately 1,000 days, the endothelium in tumours can double approximately every 10 

days104, and the resulting microvasculature does not have clearly defined morphology with 

distinct venules, arterioles or capillaries. In the case of inflammation, the extravasation of 

immune cells occurs primarily at the level of the venules105. However, the exact contribution 

of various segments of the tumour neovasculature to permeability remains poorly 

understood. In addition to an arsenal of inflammatory mediators such as histamine106,107, 

the interaction of tight junction modulators such as cationic polymers with endothelium can 

also induce endothelial contraction and tight junction disassembly, leading to vascular 

leakiness108. For tumours, both vascular permeability and blood velocity are complex and 

kinetically variable from segment to segment109. The spatiotemporal changes in vascular 

permeability can also be in part explained by the recent observation of transient opening and 
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closing of pores, referred to as ‘dynamic vents’, in the walls of tumour vessels110. With an 

adequate NP circulation half-life, the dynamic vents could potentially improve delivery to 

tumours (in particular for large NPs). Furthermore, vascular mediators such as nitric oxide 

and angiotensin II could enhance tumour vascular permeability for more effective NP 

extravasation10,111. There is also considerable variability in blood viscosity and oncotic 

pressure in various segments of the vasculature and TME, influencing the movement of NPs 

into and out of the tumour interstitium. Further studies will help to elucidate the mechanisms 

involved in NP extravasation into tumours, improving engineering and design schemes for 

efficient NP accumulation.

The impact of NP physicochemical properties on tumour extravasation and accumulation has 

also been examined. For example, in hyperpermeable murine colon adenocarcinoma, 30, 50, 

70 and 100 nm polymeric micelles all demonstrated similar extravasation and anticancer 

activity, whereas in hypopermeable pancreatic tumours, only the 30 nm micelles showed 

sufficient accumulation112. This study further indicates the influence of tumour 

heterogeneity on nanotherapeutic efficacy, underscoring the need for personalized 

nanomedicine. Compared with nanospheres, some elongated nanostructures (for example, 

the nanoworm113 and the nanorod114) improve tumour accumulation. Non-spherical 

particles also tend to accumulate and adhere to the endothelial cells that line vessel walls 

better than spherical or quasi-hemispherical particles, enhancing site-specific delivery115,116. 

However, the effect of NP shape on extravasation can be very complicated, depending on the 

tumour models studied117.

Other unique strategies have also been proposed to enhance extravasation of NPs to the 

tumour interstitial space. Exploiting the ‘tumour-tropic’ property of certain cells (for 

example, mesenchymal stem cells, macrophages and monocytes)118–121, therapeutic NPs 

can either be attached to the cell surface or loaded into the cells for homing to tumours. 

Recently, an innovative approach used two types of communicating NP to amplify tumour 

targeting and accumulation122: the photothermal heating of ‘signalling’ gold nanorods 

disrupts tumour blood vessels to initiate extravascular coagulation, which can be recognized 

by the ‘receiving’ NPs in circulation, which bind to the resulting clot.

Tumour penetration

Despite the emphasis on extravasation and accumulation in NP delivery, it is now known 

that, depending on the therapeutic payload, deep and uniform tumour penetration of 

nanotherapeutics may also be crucial for optimal outcomes. Studies of macrmolecules (for 

example, dextrans123 and antibodies124) demonstrate that size and binding affinity affect 

both diffusion kinetics and depth of tissue penetration. For instance, higher-affinity 

antibodies that bind to target antigens on cancer cells penetrate tissue less efficiently than 

lower-affinity antibodies against the same target124. This is because during tissue penetration 

higher-affinity antibodies tend to bind tightly to the target and become internalized, whereas 

lower-affinity antibodies tend to bypass their target and thus penetrate deeper. Much can be 

learned from antibody studies to aid in the design of nanotechnologies for cancer targeting, 

such as the pros and cons of adding targeting ligands on the NP surface47; although this may 
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enhance cellular uptake and lengthen tissue residence, it may also reduce the depth of 

tumour penetration.

Therapeutic NPs, nearly always larger than antibodies, tend to become trapped in the ECM 

around the microvessels from which they extravasate125 (FIG. 2e). Challenges include the 

physiological barriers intrinsic to the TME, such as the dense interstitial matrix composed of 

collagen fibres and other proteins, and the elevated interstitial fluid pressure (IFP) induced 

by hyperpermeability of abnormal vasculature and lack of functional lymphatics deep in the 

tumour tissue125,126. These in turn reduce convective transport of NPs across the vessel wall 

and into the interstitial space. Nonspecific uptake by perivascular stromal cells such as 

TAMs60–63 can further limit the diffusion of nanotherapeutics. It is also noteworthy that 

mean tumour intercapillary distances generally range from approximately 80 to hundreds of 

micrometres127–129, presenting another obstacle to NPs reaching tumour cells that are 

further from vessels.

For enhanced tumour penetration, one possible solution is to tune the physicochemical 

properties of NPs to penetrate diffusional barriers in the interstitial matrix. Smaller NPs 

could more readily diffuse throughout the tumour tissue130–132, but very small particles (for 

example, <5 nm) may be quickly cleared by renal filtration. Moreover, small NPs have a 

large surface area to volume ratio and a short diffusion distance for encapsulated drugs, 

limiting their drug-carrying and controlled-release capabilities. Nanorods (15 nm × 54 nm) 

have also exhibited more rapid tumour penetration than 35 nm nanospheres114, possibly 

related to their shorter dimension, although both have a 33–35 nm hydrodynamic diameter 

and nearly identical diffusion rates in water. In addition, surface modification with tumour-

specific penetrating peptides, such as the cyclic peptide CRGDK/RGPD/EC (also called 

iRGD), has also been shown to substantially increase the depth of NP delivery into tumour 

parenchyma133,134. Further systematic study of NP–TME interactions through real-time in 
vivo imaging techniques, such as intravital microscopy135, may identify the optimal particle 

properties for rapid diffusion. TME-modification approaches, such as degrading the tumour 

ECM and inhibiting the activity of tumour-associated fibroblasts to reduce their production 

of matrix components, which were previously overviewed136, could likewise assist NPs in 

permeating tumour tissues.

Recently, an alternative novel multistage delivery strategy has been proposed to address the 

penetration problem137. Small-molecule drug conjugates (SMDCs)138 and miniaturized 

biologic drug conjugates (mBDCs), including peptide–drug conjugates139, were developed 

to address the large size shortcoming of antibody–drug conjugates (ADCs), which limits 

their tumour tissue penetrability. SMDCs and mBDCs can also enhance retention and 

cellular uptake by tumours compared with free drug alone. However, their considerable 

drawbacks include poor PK, which may limit their tumour exposure and therapeutic impact. 

By incorporating SMDCs and mBDCs into controlled-release polymeric NPs for multistep 

delivery to tumours, it may be possible to combine the superior PK and tumour 

accumulation of NPs with the deep penetration and specific tumour cell targeting of released 

SMDCs and mBDCs for optimal targeted cancer therapy137.
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There have also been reports of similar multistage delivery platforms130,140 in which very 

small NPs (for example, approximately 10 nm quantum dots) are first loaded into large 

particles, such as approximately 3.5 μm hemispherical mesoporous silicon140 or 

approximately 100 nm gelatin NPs130. When the large particles reach the tumour vasculature 

or are exposed to the TME, the released smaller NPs can then readily diffuse throughout the 

interstitial space of the tumour. Other stimuli-responsive multistage delivery platforms have 

recently been developed for various hard-to-treat solid tumours141,142.

Cellular uptake and intracellular trafficking

Effective cell internalization may also have an important role in enhancing NP retention, 

EPR and therapeutic efficacy, as many nanomedicines act on intracellular targets. This is 

particularly true for biomacromolecule payloads such as those involved in the RNAi 

pathway (for example, siRNA and microRNA (miRNA)), which require cytosolic delivery 

for bioactivity143–145. To improve cellular uptake, one approach is to decorate the NPs with 

targeting ligands that recognize specific receptors on the tumour cell surface9,146,147 (FIG. 

2f). Moreover, active targeting is of importance when tissue accumulation does not depend 

on EPR (for example, vascular targeting)148 or when the delivery of therapeutic agents 

requires active transcytosis of physiological barriers such as the intestinal mucosa or the 

blood–brain barrier149–151. Since the concept of active NP targeting was introduced more 

than 30 years ago152,153, a few examples have made their way into clinical trials9, including 

targeted liposomes (for example, HER2 (also known as ERBB2) single-chain variable 

fragment (scFv)-targeted liposome (MM-302)154), the first targeted and controlled-release 

polymeric NP (BIND-014)11 and the first targeted siRNA NP (CALAA-01)30. Even without 

targeting ligands, NPs can still be engineered for increased uptake by tumour cells by 

exploiting size- and shape-dependent cell internalization155,156.

In addition, it may be important to investigate the effect of cancer cell mutations on NP 

internalization. Pancreatic cancer cells with KRAS mutations show elevated 

macropinocytosis of proteins such as albumin, and the ability of extracellular albumin to 

enhance the proliferation of cancer cells after glutamine starvation is also dependent on 

oncogenic KRAS expression157. This study indicates that macropinocytosis might enhance 

the uptake of drugs such as paclitaxel when it is bound to albumin, partly explaining the 

recent success of nab-paclitaxel in treating advanced pancreatic cancer largely driven by 

oncogenic KRAS158. Whether such an oncogenic mutation effect also applies to NP 

endocytosis remains unclear. It should also be noted that our current understanding of NP–

cell interactions is generally based on in vitro studies, which may not reflect the 

heterogeneity of tumour cells in vivo. Recent advances in high-resolution cellular in vivo 
imaging methods have enabled the detailed analysis of single-cell PK and cell-to-cell 

variability in tumours159–162, and are expected to provide insights into NP interaction with 

tumour cells and the TME in vivo.

After internalization, NPs must either release their therapeutic payload for diffusion through 

the cellular compartments to reach the target, or be directed through intracellular trafficking 

pathways to release therapeutics in the appropriate subcellular location. For cytosolic 

delivery of biomacromolecules such as siRNA, NP endosomal escape is crucial. Cationic 
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lipid-, lipid-like material- and polymer-based NPs have shown great promise in siRNA 

delivery163–165. Notably, most RNAi nanotherapeutic agents in clinical trials for cancer 

treatment are composed of liposomes or lipid NPs (TABLE 1). Although these lipid-based 

NPs are currently not functionalized with ligands for active targeting, targeted NP delivery 

could further enhance tumour accumulation and retention and cellular uptake of 

siRNA144,166. Despite clinical trial success, the efficiency of lipid NP-mediated siRNA 

release from endosomes remains low (1–2%)167, and approximately 70% of the internalized 

siRNA may undergo Niemann–Pick type C1-mediated exocytosis168. Thus, alternative 

strategies will be necessary to develop NP platforms with highly efficient endosomal escape. 

Besides cytosolic delivery, targeting intracellular organelles such as the nucleus, 

mitochondria, endoplasmic reticulum and Golgi has also been pursued. Whereas some NPs 

have been developed for specific uptake by these subcellular compartments169–174, the 

underlying barriers of organelle membranes to the transport of NPs need to be further 

explored.

Controlled drug release

An equally important yet often overlooked consideration is that systemically administered 

NPs may gradually release their payload during circulation (FIG. 2g), such that long-

circulating particles with slow tumour extravasation may hold relatively small payloads by 

the time they reach the TME. Therefore, simultaneous consideration of drug release, NP PK 

and NP extravasation is required to achieve optimal outcomes.

We think that the design of optimal NP systems requires a deep understanding of several 

complex parameters: the interplay between NP PK and drug PK, between encapsulated drug 

and released drug in plasma, between drug Cmax and NP Cmax, between drug plasma AUC 

and NP plasma AUC; and factors that may differentially affect plasma versus tumour PK and 

AUC. Conventional small-molecule drugs generally reach their plasma Cmax during the 

intravenous infusion period, followed by a reduction in plasma drug concentration. 

Similarly, for drug-encapsulated controlled-release NPs, Cmax will be reached during 

infusion, yet the plasma concentration of the released drug will in general be very low 

initially and progressively increase, reaching its Cmax after some period of NP circulation. 

Importantly, the drug Cmax achieved through release from NPs is unlikely to ever reach the 

levels achieved with intravenous administration of free drug. Therefore, drug-associated 

toxicities related to Cmax may be mitigated using NPs. On the other hand, plasma AUC will 

be relatively similar for free drug and NP-released drug, with one key difference: the AUC 

of NP-released drug will be generally broad and flat, whereas the AUC for free drug is likely 

to be peaked, with a tail. The implications are that although certain toxicities may be 

reduced with the use of NPs, the AUC-related toxicity may be harder to overcome with NPs 

even though the total dose is released over a longer period of time. When drugs are delivered 

by NPs, the tumour PK and AUC are dramatically different from those of drugs given in the 

conventional form, in part because EPR results in differential tumour accumulation of NPs 

to a greater extent than free drugs and the drug released from NPs localized to tumours can 

lead to higher tumour drug concentrations over a longer period of time. Most publications 

demonstrate that NPs enhance delivery of drugs to tumours. A subset of studies show that 

over time, tumour drug Cmax, PK and/or AUC175–178 are improved compared with 
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conventional dosage. However, these increases in tumour drug accumulation have not always 

translated into improved patient OS, begging several questions. Does the increase in tumour 

drug concentration broadly occur in patients or is patient selection needed to identify the 

subpopulation likely to accumulate NPs? Is increased tumour dose universally beneficial for 

all drugs or does that depend on the drug?

To precisely control drug release, various stimuli-responsive NPs have been developed and 

are summarized in a recent review article179. In general, these NPs are designed to recognize 

subtle environmental changes associated with the TME and tumour cells (for example, pH, 

redox state and enzymes) or to be activated by external stimuli (for example, heat, light, 

magnetic field or ultrasound), triggering the release of the payload (FIG. 2g). To some 

degree, external stimulation enables tailored drug-release profiles with temporal and spatial 

control. Thermosensitive liposomes (for example, the LD ThermoDox) for heat-mediated 

drug release are the most advanced clinical stage platform to date. In 2013, ThermoDox 

failed to meet its primary end point of PFS in a phase III study for hepatocellular carcinoma, 

and is now undergoing a phase III study with OS as the primary end point (see TABLE 1). 

More recent stimuli-responsive nanomaterials being investigated include pH- or redox-

sensitive polymeric NPs142,180–182, ultrasound-responsive polymer-grafted silica NPs183 and 

near-infrared light-responsive graphene oxide nanosheets184, among others. The clinical 

potential of these newer systems remains to be determined.

Overall, with continuous improvements in our understanding of the biological steps in 

systemic NP delivery, a myriad of new strategies have been developed for enhancing drug 

delivery to tumours and therapeutic responses. As most of these results are from animal 

studies, further clinical validation is necessary.

Targeting the TME and the premetastatic niche

As the TME has an important role in tumour development, progression and metastasis and in 

the emergence of drug resistance, it has also been considered a target for cancer 

treatment14,15,185. As discussed above, TME modification also offers an alternative strategy 

for enhancing the tumour accumulation and penetration of NPs107,136. Compared with 

cancer cells, one advantage of targeting non-tumoural cells in the TME is that they are likely 

to be more genetically stable and thus less prone to develop drug resistance185. However, 

targeting non-tumoural cells raises the challenge of achieving a therapeutic effect while 

minimizing toxicity to normal cells; how TME modification affects tumour growth and 

metastasis needs more careful examination. Beyond the TME of the primary tumour, the 

environmental conditions required for metastatic cells to survive and proliferate have also 

received considerable attention in the development of new therapeutic avenues186. Early 

interference with the formation of the premetastatic niche may be particularly beneficial in 

the treatment of malignancies that tend to metastasize.

Tumour vasculature

Much effort has focused on NP-mediated selective drug delivery to the tumour vasculature 

(FIG. 4a), which is crucial to tumour growth and metastasis148. This is commonly achieved 

by coating NPs with ligands that bind specifically to overexpressed receptors such as αvβ3 
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integrin187 on the surface of tumour endothelial cells. In vivo studies in mice revealed that 

inhibiting angiogenesis can cause regression of established tumours or suppression of 

metastasis188,189. Besides targeted NPs, several non-targeted cationic lipid or polymeric NP 

platforms have been designed for preferential delivery of siRNA to vascular 

endothelium190–192. A recent unique formulation called 7C1 specifically reduced the 

expression of target endothelial genes at low siRNA doses without substantially reducing 

their expression in pulmonary immune cells, hepatocytes or peritoneal immune cells192. By 

silencing VEGF receptor 1 (VEGFR1) or delta-like protein 4 (DLL4) involved in 

angiogenesis, 7C1 RNAi NPs reduced growth and metastasis of Lewis lung carcinoma in 

mouse models in vivo192. This interesting system could also be used to study how 

interactions with serum proteins direct nanomaterials to endothelial cells in vivo.

Stromal cells

Targeting stromal cells such as tumour-associated fibroblasts and macrophages has also been 

proposed for cancer treatment (FIG. 4a). A unique docetaxel-conjugated NP platform called 

Cellax significantly depleted α-smooth muscle actin (α-SMA)-expressing fibroblasts, 

reducing tumour ECM and IFP, increasing vascular permeability and suppressing 

metastasis193. This effect is presumably through the adsorption of serum albumin on Cellax, 

followed by specific interaction with α-SMA+ fibroblasts that also express elevated levels of 

the albumin-binding protein, secreted acidic cysteine-rich glycoprotein (SPARC). 

Differentiation of TAMs to a pro-tumorigenic or immunosuppressive (M2-like) phenotype 

has commonly been associated with tumour progression and poor patient outcome194. By 

inhibiting the activity of signal transducer and activator of transcription 3 (STAT3), 

hydrazinocurcumin-loaded NPs can ‘re-educate’ TAMs to transform from an M2-like into an 

antitumorigenic M1 phenotype for inhibited tumour growth195. PEG-sheddable, mannose-

modified NPs have also been developed to efficiently target TAMs that have elevated 

expression of mannose receptors, while minimizing uptake by macrophages of the MPS196. 

Furthermore, NP-based co-delivery of multiple agents targeting both TME and tumour cells 

has produced synergistic anticancer effects197–199. However, TME-targeting strategies must 

be pursued with care, as tumour stroma exhibits bipolar activity in tumorigenesis200.

Metastatic microenvironment

NP delivery to the major sites of metastasis (for example, lungs, liver, lymph nodes, brain 

and bone) and metastatic tumour cells themselves have been comprehensively discussed 

elsewhere201. A newly developed system of polymeric micelles formulated from polymer–

drug conjugates has shown promising therapeutic efficacy in a mouse model of colon cancer 

with lung metastasis202, and in a pilot study of one patient with castration-resistant prostate 

cancer with lung and bone metastases203. Comparatively little effort has been devoted to 

exploiting nanotechnology to modify the premetastatic microenvironmental niche and 

suppress tumour growth. In a recent study, a bone-homing polymeric NP platform was 

engineered for spatiotemporally controlled delivery of therapeutic agents204 (FIG. 4b). After 

pretreatment with alendronate-conjugated, bortezomib-loaded polymeric NPs, mice showed 

significantly slower myeloma tumour growth and prolonged survival. The application of 

such pretreatment strategies for protecting the organs vulnerable to metastasis could be 
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accelerated by revealing which microenvironmental factors control the intravasation, 

adhesion and growth of metastatic tumour cells and how this is achieved.

Challenges in clinical translation

Controllable and reproducible synthesis

The determination of optimal physicochemical parameters is crucial for the successful 

development of therapeutic NPs. A considerable amount has been learnt regarding individual 

factors that can confer effective immune evasion, tumour extravasation and diffusion, cell 

targeting and internalization, and controlled drug release65,66,78,205,206. Nevertheless, 

systematic parallel screening of the myriad of NP properties remains difficult, owing to the 

challenge of rapid, precise and reproducible synthesis of NP libraries with distinct features. 

Compared with traditional bulk techniques, which generally form NPs with high 

polydispersity, microfluidic technologies have recently attracted attention for high-speed 

self-assembly of NPs with narrower size distribution, tunable physical and chemical 

characteristics and greater batch-to-batch reproducibility207–211. Similarly, particle 

replication in non-wetting template (PRINT) technology has enabled the synthesis of 

monodisperse NPs with precise control over size, shape, chemical composition, drug loading 

and surface properties212,213. Such advances could eventually facilitate NP discovery, 

analogous to the way high-throughput screening of small molecules advanced drug 

discovery.

Evaluation and screening

With the rapid emergence of NPs composed of novel biomaterials or nanostructures, in vitro 
evaluation is important to identify biocompatible candidates before animal testing is 

pursued. In vitro assays can also improve our understanding of NP–cell interactions. 

However, as conventional in vitro models using cells cultured in multiwell plates lack the 

complexity of biological tissues and control over fluid flow, such platforms may not capture 

the intricate interplay of NPs with physiological barriers. Recent efforts to develop 

biomimetic ‘organ/tumour-on-a-chip’ tools214–216 may avoid the limitations of current in 
vitro models. The incorporation of tumour-like spheroids into a microfluidic channel could 

offer insights into the effects of interstitial flow, cell binding and particle size on NP 

accumulation and diffusion216. Comparison of NP behaviours in such chip systems with 

animal models may offer a preview of the potential of these biomimetic microdevices.

To assess in vivo NP performance (for example, PK, biodistribution, efficacy and safety), the 

use of animal models is obligatory. Whereas some studies have demonstrated PK scaling 

across different species (including humans) for different nanotherapeutics11–13,32, one well-

recognized obstacle is the discrepancy between the efficacies obtained in preclinical studies 

and the outcomes from clinical trials, in large part owing to the lack of tumour models that 

can recapitulate human cancers217,218. Diverse animal models are currently available, 

including cell line-based subcutaneous and orthotopic xenografts, patient-derived xenografts 

(PDXs) and genetically engineered mouse models (GEMMs). However, no single model can 

fully reproduce all aspects of human malignancy, and EPR is generally more consistent in 

animal models than in cancer patients9. Furthermore, considering the major contribution of 
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tumour metastases to cancer mortality, models of human tumour metastasis will be 

invaluable for the evaluation of EPR and NP penetration and targeting in metastatic tissues 

compared with primary tumours. The translation of nanotherapeutics may be greatly 

improved by the development of animal models that mimic closely the heterogeneity and 

anatomical histology of human tumours, such as high-fidelity PDXs219, humanized mouse 

models220 and GEMMs with aggressive metastasis221.

Scalable manufacturing

Another challenge to clinical development stems from the escalating complexity in the 

chemistry, manufacturing and controls (CMC) and good manufacturing practice (GMP) 

requirements as NP technologies transition from preclinical to clinical development, 

subsequent commercialization and beyond, as long as the product is on the market. Although 

the shared goal of CMC and GMP is to assure that a product consistently meets a 

predetermined standard of quality, they involve different but overlapping approaches and 

regulation. The scale-up of simple NPs, including liposomes and polymeric systems with 

small-molecule APIs that have desirable physicochemical properties, can be achieved using 

manufacturing unit operations readily available and widely used in the pharmaceutical 

industry. The scale-up of more complex nanomedicines may pose additional CMC and GMP 

challenges, and require modification of existing unit operations or development of novel 

manufacturing processes. Examples include nanomedicines that integrate biological 

targeting ligands or biological components, carry a combination of two or more therapeutics, 

are formulated through layer-by-layer assembly or comprise multiple functional units such 

as theranostics or multistage systems.

In general, large-scale and reproducible synthesis will be more difficult when NP 

formulation involves multiple steps or complicated technologies. Indeed, the transition from 

laboratory to clinic is nearly always accompanied by the optimization of formulation 

parameters, or even a change in formulation methods, making forward thinking of scale-up 

considerations an important aspect of early NP design and engineering. The PRINT 

technology is amenable to reproducible fabrication of NPs213, yet scaling to kilograms 

remains to be demonstrated. A coaxial turbulent jet mixer technology, which has the 

advantages of homogeneity, reproducibility and tunability normally accessible only in 

microscale mixing techniques such as microfluidics, has recently been developed for mass 

production of polymeric NPs (potential of ~3 kg/day per channel)222. Although today the 

mainstay of NP manufacturing remains bulk synthesis, robust and versatile approaches such 

as PRINT and turbulent jet mixer technologies, which can prepare NPs at throughputs 

suitable for industrial-scale production, may accelerate clinical translation.

Conclusion

Like most other scientific advances that have revolutionized medicine over the past decades, 

cancer nanomedicine must also mature before its full impact can be realized. Improving our 

understanding of tumour heterogeneity and identifying EPR markers will enable selection of 

patients maximally responsive to nanotherapies. A full understanding of nano–bio 

interactions, systemic transport of NPs to tumour cells and targeting of NPs to the TME or 
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premetastatic niche will lead to safer and more efficacious nanotherapeutics. Addressing the 

challenges of controllable, reproducible and scalable NP synthesis, as well as NP screening 

and evaluation, will facilitate clinical development. Although most approved nanomedicines 

have used existing drugs as payloads, we expect the next generation of nanomedicines to 

increasingly incorporate new molecular entities (for example, kinase inhibitors24) and novel 

classes of therapeutic agent (for example, siRNA, mRNA and gene editing).

In summary, we are rapidly acquiring a much deeper understanding of the challenges and 

opportunities presented by cancer nanomedicine. This Review has explored the importance 

of the convergence of nanotechnology and tumour biology for more successful development 

and clinical translation of nanotherapeutics. We expect that nanomedicines will shift the 

paradigm of cancer treatment, and that the true goal of cancer nanomedicine — dramatic 

improvement in patient survival — will become a reality in the foreseeable future.
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Glossary

Nanoparticle (NP)
Particle of any shape with dimensions in the 1–100 nm range, as defined by the International 

Union of Pure and Applied Chemistry (IUPAC). Despite this size restriction, the term 

nanoparticles commonly applies to structures that are up to several hundred nanometres in 

size, although key is that design of the nanostructure produces a unique function and 

property.

Enhanced permeability and retention (EPR) effect
The mechanism resulting from pathophysiological processes (for example, leaky tumour 

vasculature, poor lymphatic drainage and tumour microenvironment interactions) that leads 

to the accumulation and retention of nanoparticles or macromolecules in tumours.

Nano–bio interactions
The interactions between nanoparticles and biological systems (for example, serum proteins, 

extracellular matrix, cells and organelles) that determine the biological fates of 

nanoparticles, such as circulation half-life, biodistribution, tumour accumulation, tumour 

cell internalization and tumour microenvironment distribution.

Excipients
Substances other than the active pharmaceutical ingredient (API) that are included in the 

manufacturing process of a medication or are contained in a finished pharmaceutical product 

dosage form.
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Cmax

The maximum serum concentration that a drug or nanoparticle achieves after administration.

Area under the curve (AUC)
The area between the curve and the x-axis in a plot of drug or nanoparticle blood plasma 

concentration against time.

Payloads
The therapeutic or diagnostic agents carried by nanoparticles.

Opsonins
Plasma proteins (for example, immunoglobulins, complement proteins and fibrinogen) that 

coat a foreign particle to facilitate its uptake and destruction by phagocytic cells.

Mononuclear phagocyte system (MPS)
Part of the immune system composed of scavenging monocytes and macrophages, located in 

reticular connective tissue surrounding, for example, the liver, spleen, lung and bone 

marrow.

Nanomics
The collective study and characterization of the interactions between nanomaterials and 

biological systems.

Circulation half-life
The period required for drugs or nanoparticles in the blood to be reduced by one-half of a 

given concentration or amount.

Oncotic pressure
A form of osmotic pressure exerted by colloids in a solution, such as proteins in the plasma 

of a blood vessel.

Polydispersity
The heterogeneity of particle or molecule size in a mixture.
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Figure 1. Historical timeline of major developments in the field of cancer nanomedicine
EPR, enhanced permeability and retention; FDA, US Food and Drug Administration; nab, 

nanoparticle albumin bound; NP, nanoparticle; PLGA-PEG, poly(D,L-lactic-co-glycolic 

acid)-b poly(ethylene glycol); PRINT, particle replication in non wetting template; siRNA, 

small interfering RNA.
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Figure 2. The impact of nanoparticle properties on systemic delivery to tumours
Nanoparticles (NPs) can be made from different materials and have various physicochemical 

properties (for example, size, geometry, surface features, elasticity and stiffness, among 

others) and can be modified with a myriad of targeting ligands of different surface density 

(part a). NP properties affect the biological processes involved in the delivery to tumour 

tissues, including interactions with serum proteins (part b), blood circulation (part c), 

biodistribution (part d), extravasation to perivascular tumour microenvironment through the 

leaky tumour vessels and penetration within the tumour tissue (part e), and tumour cell 

targeting and intracellular trafficking (part f). NPs can also be designed to control the release 

profile of payloads (part g). ID, injected dose.
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Figure 3. Potential markers for predicting EPR effect and nanotherapeutic efficacy
a | Companion imaging agents (for example, ferumoxytol nanoparticle (NP)) have been 

applied to predict the accumulation of poly(D,L-lactic-co-glycolic acid)-b-poly(ethylene 

glycol) (PLGA-PEG) NP-encapsulated docetaxel and its anticancer activity in solid tumours, 

and ferumoxytol is currently in clinical trials to determine its feasibility as a predictive 

marker for the liposomal irinotecan MM-398. b | Therapeutic NPs labelled with imaging 

agents (for example, radioisotopes), also called theranostic NPs, have been used to monitor 

their biodistribution and tumour accumulation using various imaging techniques both 

preclinically and clinically. c | Serum and tissue biomarkers may also serve as surrogate 

markers for the enhanced permeability and retention (EPR) effect, as suggested by one 

recent example showing strong correlation of liposome accumulation in tumours with the 

relative ratio of matrix metalloproteinase 9 (MMP9) to tissue inhibitor of metalloproteinase 

1 (TIMP1) in the circulation.
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Figure 4. Nanoparticle targeting of the tumour microenvironment and the premetastatic niche
Targeting of the tumour vasculature or stromal cells in the tumour microenvironment (part a) 

and the premetastatic microenvironments such as the bone marrow niche, where induction of 

the osteogenic differentiation of mesenchymal stem cells enhances bone strength and 

volume (part b). Cell-specific targeting can be achieved via the modification of nanoparticles 

(NPs) with ligands that bind to specific receptors (for example, αvβ3 integrin and mannose 

receptor) on the surface of tumour endothelial cells, stromal cells or other target cells. It 

should be noted that even without targeting ligands, NPs can be engineered for preferential 

cellular uptake. The payloads released from NPs localized in tumours or premetastatic 

tissues can also be nonspecifically taken up by these cells.
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Table 2

In vivo examples of nanoparticle-mediated combination therapies for cancer treatment in mouse tumour 

models

Nanotechnology platform Active pharmaceutical ingredients Therapeutic mechanism Tumour model Refs

Organic NPs

Liposomes or lipid-based 
NPs

Irinotecan and cisplatin Combination of chemotherapies SCLC 274

Combretastatin and doxorubicin Combining anti-angiogenesis and 
chemotherapy

Melanoma 275

Doxorubicin and antisense 
oligonucleotides

Combination of chemotherapy and 
antisense therapy (targeting MRP1 
and BCL 2)

NSCLC 54

Vorinostat and siRNA Combination of chemotherapy and 
RNAi therapy (targeting MCL1)

Cervical cancer 276

Docetaxel and DNA Combination of chemotherapy and 
gene therapy using survivin 
suppressor

Hepatocellular carcinoma 277

siRNAs RNAi therapies against MDM2, 
MYC and VEGFA

NSCLC 278

Oligonucleotide G3139 and D-
(KLAKLAK)2 peptide

Combining antisense therapy 
(targeting BCL-2) and peptide-
enhancing apoptosis

Melanoma 279

Polymeric micelles or NPs Doxorubicin and paclitaxel Combination of chemotherapies NSCLC 280

Doxorubicin and disulfiram Combination of chemotherapy and 
anti-drug resistance

Drug-resistant breast cancer 281

Paclitaxel and siRNAs Combination of chemotherapy and 
RNAi therapy (targeting SNAIL 
and TWIST)

Breast cancer 282

Camptothecin and DNA Combination of chemotherapy and 
gene therapy using TRAIL 
encoded plasmid

Colon cancer 283

Paclitaxel and DNA Combination of chemotherapy and 
gene therapy using IL-12-encoded 
plasmid

Breast cancer 284

siRNAs RNAi therapies against VEGFA 
and BCL 2

Prostate cancer 285

Antisense oligonucleotides Antisense therapies against 
miRNAs miR 10b and miR 21

Triple-negative breast cancer 286

Lipid–polymer hybrid NPs Combretastatin and doxorubicin Combining anti-angiogenesis and 
chemotherapy

Melanoma and Lewis lung 
carcinoma

197

Cisplatin and siRNAs Combination of chemotherapy and 
RNAi therapy (targeting REV1 
and REV3L)

Prostate and breast cancer 287

Doxorubicin and siRNA Combination of chemotherapy and 
RNAi therapy against MRP1

Triple-negative breast cancer 288

Doxorubicin and TRAIL Combination of chemotherapy and 
cytokine-induced apoptosis

Breast cancer 289

TGFβ inhibitor SB505124 and IL-2 Enhancing tumour immunotherapy Melanoma 199

siRNAs and miRNA Combination of RNAi therapy 
(targeting MYC, MDM2 and 
VEGFA) and miR 34a induced 
apoptosis

Lung metastasis 166
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Nanotechnology platform Active pharmaceutical ingredients Therapeutic mechanism Tumour model Refs

Cisplatin and pyrolipid Combination of chemotherapy and 
photodynamic therapy

Head and neck cancer 290

Paclitaxel and yittrium-90 Combination of chemotherapy and 
radiotherapy

Ovarian intraperitoneal metastasis 291

Dendrimers Doxorubicin and DNA Combination of chemotherapy and 
gene therapy using TRAIL 
encoded plasmid

Liver cancer 292

Doxorubicin and CpG 
oligonucleotides

Combination of chemotherapy and 
immunotherapy

Prostate cancer 293

Inorganic NPs

Iron oxide NP Doxorubicin and curcumin Combination of chemotherapies Glioma 294

Graphene Doxorubicin and TRAIL Combination of chemotherapy and 
cytokine-induced apoptosis

NSCLC 44

Carbon nanotube siRNA Combination of hyperthermia and 
RNAi therapy

Prostate cancer 295

Gold nanorod Doxorubicin Combination of hyperthermia and 
chemotherapy

Cervical cancer 296

MoS2 nanosheet Doxorubicin Combination of hyperthermia and 
chemotherapy

Breast cancer 297

IL, interleukin; MCL1, myeloid cell leukaemia 1; MoS2, molybdenum sulfide; miRNA, microRNA; MRP1, multi drug resistance associated 

protein 1 (also known as ABCC1); NPs, nanoparticles; NSCLC, non small cell lung cancer; RNAi, RNA interference; SCLC, small cell lung 
cancer; siRNA, small interfering RNA; TGFβ, transforming growth factor-β; TRAIL, tumour necrosis factor (TNF) related apoptosis inducing 
ligand; VEGFA, vascular endothelial growth factor A.
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