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SUMMARY

Classification and regression tree (CART) analyses identify subsets of a sample that differ on an 

outcome. Discrimination of subsets is performed using recursive binary splitting on a set of 

covariates, allowing for interactions of variable subgroups not easily captured in standard model 

building techniques. Using CART with epidemiological data can be problematic as there is often a 

need to adjust for potential confounders and to account for time-varying covariates in the context 

of right-censored survival data. While CART variations exist individually for survival analysis, 

time-varying covariates and incorporating possible confounders, examples of CART using all three 

together are lacking. We propose a method to identify subsets of time-varying covariate risk 

factors that affect survival while adjusting for possible confounders. The technique is 

demonstrated on data from the Bypass Angioplasty Revascularization Investigation 2 Diabetes 

clinical trial to find combinations of modifiable time-varying cardiac risk factors (e.g. smoking 

status, blood pressure, lipid levels, and HbA1c level) that are associated with time-to-event clinical 

outcomes.

Keywords

CART; Survival Data; Time-Varying Covariates; Confounders; Tree-Based Partitioning; Forward-
Stepwise Algorithm

1. INTRODUCTION

Biological paradigms of disease progression involve multiple risk factors working in 

conjunction with one another. Yet, the analysis of epidemiological data often utilizes 

simplified statistical models to identify risk factors and to describe these complex biological 
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systems. Common models for survival data include Cox proportional hazards regression 

models and survival classification and regression trees (CART). The Cox model estimates 

the effect of covariates on the multiplicative variation of the unknown and unspecified 

baseline hazard and can incorporate time-varying covariates and adjustments for potential 

confounders. Forward selection algorithms are frequently used to build Cox models; 

however, they do not easily accommodate the detection of complicated interactions among 

covariates. Alternatively, CART analyses identify complex interactions of covariate 

subgroups based on the prognosis for the outcome. Variations of CART have been developed 

for survival data, time-varying covariates and potential confounding variables separately, but 

not for all three combined.

This work is motivated by Bypass Angioplasty Revascularization Investigation 2 Diabetes 

(BARI 2D)1, a randomized clinical trial including participants with both type 2 diabetes and 

coronary artery disease. Our goal was to analyze the effect of the non-randomized control 

status of seven modifiable cardiac risk factors (or combinations) on survival. The risk factors 

were measured repeatedly over the course of the trial, and we hypothesized that the effect of 

one factor on mortality depended on the level of other factors. As a result, in this paper we 

develop a tree-based survival model incorporating time-varying covariates and adjustments 

for potential confounding variables.

This paper is organized as follows. Section 2 introduces the BARI 2D trial. Section 3 

reviews existing methodologies and applies them to BARI 2D. Section 4 proposes a method 

for tree-based modeling with adjusted time-varying survival data and applies it to BARI 2D. 

We conclude with a discussion.

2. BARI 2D TRIAL

The BARI 2D randomized trial was to determine the optimal 5-year treatment plan for 

participants with type 2 diabetes and documented coronary artery disease 2–4. The trial had a 

2×2 factorial design to simultaneously randomize participants to 1) a cardiac treatment 

strategy comparing prompt revascularization versus medical therapy with as-needed 

revascularization, and 2) a diabetes treatment strategy comparing primarily insulin 

sensitizing versus insulin providing drug therapy. The trial started January 2001 and 

completed follow-up of the 2,368 participants in November 2008. There were a total of 316 

deaths with an overall survival of 88.0% at 5 years. The results showed no significant 

differences between either the cardiac strategies or the diabetes strategies on mortality1.

All participants in the BARI 2D trial had intensive medical therapy to control modifiable 

cardiac risk factors, including low density lipoproteins (LDL), non-high density lipoproteins 

(non-HDL), triglycerides (TG), blood pressure (systolic and diastolic, SBP and DBP 

respectively), hemoglobin A1c (HbA1c) and smoking status. As a secondary non-

randomized analysis, we aim to identify combinations of these risk factors that are 

associated with long-term survival. The risk factors, target goals, collection schedules and 

modeling notes are in Table 1. Ninety-five (95) percent of participant visits contained up-to-

date risk factor information at that visit. Visits with partial risk factor data were not included 
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the analysis. Participants who missed visits carried previous visit information forward up to 

15 months.

Cardiac risk factor status in the BARI 2D trial changed as the trial progressed. Table 2 shows 

the proportion of three-year survivors meeting the goals at baseline and years 1, 3 and 5. The 

significant jump between baseline and one year in the percentage of participants meeting the 

risk factor goals reflects the initiation of intensive medical therapy. After year 1, there was a 

significant continual improvement in the percentage of three year survivors meeting each 

risk factor goal with the exception of smoking status (baseline to one year improvement was 

maintained) and HbA1c (initial improvement eroded).

When modeling survival differences based upon risk factor status, potential confounding 

variables need to be identified. In BARI 2D, clinical experts determined the following 

confounding variables: baseline age, gender, race/ethnicity, randomization group, 

randomization strata, geographic region, and year of randomization.

3. REVIEW OF EXISTING METHODS AND THEIR APPLICATION

3.1 Cox Models

Cox proportional hazard models 5 and their many variations are commonly used in 

epidemiological literature to analyze time-to-event survival data. Descriptions can be found 

with varying degrees of statistical sophistication6–9.

The methods in this paper include both time-varying and non time-varying covariates. The 

time-varying covariates are modeled with the counting process formulation of the Cox 

model6, 9 and require specification of the time interval(s) on which each participant has 

constant risk factor data. This formulation allows discontinuous intervals of risk so 

participants can come in and out of the analysis corresponding to the time periods when they 

have measured data. Non time-varying covariates specify that the participant has constant 

risk factor data over the entire study. In the CART analyses below, the Cox regression uses 

either constant (baseline or year 1) or time-varying risk factor data, while the potential 

confounders are constant. It is straightforward to allow the confounders to be time-varying, 

but not needed in our application.

An initial time-varying Cox model analyzed the 2,265 participants (46,733 or 95% of clinic 

visits) who had all seven risk factors up-to-date at any visit (103 participants did not have all 

seven risk factors for any visit). The effect of in-control (IC) cardiac risk factors, compared 

to not-in-control (NIC), on survival with time-varying risk factor status was estimated in 

SAS 9.3 with PROC PHREG. A forward stepwise selection algorithm, which forced the 

confounding variables into all models, was used to determine the set of significant risk 

factors. Table 3 contains the results, with non-HDL and smoking status risk factors retaining 

significance. A backward stepwise selection algorithm resulted in the same final model. The 

interaction between the significant main effects was not significant. Given the aim to 

identify complex combinations of subgroups of risk factors related to survival, the CART 

modeling techniques were next explored.
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3.2 Survival CART models

CART techniques have been utilized in numerous epidemiological and public health 

fields10–14 and are described elsewhere 15, 16. CART analyses create subgroups based on 

complex combinations of covariate values that are related to an outcome (discrete or 

continuous). The popularity of CART began with the seminal work by Breiman et al. in 

198415. CART for survival data was introduced in 198517, with subsequent 

modifications18, 19. CART starts by splitting the participants into two subgroups (or nodes) 

that maximize the between node separation (for example, the largest difference between the 

two node survival curves). This continues recursively as each subsequent node is split into 

subgroups in the same fashion. CART has four distinct components19: 1) Questions, 2) 

Splits, 3) Size, and 4) Summary.

Questions—Determine the questions that will split participants. A CART analysis with 

survival data will split participants from a node by asking a yes/no question based on the 

outcome measure and the covariates of interest (for example, is there a difference in survival 

between participants whose baseline non-HDL is in-control versus baseline non-HDL is not-

in-control?). Inclusion or exclusion from a given category (e.g. non-HDL in control) creates 

two participant subgroups representing a potential split.

Splits—Define a goodness-of-split criterion to compare the potential splits. In survival 

CART, the two subgroups of each potential split have been compared using the non-

parametric log-rank statistic 19, 20 and likelihood approaches 20. Test statistics within Cox 

models have been used as a semi-parametric method that allows for the adjustment of 

covariates 13. A given node will likely have a number of potential splits (for example, 

splitting on the control status of non-HDL or TG or HbA1c). The potential split with the 

largest between node separations (for example, the largest χ2 statistic in a Cox model) 

becomes the next split. Once a node is split into two leaves, the data from each leaf is split 

independently in a recursive fashion. This recursive binary partitioning has a one-to-one 

correspondence to a tree, see Figure 1.

Size—Pre-specify when to stop growing a tree and the final tree construction. Examples 

include splitting nodes if there are any effect differences larger than a pre-specified 

threshold, any test statistics larger than a given number, splitting until a certain number of 

subgroups have been identified, or restrictions on the size of terminal nodes12.

Summary—Provide statistical summaries for the final conclusion. Once a tree is compete, 

then summaries of that tree, or across many competing trees will be used to make 

conclusions. In public health literature, the terminal nodes of the tree are used in regression 

models for direct comparison of the groups10, 21, 22.

BARI 2D Example: For the BARI 2D example, the split step takes into account the non-

randomized comparison for the study by adjusting for potential confounding variables. 

Schmoor et al.13 used the Cox model with CART to adjust the treatment effect based upon 

prognostic subgroups. The example below uses an adjusted Cox model to determine which 

split creates the most disparate subgroups with respect to mortality.
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An initial survival tree adjusted for potential confounders was created to identify the 

baseline risk factor profiles relating to survival in BARI 2D. The baseline risk factor profiles 

reflect the participant’s health status prior to entering the trial. In the CART analysis, the 

questions were the control status of the various baseline risk factors; the split criteria was the 

baseline risk factor that had the largest χ2 statistic in a Cox model including the 

confounding variables. The tree grew until there were no splits with a chi-square statistic of 

2.0 or larger and then was pruned back to splits that had a chi-square statistic of 3.0 or larger. 

To summarize the tree, a final Cox model was run with the terminal node subgroups and the 

adjustment variables for direct comparison of all groups. The baseline risk factor tree is in 

Figure 2, where the intermediate nodes are represented with ovals and contain the number of 

participants in the node, the risk factor that will split that node and the test statistic and 

associated p-value of the comparison of the two branches of the node. The lines connecting 

the nodes contain the risk factor status of the previous node and the hazard ratios that were 

compared to determine the split. The terminal nodes are rectangles containing the number of 

people in the node and the hazard ratio from the resulting Cox model containing all of the 

terminal nodes and adjustment variables. Two baseline risk factors produced three terminal 

nodes based on TG and smoking status.

Similarly, an initial survival tree adjusted for potential confounders was created to identify 

the Year 1 risk factor profiles relating to survival in BARI 2D. The year 1 risk profile status 

reflects the participant’s health status after one year of intensive medical therapy. Table 2 

demonstrated a jump between baseline and year 1 risk factor control for 6 of the 7 risk 

factors which may correspond to a different set of risk factors being associated with survival. 

In this CART analysis, the questions were the control status of the various year 1 risk 

factors, with splits, size and summary the same as the baseline risk factor table. In Figure 3, 

the tree based upon the year one risk factors contains six terminal nodes. The baseline tree 

(including TG and smoking status) can be seen embedded within the year 1 tree as the two 

nodes after the primary split of the non-HDL risk factor. The other risk factors identified in 

the tree to make subgroups included HbA1c, and the combination of NIC SBP and NIC 

DBP.

4 TIME-VARYING COX MODELS WITHIN CART

4.1 Tree-Based Algorithm for Survival Data with Time-Varying Covariates

The main obstacle to implementing time-varying covariates in the CART algorithm is 

splitting the data into nodes. The CART analysis defined thus far splits participants into the 

nodes. When incorporating time-varying covariates, the path the participant takes in the tree 

depends on the status of the risk factors at a given point in time. To develop the tree-based 

algorithm with time-varying covariates, we use a time varying Cox model and split 

participant visits.

Questions (Time-Vary)—The questions still regard survival experience given various risk 

factor control status, but now it allows the risk factor control status to be time-varying 

(previous examples used baseline or year 1 risk factor status).
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Splits (Time-Vary)—Split the participant visits into nodes; the counting process derivation 

of the time-varying Cox model allows discontinuous time intervals. This allows a participant 

to be in one node during some time intervals and in another node during different time 

intervals. The risk factor with the largest test statistic within the adjusted time-varying Cox 

model is the next split.

The time-varying Cox model can be used with CART in two different ways. Similar to 

existing CART methods, the time-varying Cox model can be run recursively within each 

node separately using only the data from the participants while they are in that node. The 

second way is to use a forward stepwise splitting procedure which incorporates all of the 
data when determining the next split. These two methods are explored next using the BARI 

2D Example.

BARI 2D Example - Recursive Splitting: The first node of the tree is determined by 

identifying the risk factor (RFi, i=1, …, p) that maximizes the chi-square statistic 

corresponding to the test of H0: βRFi=0 vs. Ha: βRFi ≠ 0 in the Cox model

(1)

where ZRFi(t) are indicator variables for individual risk factors as described in Table 1 and 

the X variables are the confounding variables. Suppose that non-HDL control status has the 

largest chi-square statistic and is the first node in the tree (see Figure 4, step 1). Two leaves 

are created corresponding to the IC (R11(t)) and NIC (R12(t)) non-HDL status.

To determine the second split, compare all the potential splits to determine which has the 

highest χ2 statistic. Using only the visits in the R11(t) node, use an adjusted Cox model to 

obtain the χ2 statistics corresponding to a split of the R11(t) node. One potential split 

corresponds to the smoking status, which would create the tree on the left panel of Step 2 in 

Figure 4. An analogous potential split using only the nodes from R12(t) is shown in the right 

panel of Step 2 in Figure 4. All potential next splits are then compared and the split with the 

maximum chi-square statistic becomes the next split. This is continued recursively until no 

more splits meet the size criteria. The final tree is in Figure 5. In addition to non-HDL and 

smoking status, the final tree also includes SBP IC and DBP NIC, along with TG >= 400.

This method has the advantage of following the CART methodology in keeping the split 

decision as a local criteria, using only the data from the node to determine its split, allowing 

for time-varying covariates within CART and adjusting for potential confounding variables. 

A potential disadvantage is that it allows for different effects of the confounding variables at 

each step. Trees in epidemiological literature are often summarized by including the final 

prognostic subgroups in one adjusted Cox model for direct comparison of subgroup hazard 

ratios. Allowing different effects of confounding variables at each step of the creation of the 

tree may create subgroups that are not as disparate when the effects of the confounding 

variables are forced to be common in the final summary.
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BARI 2D Example - Forward Stepwise Splitting: An alternative to the recursive splitting 

of the participant visit data is to utilize a forward stepwise splitting method. This method 

retains all prognostic subgroups in the model when determining the next split and is a 

restricted forward stepwise model selection.

The first node of the tree is determined similar to the recursive splitting algorithm, by 

identifying the risk factor (RFi, i=1, …, p) that maximizes the χ2 statistic corresponding to 

the test H0: βRFi=0 vs. Ha: βRFi ≠ 0 in the Cox model in Equation 1.

To determine the second split, create subgroups that represent splits on the tree and use an 

adjusted Cox model to obtain the χ2 statistics corresponding to each potential split. For 

example, below is the model to determine the χ2 statistic on the left panel of step 2 in Figure 

4 which includes indicator variables for each potential subgroup along with the adjustment 

variables:

The χ2 statistic associated with the test H0: βR121=βR122 vs. Ha: βR121≠ βR122 would be 

compared across all potential risk factor splits. A potential split of the R112(t) node is shown 

in the right panel of Step 2 in Figure 4. All potential next splits are then compared and the 

split with the maximum χ2 statistic testing the equality of the hazard ratio of the two newly 

created nodes becomes the next split. This is continued until no more splits meet the size 

criteria. The final tree is in Figure 6. Note that the final result is very similar to the recursive 

splitting method in Figure 5, with one additional split of smoking status.

This method has the advantage of allowing for time-varying covariates within CART, 

adjusting for potential confounding variables and consistency between the tree building and 

the summary with regards to the confounding variable effects. A disadvantage is that it is 

more complicated to program into software packages.

4.2 Model Validation

Training and testing sets are often used in non-survival CART analyses to compute 

misclassification rates or mean squared errors for validation of the model. In the non-

adjusted non-time-varying survival setting23, the survival curve for each terminal node can 

be estimated based on the model from the training set. Then a Kaplan –Meier curve can be 

used to estimate the survival curves of the terminal nodes using the testing set. The predicted 

versus observed survival curves can be tested with a log-rank statistic. It is not clear how to 

extend this type of validation to survival CART with adjustment and time-varying covariates.

Instead of training and testing sets, we validated the model by estimating a time-varying Cox 

model that forced the main effects and pair wise interactions of all the risk factors. Pair wise 

interactions with a p-value of > 0.05 were removed using a backward stepwise algorithm. 

All non-significant risk factor main effects were removed so long as they were not in any 

interaction terms. This model retained Non-HDL IC, Smoking IC, (SPB IC and DBP NIC) 

and an interaction between Non-HDL IC and (SBP IC and DBP NIC). Note this is a very 

Bertolet et al. Page 7

Stat Methods Med Res. Author manuscript; available in PMC 2017 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



similar model to Figures 6 and 7. Figure 6 contains smoking status on both sides of the 

original Non-HDL split, indicting possible main effect status in the model. In the CART 

analysis, SBP IC/DBP NIC was the strongest risk factor in the non-HDL NIC branch, and 

was not present in the Non-HDL IC branch, indicating an interaction. This model had an 

AIC of 4020.8 and a BIC of 3948.5.

For the CART model in Figure 6, the AIC is 4023.4 and the BIC is 3947.5, slightly worse 

than the backward stepwise model using 0.10 as p-to-enter and p-to-stay using AIC, but 

slightly better from the same model using BIC.

4.3 Variations of this model

As with any tree-based method, there are many variations to be decided upon on a case-by-

case basis. In split steps above, the subgroups were divided based upon the size of the test 

statistics or p-value comparing the equality of hazards in the newly created groups. This is a 

local decision as it is determined primarily by the data in the subgroup being split and 

follows the spirit of CART analyses to identify disparate groups. An alternate local criterion 

could be to predefine a minimally significant difference between the groups.

Alternatively, a more global model fitting criteria could be used such as BIC. If the group 

being split does not contain many participant visits, the resulting subgroups may have 

significantly different hazards but may not improve the model enough to improve the overall 

BIC. Other global criteria have involved penalties for misclassification and these can be 

incorporated into the proposed algorithm.

The CART literature is full of methods on final tree construction, including growing and 

pruning15, bagging24, boosting25–27, cross validation28, random forests12 and others. These 

concepts could be used with the method proposed in this paper; however the programming 

complexities of each method have not been explored here.

There is no reason to restrict the analysis specifically to the Cox model. The forward 

stepwise splitting method can be used with any model, including generalized linear models 

or generalized estimating equations.

5. DISCUSSION

The proposed algorithm incorporates the complex subgroups of a CART analysis and the 

flexibility of a time-varying Cox analysis for the evaluation of time-varying survival data. As 

such, the algorithm has all the strengths and weaknesses of both CART and greedy step-wise 

modeling techniques. The strengths include finding complex subsets of the data that affect 

the outcome, an intuitive way to add the variables by order of significance and clinicians are 

familiar with the concept of greedy algorithms. Weaknesses of CART methods are 

summarized elsewhere16 and include the handling of missing values, instability of trees due 

to overfitting, lack of smoothness and difficulty in capturing additive structures. Literature 

on the weaknesses of greedy algorithms is vast and a sample is included in the 

references29–33, including overstating the significance of the results and not optimizing a 

reasonable criterion function. The method proposed here should be used as an exploratory 
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tool as the results are specific to the dataset and need external validation with independent 

data before they can inform policy.

In the BARI 2D example, there are a number of interesting findings. The standard time-

varying Cox analysis in section 3.1 indicated that non-HDL and smoking were the two 

significant risk factors. The adjusted survival CART based on baseline risk factor status in 

section 3.4 indicated that triglycerides and smoking status were significant factors. The 

adjusted survival CART based upon the year one risk factor status was comparatively large. 

There are a number of potential reasons for the baseline and year 1 differences. The larger 

tree at year 1 could reflect the participant’s biological transitions from the improvements in 

risk factor control status from entering the clinical trial. The lag time between risk factor 

control and clinical prognosis is not known. The size of the tree could also represent the 

heterogeneity of timing for an individual to reach in-control status, for example one 

participant could have reached control on day 2 while another could have reached control on 

day 364. It is also possible that the year 1 risk factor tree is over-fitting the data and finding 

too many significant splits. The standard CART methods to combat over-fitting could be 

applied to investigate this.

The final time-varying trees (both the recursive and forward stepwise splitting) have 

similarities to all of the preliminary analyses, especially with the inclusion of smoking status 

and triglycerides >=400. Non-HDL status was not included in the baseline risk factor tree, 

but was the primary split in both the year 1 and time-varying tree. The one year risk factor 

tree and the time-varying tree both contain a blood pressure risk factor, with the one year 

risk factor tree contain both SBP NIC and DBP NIC and the time varying tree indicating a 

low pulse pressure with SPB IC and DBP NIC. Finally, the year 1 tree is the only one that 

includes HbA1c as a risk factor.

There are many interesting extensions to this research that are conceptually possible, but 

computationally challenging. For example, with the BARI 2D data, there may be a possible 

lag time between the changes in risk factor status and the resulting effect on the outcome. 

This timing may differ for each risk factor and for each participant. A time lag could be 

incorporated into the Cox model to investigate the length of the lag and the homogeneity of 

lag times across risk factors. The analysis was described for categorical risk factor 

covariates. This can be extended to continuous risk factor covariates, though the computing 

is expected to be tedious. Finally, an interesting extension would be to include random 

effects in the Cox model to investigate heterogeneity across people with common risk factor 

profiles and confounding variables.
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Figure 1. 
Recursive Binary Partition and Corresponding Tree

Bertolet et al. Page 12

Stat Methods Med Res. Author manuscript; available in PMC 2017 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Survival Tree based upon Baseline Risk Factor Status

*restricted to patients who have all 7 risk factors measured at baselines
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Figure 3. 
Survival Tree based upon Year 1 Risk Factor Status
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Figure 4. 
First Split and Candidate Trees for the Second Split in the BARI 2D Data
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Figure 5. 
Adjusted Time-Varying Survival CART: Recursive Splitting for BARI 2D Risk Factor Data
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Figure 6. 
Adjusted Time-Varying Survival CART: Forward Stepwise Splitting for BARI 2D Risk 

Factor Data
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Table 1

Cardiac Risk Factors in BARI 2D

Risk Factor Goal1 Collection Schedule Parameterization

LDL <100 mg/dL Baseline, 6 months, 1 year and annually thereafter Indicator variables model three groups; 
LDL<100, LDL>100 and LDL not computed as 
Triglycerides > 400

Non-HDL <130 mg/dL Indicator variable indicating in-control status

Triglycerides <150 mg/dL Indicator variable indicating in-control Status

Blood Pressure SBP <130 mmHg
DBP <80 mmHg

Baseline, monthly for the first 6 months, and 
quarterly thereafter

Indicator variables modeled 4 in- vs. out-of 
control groups due to high correlations

HbA1c <7.0% Baseline, 1 month, 3 months, 6 months and semi-
annually thereafter

Indicator variable indicating in-control status

Smoking Non-smoker Baseline and annually thereafter Indicator variable indicating in-control status

1
From the American College of Cardiology and/or the American Diabetes Association
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Table 3

Results from time-varying risk factor Cox model for survival

Risk Factor Hazard Ratio p-value

Non-HDL in Control (reference = Non-HDL out of control) 0.61 0.0002

Non-Smoker (reference = current smoker) 0.63 0.0240

Non-HDL in control, Non-Smoker interaction Not-significant and removed from the model

Adjusted for age of the participant at baseline, gender, race/ethnicity, randomization group, selected type of initial elective revascularization 
(surgical or catheter-based), geographic region, and year of randomization.
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