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Abstract
Moderate-to-severe fatigue occurs in up to 94% of oncology patients undergoing active treatment. Current interventions for
fatigue are not efficacious. A major impediment to the development of effective treatments is a lack of understanding of the
fundamental mechanisms underlying fatigue. In the current study, differences in phenotypic characteristics and gene expression
profiles were evaluated in a sample of breast cancer patients undergoing chemotherapy (CTX) who reported low (n ¼ 19) and
high (n ¼ 25) levels of evening fatigue. Compared to the low group, patients in the high evening fatigue group reported lower
functional status scores, higher comorbidity scores, and fewer prior cancer treatments. One gene was identified as upregulated
and 11 as downregulated in the high evening fatigue group. Gene set analysis found 24 downregulated and 94 simultaneously up-
and downregulated pathways between the two fatigue groups. Transcript origin analysis found that differential expression (DE)
originated primarily from monocytes and dendritic cell types. Query of public data sources found 18 gene expression experiments
with similar DE profiles. Our analyses revealed that inflammation, neurotransmitter regulation, and energy metabolism are likely
mechanisms associated with evening fatigue severity; that CTX may contribute to fatigue seen in oncology patients; and that the
patterns of gene expression may be shared with other models of fatigue (e.g., physical exercise and pathogen-induced sickness
behavior). These results suggest that the mechanisms that underlie fatigue in oncology patients are multifactorial.
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In women undergoing chemotherapy (CTX) for breast cancer,

prevalence rates for fatigue range from 30% to 94% (Alcantara-

Silva, Freitas-Junior, Freitas, & Machado, 2013; Berger, Ger-

ber, & Mayer, 2012). The severity of fatigue varies over the

course of a day and displays marked interindividual variability

(Dhruva et al., 2010; B. A. Fletcher et al., 2009; Miaskowski

et al., 2008; Molassiotis & Chan, 2004). Some of this interin-

dividual variability is explained by the fact that morning and

evening fatigue are distinct but related symptoms (Dhruva

et al., 2010, 2013; Miaskowski et al., 2008). Of note, morning

and evening fatigue are distinguished by different phenotypic

and genotypic characteristics. For example, in one study, a

higher number of comorbid conditions was associated with

more severe morning fatigue, whereas caring for children at

home was associated with more severe evening fatigue

(Dhruva et al., 2010). In other studies, variations in interleukin

(IL) 8 and tumor necrosis factor a (TNFA) were associated with

the severity of morning fatigue, whereas variations in IL 1

receptor 2 (IL1R2), IL4, IL6, and TNFA were associated with

the severity of evening fatigue (Aouizerat et al., 2009; Dhruva

et al., 2015; Miaskowski et al., 2010). A better understanding of
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the unique phenotypic and molecular characteristics associated

with morning and evening fatigue would provide the means to

identify high-risk patients and to develop and test interventions

for these devastating symptoms.

Difficulties in the diagnosis and treatment of fatigue are

related to our lack of understanding of the fundamental

mechanisms that underlie this debilitating symptom. Work by

our group (Aouizerat et al., 2009; Miaskowski et al., 2010) and

others (Bower et al., 2009, 2013; Collado-Hidalgo, Bower,

Ganz, Irwin, & Cole, 2008; Reinertsen et al., 2011) suggests

that inflammation plays a role in the development of fatigue.

However, while it is safe to say that the mechanisms for fatigue

are multifactorial (Ryan et al., 2007), the causative pathways

remain to be identified. One approach for identifying additional

mechanism(s) for fatigue is to evaluate for changes in gene

expression associated with this symptom.

To date, only six studies, in four independent samples, have

evaluated for differences in gene expression associated with

fatigue in oncology patients (Bower, Ganz, Irwin, Arevalo, &

Cole, 2011; Hsiao, Araneta, Wang, & Saligan, 2013; Hsiao,

Wang, Kaushal, & Saligan, 2013; Landmark-Hoyvik et al.,

2009; Light et al., 2013; Saligan et al., 2013). One study eval-

uated changes in gene expression in pathways solely involved

in mitochondrial function (Hsiao, Wang, et al., 2013). In

another study (Light et al., 2013), researchers evaluated gene

expression for a number of specific pathways (e.g., adrenergic,

monoamine, and peptides). Of the four studies that collected

whole-transcriptome measurements, three focused on select

genes and pathways related to mitochondrial function (Hsiao,

Wang, et al., 2013) and/or inflammation and immune function

(Bower et al., 2011; Hsiao, Araneta, et al., 2013; Saligan et al.,

2013). Only one study reported findings on the whole transcrip-

tome (Landmark-Hoyvik et al., 2009). In all six studies, inves-

tigators used a general measure of fatigue and did not evaluate

diurnal variability in fatigue. Additional studies are needed that

apply hypothesis-generating approaches utilizing the entire

transcriptome in order to identify novel pathways and pro-

cesses associated with fatigue in oncology patients. Based on

previous work on diurnal variations in fatigue (Aouizerat et al.,

2009; Dhruva et al., 2013; Miaskowski et al., 2010), we believe

that an evaluation of one dimension of fatigue (i.e., evening

fatigue) may improve our ability to detect differences in gene

expression between patients who do and do not experience

fatigue.

In the present study, we evaluated for differences in gene

expression in peripheral leukocytes of patients with low and

high levels of evening fatigue. Though researchers continue to

debate the role of central versus peripheral mechanisms in the

development and maintenance of fatigue (Yavuzsen et al.,

2009), it is the case that peripheral changes in the expression

of pro-inflammatory cytokine genes can influence neural and

endocrine activity (Dantzer, O’Connor, Freund, Johnson, &

Kelley, 2008) and contribute to a reciprocal regulation between

the neural and innate immune systems termed the ‘‘neuro-

immune circuit’’ (Irwin & Cole, 2011). This neuro-immune

circuit originates with the innate immune system (Cole,

Hawkley, Arevalo, & Cacioppo, 2011; Powell, Mays, Bailey,

Hanke, & Sheridan, 2011). Pro-inflammatory cytokines can

cross the blood–brain barrier (Quan & Banks, 2007). In addi-

tion, increased synthesis of cytokines in the brain can occur in

response to peripheral input. Therefore, studies of gene expres-

sion from peripheral leukocytes can provide valuable informa-

tion on fatigue.

Evaluation of the parallel expression measures of a genome

(e.g., the transcriptome) will increase our understanding of the

functions of various genes as well as their contributions to the

biology of an organism (Butte, 2002). Moreover, novel statis-

tical approaches permit the identification of differential gene

expression patterns at the level of a gene, a biological pathway,

and the entire transcriptome. The aim of this study was to use

high throughput methods to determine whether there were

changes in gene expression in peripheral leukocytes associated

with high and low levels of evening fatigue in a sample of

patients undergoing CTX for breast cancer (N ¼ 44). The ana-

lytic methods we employed in this study included the use of

microarray data to identify genes and pathways associated with

evening fatigue, the use of bioinformatic analyses to infer the

cellular origin for the differences in gene expression detected in

peripheral leukocytes, and an interrogation of publicly avail-

able transcriptome gene expression experiments that share a

similar pattern with the gene expression differences identified

in our sample.

Method

Online Supplement 1 contains a detailed description of the

methods.

Patients and Settings

For this longitudinal study, we enrolled patients who were

�18 years of age; had a diagnosis of breast, gastrointestinal,

gynecological, or lung cancer; had received CTX within the

preceding 4 weeks; were scheduled to receive at least two

additional cycles of CTX; were able to read, write, and under-

stand English; and gave written informed consent. We

recruited patients from two comprehensive cancer centers, one

Veteran’s Affairs hospital, one public hospital, and four

community-based oncology practices and included the first

44 eligible patients with breast cancer.

Instruments

We used a demographic questionnaire to obtain information on

age, gender, ethnicity, marital status, living arrangements, edu-

cation, employment status, and income. To evaluate patients’

functional status, we used the Karnofsky Performance Status

(KPS) scale (Karnofsky, Abelmann, Craver, & Burchenal,

1948). We used the Self-administered Comorbidity Question-

naire (SCQ) to evaluate the occurrence, treatment, and func-

tional impact of common comorbid conditions (e.g., diabetes,

arthritis; Sangha, Stucki, Liang, Fossel, & Katz, 2003).
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Finally, to assess physical fatigue, we used the 13-item Lee

Fatigue Scale (LFS; K. A. Lee, Hicks, & Nino-Murcia, 1991).

The 13 items on the LFS ask respondents to rate various aspects

of fatigue on a 100-mm visual analogue line, with endpoints

labeled as 0 and 10. We calculated a total mean fatigue score,

with higher scores indicating greater fatigue severity. Patients

rated each item based on how they felt prior to going to bed

each night over the previous week (i.e., evening fatigue). The

LFS has well-established validity and reliability. A score of

>5.6 indicates a clinically meaningful level of evening fatigue

(B. S. Fletcher et al., 2008). From the first 50 patients with

breast cancer enrolled in the parent study, we selected data

from a subset of 44 patients, which provided the largest number

of patients each for the low (LFS score < 5.6 and n ¼ 19) and

high (LFS score � 5.6 and n ¼ 25) evening fatigue groups.

Study Procedures

The Committee on Human Research at the University of Cali-

fornia, San Francisco (UCSF) and committees at each of the

study sites approved the study. A research staff member

approached patients who had received at least one cycle of

CTX in the infusion unit to discuss participation in the study.

All participants signed written informed consent. Patients com-

pleted study questionnaires in their homes a total of 6 times

over two cycles of CTX (e.g., prior to the next CTX adminis-

tration [enrollment], approximately 1 week after CTX admin-

istration, and approximately 2 weeks after CTX administration,

depending on the length of their CTX cycles). We used mean

evening fatigue scores at the time of enrolment for the analyses

in the present study. In addition to the questionnaires, we

reviewed participants’ medical records for disease and treat-

ment information.

Gene-Expression Measurements

Sample processing. Total ribonucleic acid (RNA) was extracted

from whole blood collected into PAXgene RNA stabilization

tubes and processed using a standard protocol (Qiagen, USA).

The blood specimen was collected prior to administration of

CTX. RNA concentration was measured by NanoDrop ultra-

violet spectrophotometry (ThermoScientific, USA). RNA

integrity was evaluated using the RNA 6000 Nano assay (Agi-

lent, USA). All RNA samples were determined to be of good

quality (i.e., RNA integrity number � 8) and were retained for

gene-expression profiling.

Microarray hybridization. For each sample, approximately 100 ng

of total RNA was labeled using the Illumina Total Prep RNA

Amplification Kit (Ambion, Foster City, CA, USA) and then

hybridized to the HumanHT-12 v4.0 Expression BeadChip

(47,214 transcripts; Illumina, San Diego, CA, USA). The Bead-

Chips were scanned using the iScan system (Illumina, USA) at

the UCSF Genomics Core Facility. Each HumanHT-12 Bead-

Chip contains 12 sample BeadArrays. A total of 47 samples

were measured (i.e., 44 patient specimens and 3 technical

replicates). To assess for between-BeadChip variation, one

sample was repeated on each of the four BeadChips at a dif-

ferent physical BeadArray position.

Microarray preprocessing and normalization. Summary-level data

from the uncorrected, nonnormalized, and nontransformed

summary intensities at the probe level were calculated. Data

preparation and analyses were conducted using two well-

established protocols (Gentleman et al., 2004; Luo, Friedman,

Shedden, Hankenson, & Woolf, 2009). The quality control

procedures and associated results are described in detail in

Online Supplement 1 and summarized in Supplemental Figure

S1 . None of the samples displayed unusual distance between

arrays or array signal intensity distributions. Background cor-

rection, quantile normalization, and log2 transformation were

performed using limma (Smyth, 2005). Probes with insufficient

expression measurements were excluded, leaving 34,267

assays spanning 16,980 genes for analysis (Online Supplement

2, Supplemental Figure S1, panel B). The reliability of the

expression measurements was supported by a high level of

correlation between quadruplicate arrays across all filtered

assays (mean pairwise Pearson’s r ¼ .95). These values were

significantly higher than those observed between all samples

(mean pairwise Pearson’s r ¼ .92, Welch two sample t-test

p < 1.31 � 10�12). Finally, potential clustering of samples was

evaluated by principal components analysis. No obvious clus-

tering by fatigue group was observed (data not shown) and no

adjustment for batch effects was warranted.

Data Analyses

Demographic and clinical data. Demographic and clinical data

were analyzed using SPSS version 22 (IBM, Armonk, NY) and

Stata version 13.0 (StataCorp, College Station, TX). Descrip-

tive statistics and frequency distributions were calculated for

demographic and clinical characteristics as well as for fatigue

severity. The two evening-fatigue groups were defined using a

score of 5.6 on the LFS, which is the cut-off score indicating

clinically meaningful fatigue, with scores < 5.6 indicating low

evening fatigue (n ¼ 19) and scores � 5.6 indicating high

evening fatigue (n ¼ 25). Independent sample t-tests, Mann-

Whitney U tests, w2 tests, and Fisher’s exact tests were used to

evaluate for differences in demographic and clinical character-

istics between the two evening-fatigue groups. Effect size was

calculated using Cohen’s d statistic (Cohen, 1988).

Differential gene expression. Differential expression (DE) of

genes can offer insights into the biological processes that influ-

ence interindividual variability in evening fatigue. Although

numerous approaches are used to identify between-group dif-

ferences in DE (Jeanmougin et al., 2010), we selected two well-

known methods, namely, the t-test using GenePattern and an

estimation of gene-by-gene variance with limma (Figure 1,

blue outline).

Unsupervised clustering was used to evaluate the resolution

of the two evening-fatigue groups by the DE genes identified
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using limma and GenePattern. Evening-fatigue group member-

ship was then mapped onto the samples to visualize the degree

to which the DE genes distinguished between patients with

high versus low levels of evening fatigue (Figure 1, blue

outline).

Differential pathway perturbation. Since pathway analysis is per-

formed at the level of the gene, a summary signal estimate of

expression was calculated from all valid probes spanning each

gene (Reimers, 2010). Summary signal intensities were

obtained for 16,980 genes. Differential pathway perturbation

was performed using competitive analysis with the R package

gageData ((Release 3.2) generally applicable gene set enrich-

ment; Luo et al., 2009).By excluding genes with insufficient

background expression levels and utilizing a whole-genome

gene-expression microarray, we minimized the impact of

known limitations and spurious results associated with compet-

itive approaches (Figure 1, purple outline; Tripathi, Glazko, &

Emmert-Streib, 2013).

Pathways and gene sets were defined using the 177 Kyoto

Encyclopedia of Genes (KEGG; Aoki-Kinoshita & Kanehisa,

2007), 259 BioCarta (Nishimura, 2001), and 17,202 gene
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(blue outline), differential expression profiling (orange outline), pathway analysis (purple outline), transcript origin analysis (red outline), and
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ontology (GO; Harris et al., 2004) annotated sets provided by

the gageData R package. Pathways model the complex inter-

actions between genes in a biological setting and are not

expected to be solely simultaneously all up- (or down-) regu-

lated. Rather, perturbations are more likely to consist of a

mixture of up- and downregulation. As such, we tested for

differential perturbations under three models: upregulation,

downregulation, and both (simultaneous up/down or ‘‘2-D’’).

While all of the genes in each pathway were included in this

analysis, only a subset of these genes had discernible expres-

sion changes above background (termed ‘‘essential contribut-

ing [EC] genes’’).

Transcript origin analysis (TOA). Peripheral blood contains a het-

erogeneous population of nucleated immune cells (e.g., B cells,

CD4þ T cells, CD8þ T cells, dendritic cells, monocytes, and

natural killer [NK] cells). Each cell type is involved in unique

biological processes and expresses different subsets of genes

(i.e., genes involved in different biological pathways). In order

to identify the cell type(s) of origin for genes and/or pathways

that were significantly DE between the high- and low-evening-

fatigue groups, we used the TOA test (Figure 1, red outline), as

described by Cole, Hawkley, Arevalo, and Cacioppo (2011),

using Python. Our implementation was diagnostic for B cells,

CD4þ T cells, dendritic cells, monocytes, and NK cells (Sup-

plemental Table S1). We were not able to sufficiently validate

for diagnosticity of CD8þ T cells and consider any results that

identified this class of cells as unreliable.

Objective query of publicly available transcriptome experiments. To

better categorize and understand the biological significance of

the molecular signatures associated with evening fatigue, we

employed a data-driven approach to leverage the collection of

over 1,800 data sets available in the National Center for Bio-

technology Information Gene Expression Omnibus (GEO) and

to identify curated data sets with similar DE patterns (Figure 1,

orange outline). Specifically, we employed ProfileChaser

(Engreitz et al., 2010; http://profilechaser.stanford.edu/) to

identify DE profiles that existed in GEO similar to the ones

that we identified between the low- and high-evening-fatigue

groups.

Two independent reviewers curated the abstracts for each

published study from the candidate profiles with similar DE

patterns for conceptual relevance to evening fatigue. If either

reviewer selected an abstract for consideration, it was included

for further evaluation. Then, the factor comparison identified

by ProfileChaser was evaluated in order to exclude uninterpre-

table comparisons. While a large number of significant hits

were expected, false positives needed to be identified and

culled (Engreitz et al., 2010). As hypothesized, many of the

significantly similar profiles were not appropriate for our study

due to the content-agnostic fashion (i.e., no pairwise compar-

isons are excluded) in which the universe of target profiles

were generated (e.g., a ‘‘sample ID’’ factor that splits samples

based on the individual ID of samples) or were not easily

interpretable in the context of our current study (e.g., a factor

splitting sample based on expression at different time points of

a yeast colony’s development). Manuscripts from profile

matches for all studies of interest to either reviewer (K. M. K

and B. E. A) were retained. From this list, we collected and

reviewed the full manuscripts and supplemental materials.

Results

Patient Characteristics

The total sample consisted of 44 women undergoing CTX for

breast cancer. As shown in Table 1, the majority of the patients

were college graduates and Caucasian with a mean age of 56.1

(+9.5) years. Patients had a mean KPS score of 80.9 (+12.9)

and a mean SCQ score of 5.8 (+3.5). The mean fatigue score

for the total sample was 5.6 (+2.2). The mean scores for the

low- (n ¼ 19) and the high- (n ¼ 25) evening-fatigue groups

were 3.7 (+1.7) and 7.1 (+1.2), respectively (p < .001).

Differences in Demographic and Clinical Characteristics
Between the Two Fatigue Groups

Table 1 summarizes the differences in demographic and clin-

ical characteristics between the low- and high-evening-fatigue

groups. Compared to the low group, patients in the high-

evening-fatigue group reported a lower KPS score, had a higher

comorbidity score, and had a lower number of prior cancer

treatments.

Differences in Gene Expression Between the Two Fatigue
Groups

We performed the transcriptomic analysis using the Human

HT-12 Expression BeadChip. We identified one DE gene by

limma and 11 by GenePattern (Table 2). Among these 12

genes, 1 was upregulated and 11 were downregulated in the

high-evening-fatigue group. A heatmap of the two-class cluster

analysis of these 12 genes revealed that the DE genes notice-

ably, but incompletely, distinguished between the low- and

high-evening-fatigue groups (Supplemental Figure S2).

Of the DE genes identified, three (i.e., cDNA FLJ25030 fis,

clone CBL02631 [Hs.650028]; Homo sapiens hypothetical

protein MGC13005; and chromosome 1 open reading frame

61 [C1orf61]) do not have established functional roles. How-

ever, the remaining eight genes can be categorized into three

groups based on their known functions (summarized in Supple-

mental Table S2): immune activation (i.e., Calpain, small sub-

unit 1 [CAPSN1]; COMM domain containing 9 [COMMD9];

Cathepsin Z [CTSZ]; Defensin, b 103B [DEF103B]; Docking

protein 2, 56kDa [DOK2]; Transcription elongation factor A

[SII]-like 1, transcript variant 2 [TCEAL1]; Yip1 interacting

factor homolog B [S. cerevisiae], transcript variant 4 [YIF1B]),

energy metabolism and physical activity (i.e., TCEAL1, Enoyl

Coenzyme A hydratase 1, peroxisomal [ECH1]; YIF1B, Fruc-

tose-1,5-bisphosphatase 1 [FBP1]), and serotonergic activation

(i.e., YIF1B).

374 Biological Research for Nursing 18(4)

http://profilechaser.stanford.edu/


Pathways Differentially Perturbed Between the Two
Fatigue Groups

We performed gene set analysis to discover differences between

the low- and high-evening-fatigue groups in perturbations of

genes that operate together in pathways. KEGG pathways are the

primary focus of this article, given their superior depth of annota-

tion and rich usage in pathway analysis. We identified no upre-

gulated, 24 downregulated, and 94 2-D perturbed KEGG

pathways that differentiated between the two evening fatigue

groups. Table 3 lists these pathways, but includes only those

Table 1. Demographic and Clinical Characteristics of the Low- and High-Evening-Fatigue Groups.

Characteristic

Total Sample
(N ¼ 44),
Mean (SD)

Low Evening Fatigue
(n ¼ 19; 43.2%),

Mean (SD)

High Evening Fatigue
(n ¼ 25; 56.8%),

Mean (SD) Statistics

Age (years) 56.1 (9.5) 57.3 (7.8) 55.2 (10.7) t ¼ 0.72, p ¼ .474
Education (years) 16.4 (2.4) 15.9 (2.1) 16.8 (2.5) t ¼ �1.27, p ¼ .211
Body mass index (kg/m2) 27.1 (6.4) 25.4 (3.9) 28.4 (7.6) t ¼ �1.64, p ¼ .111
Karnofsky performance status score 80.9 (12.9) 86.3 (11.6) 76.8 (12.5) t ¼ 2.58, p ¼ .014
Self-Administered Comorbidity Questionnaire score 5.8 (3.5) 4.5 (2.8) 6.8 (3.8) t ¼ �2.23, p ¼ .031
Time since diagnosis (years)a 4.6 (7.7) 5.5 (6.1) 3.9 (8.8) U, p ¼ .142
Number of prior cancer treatments 2.1 (1.8) 2.8 (1.9) 1.6 (1.5) t ¼ 2.32, p ¼ .025
Number of metastatic sites including lymph node

involvementb
1.6 (1.7) 2.1 (1.9) 1.3 (1.4) t ¼ 1.56, p ¼ .128

Number of metastatic sites excluding lymph node
involvement

1.1 (1.4) 1.4 (1.5) 0.8 (1.2) t ¼ 1.26, p ¼ .215

LFS evening fatigue score 5.6 (2.2) 3.7 (1.7) 7.1 (1.2) t ¼ �7.66, p < .001

% (n) % (n) % (n)

Self-reported ethnicity w2 ¼ 4.96, p ¼ .292
White 77.3 (35) 68.4 (13) 80.0 (20)
Asian/Pacific Islander 11.4 (5) 15.8 (3) 8.0 (2)
Black non-Hispanic 4.5 (2) 10.5 (2) 4.0 (1)
Hispanic/mixed/other 6.8 (3) 5.3 (1) 8.0 (2)

Married or partnered (% yes) 72.7 (32) 84.2 (16) 64.0 (16) FE, p ¼ .181
Lives alone (% yes) 15.9 (7) 10.5 (2) 20.0 (5) FE, p ¼ .680
Currently employed (% yes) 29.5 (13) 31.6 (6) 28.0 (7) FE, p ¼ 1.00
Annual household income w2 ¼ 2.83, p ¼ .419

<$30,000 2.8 (1) 0.0 (0) 4.3 (1)
$30,000–70,000 16.7 (6) 23.1 (3) 13.0 (3)
$70,000–100,000 8.3 (3) 0.0 (0) 13.0 (3)
>$100,000 72.2 (26) 76.9 (10) 69.6 (16)

Exercise on a regular basis (% yes) 77.3 (34) 78.9 (15) 76.0 (19) FE, p ¼ 1.00
Child care responsibilities (% yes) 28.9 (11) 17.6 (3) 38.1 (8) FE, p ¼ .282
Elder care responsibilities (% yes) 13.9 (5) 12.5 (2) 15.0 (3) FE, p ¼ 1.00
AJCC status w2 ¼ 1.36, p ¼ .715

Stage 0 59.1 (26) 63.2 (12) 56.0 (14)
Stage I 4.5 (2) 5.2 (1) 4.0 (1)
Stage IIA, IIB 18.2 (8) 10.5 (2) 25.0 (6)
Stage IIA, IIIB, IIIC, IV 18.2 (8) 21.1 (4) 16.7 (4)

Prior cancer treatmentc w2 ¼ 8.58, p¼.035
No prior treatment 14.3 (6) 11.8 (2) 16.0 (4)
Only surgery, CTX, or RT 42.9 (18) 23.5 (4) 56.0 (14)
Surgery and CTX, or surgery and RT, or CTX and RT 9.5 (4) 5.9 (1) 12.0 (3)
Surgery and CTX and RT 33.3 (14) 58.8 (10) 16.0 (4)

Metastatic sites w2 ¼ 6.99, p ¼ .073
No metastasis 36.4 (16) 31.6 (6) 40.0 (10)
Only lymph node metastasis 20.5 (9) 15.8 (3) 24.0 (6)
Only metastatic disease in sites other than lymph nodes 9.1 (4) 0.0 (0) 16.0 (4)
Metastatic disease in lymph nodes and other sites 34.1 (15) 52.6 (10) 20.0 (5)

Note. AJCC ¼ American Joint Committee on Cancer; CTX ¼ chemotherapy; FE ¼ Fisher’s exact; LFS ¼ Lee Fatigue Scale; RT ¼ radiation therapy; U ¼ Mann-
Whitney test; w2 ¼ chi-square test.
aMedian time since diagnosis was 0.45, 3.75, and 0.37 years for the total sample, the low-evening-fatigue group, and the high-evening-fatigue group, respectively.
bTotal number of metastatic sites evaluated was 9. cPost hoc contrasts failed to reveal the subgroup(s) underlying the differences in prior cancer treatments
observed in the high- compared to the low-evening-fatigue groups.
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downregulated pathways that were not identified as 2-D per-

turbed (i.e., 5 of 24). Supplemental Table S3 includes a listing

of all 19 KEGG downregulated, GO, and BioCarta analyses.

Differentially expressed pathways were broadly categorized

into those associated with immune cell replenishment and acti-

vation (n ¼ 30); cellular metabolism and protein synthesis

(n ¼ 56); DNA synthesis, repair and cell division (n ¼ 10);

and neurological activity (n ¼ 3). From the TOA, we inferred

that the DE pathways originated from B cells, dendritic cells,

monocytes, and NK cells. Only a small number of DE path-

ways were identified as originating from CD4þ T cells.

When we compared the two fatigue groups, we identified

significantly differentially perturbed cytokine pathways from

KEGG (KEGG: hsa04920), GO (GO: 0019221, GO: 0071345,

GO: 0034097, GO: 0019221, GO: 0071345, GO: 0034097), and

BioCarta (gata3pathway), as well as inflammation and immune-

response pathways from GO (GO: 0006954, GO:0002472,

GO:0002252) and BioCarta (il1rpathway, il2pathway, il3path-

way, il4pathway, il6pathway, il10pathway, il22pathway, nthi-

pathway; Table 3 and Supplemental Table S3).

Prior to multiple hypothesis correction, we identified sev-

eral cytokine-related genes that were DE between the fatigue

groups. Among 57 (94 probes) of the 70 measured genes that

are involved in the adipocytokine signaling pathway (KEGG:

hsa04920), 5 had probes identified by limma to be DE prior to

statistical correction: retinoid X receptor, g (RXRG); v-akt mur-

ine thymoma viral oncogene homolog 3 (AKT3); acyl-CoA

synthetase long-chain family member 4 (ACSL4); inhibitor of

k light polypeptide gene enhancer in B cells, kinase g
(IKBKG); and signal transducer and activator of transcription

3 (acute-phase response factor; STAT3; all p < .03). Among 114

(160 probes) of the 265 measured genes that are involved in the

cytokine–cytokine receptor interaction pathway (KEGG:

ksa04060), two had probes identified by limma to be DE prior

to statistical correction: platelet factor 4 (PF4) and chemokine

(C-X-C motif) receptor 5 (CXCR5; all p < .02). Gene-

expression studies of fatigue in a larger sample might result

in the detection of cytokine gene expression differences that

survive statistical correction for multiple testing.

Differentially perturbed pathways related to DNA synthesis,

repair, and cell division included DNA replication (hsa03030),

cell cycle (hsa04110), nucleotide excision repair (hsa03420),

and base excision repair (hsa03410; Table 3 and Supplemental

Table S3).

Cellular metabolism and protein synthesis pathways that

were differentially perturbed include glycolysis/gluconeogen-

esis (hsa00010), oxidative phosphorylation (hsa000190), fruc-

tose and mannose metabolism (hsa00051), amino sugar and

nucleotide sugar metabolism (hsa00520) and the citrate cycle

(TCA cycle; hsa00020) from KEGG, and mitochondrial matrix

(GO:0005759), membrane (GO:0031966), inner membrane

(GO:0005743) and envelope (GO:0005740), generation of

precursor metabolites and energy (GO:0006091), oxidative

phosphorylation (GO:0006119), and respiratory chain

(GO:0070469) from GO (Table 3 and Supplemental Table S3).

Finally, differentially perturbed pathways related to neuro-

transmission included long-term potentiation (hsa04720), solu-

ble N-ethylmaleimide-sensitive factor attachment protein

receptors (SNARE) interactions in vesicular transport

(hsa04130), mitogen-activated protein kinase (MAPK)

Table 2. Differentially Expressed Genes.

Probe Symbol Name
Fold

Changea
ENTREZ
Gene ID Directionb padjusted

c
Primary
Roled

Limma
ILMN_1684308 DEFB103B Defensin, b 103B (DEFB103B) 0.10 55894 Down .0489 I

Gene pattern
ILMN_1873793 Hs.650028 cDNA FLJ25030 fis, clone CBL02631 0.18 Up < .0001 U
ILMN_1655418 CAPNS1 Calpain, small subunit 1 0.58 826 Down < .0001 I
ILMN_1705605 MGC13005 PREDICTED: Homo sapiens hypothetical protein

MGC13005
0.83 Down < .0001 U

ILMN_1728799 FBP1 Fructose-1,6-bisphosphatase 1 0.75 2203 Down < .0001 M
ILMN_1808821 COMMD9 COMM domain containing 9

Transcription elongation factor A (SII)-like 1, transcript
variant

0.59 29099 Down < .0001 I

ILMN_2398408 TCEAL1 2 0.18 9338 Down < .0001 I/M
ILMN_1653115 ECH1 Enoyl Coenzyme A hydratase 1, peroxisomal 0.46 1891 Down < .0001 M
ILMN_1759652 C1orf61 chromosome 1 open reading frame 61 0.16 10485 Down < .0001 U
ILMN_1666269 CTSZ Cathepsin Z

Yip1 interacting factor homolog B (S. cerevisiae),
transcript

0.77 1522 Down < .0001 I

ILMN_2363668 YIF1B variant 4 0.55 90522 Down < .0001 I/M/S
ILMN_1791211 DOK2 Docking protein 2, 56kDa 0.75 9046 Down < .0001 I

Note. aFold change of the log2-transformed, background-corrected, quantile-normalized intensity gene expression values in the high- as compared to low-evening-
fatigue group. bDirection of difference in gene expression in the high- as compared to the low-evening-fatigue group. cPadjusted ¼ Benjamini-Hochberg adjusted
p value. dThe primary functional role(s) of a given gene is identified as follows: M ¼ metabolism, protein synthesis (n ¼ 4); I ¼ immune activation and immune cell
replenishment (n ¼ 7); S ¼ serotonergic activation (n ¼ 1); and U ¼ unknown (n ¼ 3).
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Table 3. Pathways Differentially Perturbed Between the Low- and High-Evening-Fatigue Groups.

KEGG ID KEGG Pathway Description p Value q Value Fundamental Rolea TOAb

Downregulated
hsa00280 Valine, leucine, and isoleucine degradation 1.007E-03 1.612E-02 M M
hsa00410 b-Alanine metabolism 1.946E-03 2.616E-02 M B
hsa00970 Aminoacyl-tRNA biosynthesis 2.610E-03 2.984E-02 D NK
hsa00640 Propanoate metabolism 4.953E-03 4.055E-02 M DC
hsa00980 Metabolism of xenobiotics by cytochrome P450 5.068E-03 4.055E-02 M M

2-D perturbed
hsa04145 Phagosome 1.626E-56 2.601E-54 M M
hsa04612 Antigen processing and presentation 8.693E-51 6.955E-49 I DC
hsa04640 Hematopoietic cell lineage 5.206E-47 2.777E-45 I DC
hsa04142 Lysosome 1.416E-36 5.663E-35 M M
hsa04380 Osteoclast differentiation 2.512E-35 8.038E-34 I M
hsa03010 Ribosome 5.333E-32 1.422E-30 D B
hsa00190 Oxidative phosphorylation 3.901E-24 8.916E-23 M M
hsa04141 Protein processing in endoplasmic reticulum 1.087E-22 2.174E-21 M DC
hsa04514 Cell adhesion molecules (CAMs) 3.541E-22 6.296E-21 I M
hsa03040 Spliceosome 5.169E-22 8.270E-21 M DC
hsa04650 Natural killer cell mediated cytotoxicity 3.430E-20 4.990E-19 I M
hsa04062 Chemokine signaling pathway 1.390E-18 1.853E-17 I id
hsa04660 T-cell receptor signaling pathway 2.625E-18 3.230E-17 I NK
hsa04144 Endocytosis 9.210E-18 1.053E-16 M NK
hsa04666 Fc g R-mediated phagocytosis 5.354E-17 5.711E-16 I M
hsa04670 Leukocyte transendothelial migration 2.283E-16 2.283E-15 I id
hsa04662 B-cell receptor signaling pathway 2.625E-16 2.471E-15 I M
hsa03050 Proteasome 2.087E-15 1.855E-14 M M
hsa04672 Intestinal immune network for IgA production 5.226E-14 4.401E-13 I DC
hsa04620 Toll-like receptor signaling pathway 8.205E-14 6.564E-13 I M
hsa04920 Adipocytokine signaling pathway 3.765E-13 2.869E-12 I M
hsa04621 NOD-like receptor signaling pathway 1.408E-12 1.024E-11 I DC
hsa04210 Apoptosis 2.992E-11 2.081E-10 D M
hsa00051 Fructose and mannose metabolism 3.914E-11 2.610E-10 M id
hsa04722 Neurotrophin signaling pathway 2.686E-10 1.719E-09 I M
hsa00240 Pyrimidine metabolism 1.290E-09 7.937E-09 M id
hsa03018 RNA degradation 2.241E-08 1.328E-07 M DC
hsa00030 Pentose phosphate pathway 3.228E-08 1.845E-07 M DC
hsa04910 Insulin signaling pathway 4.674E-08 2.579E-07 M NK
hsa00520 Amino sugar and nucleotide sugar metabolism 5.161E-08 2.752E-07 M id
hsa04330 Notch signaling pathway 6.687E-08 3.451E-07 I DC
hsa00010 Glycolysis/gluconeogenesis 7.849E-08 3.925E-07 M DC
hsa00480 Glutathione metabolism 1.485E-07 7.201E-07 M M
hsa04630 Jak-STAT signaling pathway 1.625E-07 7.649E-07 I DC
hsa00910 Nitrogen metabolism 1.804E-07 8.248E-07 M M
hsa04120 Ubiquitin-mediated proteolysis 4.660E-07 2.071E-06 M DC
hsa00052 Galactose metabolism 9.313E-07 4.027E-06 M DC
hsa00230 Purine metabolism 1.036E-06 4.364E-06 M DC
hsa04623 Cytosolic DNA-sensing pathway 4.788E-06 1.964E-05 I M
hsa04110 Cell cycle 5.049E-06 2.020E-05 D NK
hsa04146 Peroxisome 1.758E-05 6.861E-05 M M
hsa00760 Nicotinate and nicotinamide metabolism 1.870E-05 7.125E-05 M M
hsa03013 RNA transport 2.209E-05 8.221E-05 M NK
hsa04070 Phosphatidylinositol signaling system 2.989E-05 1.087E-04 I NK
hsa00020 Citrate cycle (TCA cycle) 3.237E-05 1.151E-04 M M
hsa04010 MAPK signaling pathway 4.111E-05 1.430E-04 I M
hsa03015 mRNA surveillance pathway 5.529E-05 1.882E-04 M id
hsa03410 Base excision repair 6.074E-05 2.025E-04 D id
hsa00532 Glycosaminoglycan biosynthesis—chondroitin sulfate 7.306E-05 2.386E-04 M id
hsa04966 Collecting duct acid secretion 7.703E-05 2.465E-04 M M
hsa04810 Regulation of actin cytoskeleton 9.502E-05 2.981E-04 D M

(continued)
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signaling (hsa04010) and epidermal growth factor receptor

(avian erythroblastic leukemia viral [v-erb-b] oncogene homo-

log; ErbB) signaling (hsa04012) pathways in KEGG and the g-

aminobutyric acid (GABA) receptor lifecycle (gabapathway)

and MAPKinase signaling (mapkpathway) pathways in Bio-

Carta (Table 3 and Supplemental Table S3).

TOA

Peripheral blood contains a heterogeneous population of

nucleated cells from which gene expression data may be

derived. TOA is used to identify the cell lineage with the high-

est degree of statistical significance for a group of DE genes

Table 3. (continued)

KEGG ID KEGG Pathway Description p Value q Value Fundamental Rolea TOAb

hsa04973 Carbohydrate digestion and absorption 9.893E-05 3.044E-04 M DC
hsa04130 SNARE interactions in vesicular transport 1.226E-04 3.703E-04 M M
hsa04710 Circadian rhythm—mammal 1.460E-04 4.325E-04 C NK
hsa04664 Fc epsilon RI signaling pathway 1.702E-04 4.950E-04 I DC
hsa00563 Glycosylphosphatidylinositol (GPI)-anchor biosynthesis 2.136E-04 6.102E-04 M DC
hsa00620 Pyruvate metabolism 2.266E-04 6.360E-04 M DC
hsa03450 Non-homologous end-joining 2.368E-04 6.533E-04 D id
hsa04520 Adherens junction 2.501E-04 6.781E-04 I NK
hsa00511 Other glycan degradation 3.379E-04 9.012E-04 M M
hsa00071 Fatty acid metabolism 3.661E-04 9.516E-04 M DC
hsa04964 Proximal tubule bicarbonate reclamation 3.687E-04 9.516E-04 M NK
hsa04012 ErbB signaling pathway 4.779E-04 1.214E-03 I id
hsa00604 Glycosphingolipid biosynthesis—ganglio series 5.013E-04 1.253E-03 M B
hsa00564 Glycerophospholipid metabolism 9.206E-04 2.266E-03 M id
hsa04370 VEGF signaling pathway 2.024E-03 4.907E-03 I id
hsa04960 Aldosterone-regulated sodium reabsorption 2.122E-03 5.061E-03 M id
hsa00270 Cysteine and methionine metabolism 2.151E-03 5.061E-03 M id
hsa03060 Protein export 2.188E-03 5.073E-03 M DC
hsa03320 PPAR signaling pathway 2.616E-03 5.979E-03 M M
hsa04622 RIG-I-like receptor signaling pathway 3.298E-03 7.433E-03 I id
hsa03030 DNA replication 3.354E-03 7.452E-03 D DC
hsa04971 Gastric acid secretion 5.221E-03 1.144E-02 M id
hsa04150 mTOR signaling pathway 5.602E-03 1.211E-02 I id
hsa04510 Focal adhesion 6.216E-03 1.326E-02 I M
hsa00561 Glycerolipid metabolism 7.320E-03 1.541E-02 M M
hsa03008 Ribosome biogenesis in eukaryotes 7.485E-03 1.555E-02 M DC
hsa00860 Porphyrin and chlorophyll metabolism 7.594E-03 1.558E-02 M NK
hsa04530 Tight junction 7.703E-03 1.560E-02 I B
hsa00900 Terpenoid backbone biosynthesis 8.277E-03 1.655E-02 M NK
hsa03420 Nucleotide excision repair 8.925E-03 1.763E-02 D NK
hsa00330 Arginine and proline metabolism 9.351E-03 1.825E-02 M DC
hsa04962 Vasopressin-regulated water reabsorption 1.022E-02 1.971E-02 M NK
hsa04310 Wnt signaling pathway 1.085E-02 2.048E-02 I id
hsa04720 Long-term potentiation 1.088E-02 2.048E-02 L id
hsa00510 N-Glycan biosynthesis 1.298E-02 2.414E-02 M id
hsa00770 Pantothenate and CoA biosynthesis 1.365E-02 2.511E-02 M M
hsa00380 Tryptophan metabolism 1.760E-02 3.199E-02 M M
hsa00531 Glycosaminoglycan degradation 1.889E-02 3.395E-02 M M
hsa00450 Selenocompound metabolism 2.839E-02 5.047E-02 M M
hsa04614 Renin–angiotensin system 2.943E-02 5.174E-02 I id
hsa00790 Folate biosynthesis 3.327E-02 5.787E-02 M id
hsa04260 Cardiac muscle contraction 4.953E-02 8.521E-02 L M
hsa03020 RNA polymerase 5.568E-02 9.477E-02 D id

Note. 2-D ¼ simultaneous two-dimensional perturbation (up and down); id ¼ insufficient data; KEGG ¼ Kyoto Encyclopedia of Genes and Genomes; TOA ¼
transcript origin analysis; NOD ¼ nonobese diabetic; STAT ¼ signal transducer and activator of transcription; TCA ¼ tricarboxylic acid; MAPK ¼ mitogen-
activated protein kinases; SNARE ¼ Soluble N-ethylmaleimide-sensitive factor Attachment Protein Receptor; VEGF ¼ Vascular endothelial growth factor; PPAR
¼ peroxisome proliferator-activated receptors; RIG ¼ retinoic acid inducible gene; mTOR ¼ Mammalian target of rapamycin.
aThe primary functional role of a given pathway is identified as follows: M¼ cellular metabolism, protein synthesis (n¼ 56); I¼ immune activation and immune-cell
replenishment (n ¼ 30); D ¼ DNA synthesis and repair, cell division (n ¼ 10); L ¼ long-term potentiation (n ¼ 2); and C ¼ circadian dysfunction (n ¼ 1).
bTranscript of origin analysis (TOA) was employed in order to infer the cell type from which a differentially expressed pathway originates. The cell types identified
by TOA are abbreviated as follows: M ¼ monocytes (n ¼ 34); DC ¼ dendritic cells (n ¼ 24); id ¼ insufficient data to perform TOA (n ¼ 22); NK ¼ natural killer
cells (n ¼ 14); and B ¼ B cells (n ¼ 4).
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(Cole et al., 2011). The cell types that can be distinguished

include B cells, CD4þ T cells, dendritic cells, monocytes, and

NK cells. In the present study, we successfully mapped diag-

nosticity scores for 12 out of the combined set of the 13 genes

that were DE between fatigue groups (see Table 2), 70 of 77 EC

genes from all 22 downregulated KEGG pathways, and 907 of

980 EC genes from 94 2-D-perturbed KEGG pathways (Sup-

plemental Table S3). In total, using TOA we were able to

unambiguously infer the origin of 77 of the 99 (78%) differen-

tially perturbed KEGG pathways listed in Table 3. While the

individual perturbed pathways originated primarily from

monocytes, some originated from dendritic cells, NK cells, B

cells, and CD4þ T cells (Table 4). The transcript origin for

each differentially perturbed pathway is identified in Supple-

mental Table S3 and summarized in Supplemental Table S4.

Identification of Similar Whole-transcriptome Gene
Expression Experiments

ProfileChaser was used to identify publicly available gene

expression studies and associated publications that shared a

whole-transcriptome pattern of differential gene expression sim-

ilar to that which we found in the present study. The significant

GEO data sets (GDSs) identified across all five rounds of the

split analyses (n ¼ 108) were retained (Supplemental Tables S5

and S6). Two of the authors (B. E. A and K. M. K) independently

reviewed abstracts for the original source publications obtained

from the 108 GDSs (n ¼ 102) for their relevance to fatigue.

Based on this review of the abstracts, they excluded all but

44 complete publications to evaluate. After full evaluation of

the experimental profiles of these 44 manuscripts, we retained

20. We reviewed these 20 publications, representing 18 unique

GDSs, and categorized them as providing ‘‘strong’’ (n ¼ 14),

‘‘moderate’’ (n ¼ 1), or ‘‘weak’’ (n ¼ 5) insights into the

mechanism(s) that contribute to fatigue (Table S6).

Discussion

Differences in Demographic and Clinical Characteristics

This study is the first to evaluate for differences in gene expres-

sion and perturbed pathways in breast cancer patients who

reported low versus high levels of evening fatigue during CTX.

The between-group differences in fatigue severity scores rep-

resent not only statistically significant, but also clinically

meaningful differences (Cohen’s d ¼ 1.5; Osoba, 1999). Con-

sistent with previous reports, patients in the high-fatigue group

had a poorer functional status (Dhruva et al., 2013; Hofso,

Miaskowski, Bjordal, Cooper, & Rustoen, 2012) and a more

severe comorbidity profile (Berger et al., 2012).

The more surprising and intriguing finding was the associ-

ation we identified between a lower number of previous cancer

treatments and membership in the high-evening-fatigue group.

While this finding needs to be validated in an independent

sample, we can postulate a number of plausible explanations.

Patients who are in later stages of their disease trajectory may

experience a ‘‘response shift’’ in their perception of fatigue.

First used in oncology to describe changes over time in quality

of life (QOL) (Sprangers & Schwartz, 1999), a ‘‘response

shift’’ is an age-related psychological shift that represents a

change in a person’s internal framework for the assessment

of experiences (Costanzo, Ryff, & Singer, 2009). In the present

context, patients in the low-fatigue group who had received

prior cancer treatments may have changed their internal con-

ceptualization of fatigue based on their previous experiences

with the symptom. An alternative hypothesis is that, with pro-

longed cancer treatment, patients may develop tolerance to the

physiologic responses that contribute to the development of

fatigue. Finally, there may be a selection bias, where more

women who had previous cancer treatments (e.g., due to toler-

ance or increased survival) volunteered to participate in this

study. Longitudinal studies that assess both phenotypic and

epigenetic trajectories associated with fatigue are needed to

confirm or refute these hypotheses.

Differences in Gene Expression

In the present study, we performed data-driven analyses at the

levels of the gene, the pathway, and the entire transcriptome to

evaluate for differences in gene expression between patients

who reported high versus low levels of evening fatigue (Figure

1). Using TOA, we inferred that differentially expressed genes

and perturbed pathways originated from several cell types

(Supplemental Table S4), with the majority of the signals ori-

ginating from monocytes, dendritic cells, B cells, and NK cells

Table 4. Summary of Transcript Origin Analysis Results for Differentially Perturbed Gene Sets.

Grouping KEGG, Down KEGG, 2-D GO, Down GO, -D BioCarta, Down BioCarta, 2-D

SPS 22 94 249 2,685 1 67
SPS with E.C. genes 22 94 249 2,685 1 67
SPS with TOA signal 22 72 230 2,201 1 45

Monocytes 15 13 84 1,081 0 16
Dendritic cells 14 23 80 617 0 13
NK cells 5 13 32 226 1 10
B cells 2 3 31 213 0 4
CD4þ T cells 0 0 3 33 0 0

Note. E.C. genes¼ essential contributing genes: genes with substantial or above-background expression changes in the set; GO¼ gene ontogeny; KEGG¼ Kyoto
Encyclopedia of Genes and Genomes; NK ¼ natural killer; SPS ¼ significantly perturbed sets; TOA ¼ transcript origin analysis; and 2-D ¼ simultaneous two-
dimensional perturbation (up and down).
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(Table 4). This profile is consistent with those reported in gene

expression experiments that have evaluated the effects of

exhaustive physical exercise (Supplemental Table S6). In addi-

tion, the expression profiles for the high-evening-fatigue group

were consistent with those reported in a number of gene expres-

sion studies that evaluated sickness behavior (Calvano et al.,

2005; Dennehy, 2007; Foteinou, Calvano, Lowry, & Androu-

lakis, 2010; Rodriguez et al., 2007; Wurfel et al., 2005), circa-

dian rhythm disruption (Bailey et al., 2009; Yang, Wang,

Valladares, Hannenhalli, & Bucan, 2007), and mechanisms

of neuro-inflammation (Irwin & Cole, 2011). Of note, the DE

genes (Table 2) and pathways (Table 3) we identified using

transcriptomic analyses in the current study have similar bio-

logical qualities in that these genes play roles in sickness beha-

vior, inflammation, mitochondrial dysfunction, circadian

rhythm disruption, and serotonin regulation. Taken together,

our results and those of others described below provide a more

complete picture of the mechanisms that underlie evening fati-

gue in oncology patients.

We identified 12 genes that were DE between the low- and

high-evening-fatigue groups (Table 2). While the expression

patterns of these 12 genes distinguished between patients in the

two fatigue groups (Supplemental Figure S2), this distinction

was not perfect, suggesting that additional genes remain to be

identified. TOA of this set of 12 DE genes revealed that the

expression patterns originated predominantly from monocytes.

This finding is consistent with previous reports that noted that

altered cytokine production in monocytes is associated with fati-

gue in oncology patients with breast cancer (Collado-Hidalgo,

Bower, Ganz, Cole, & Irwin, 2006; Saligan & Kim, 2012).

Inflammation and Immune Response

In general, cytoxic CTX kills rapidly proliferating cancer cells

(Mitchison, 2012). While the targets are cancer cells, CTX also

depletes other rapidly dividing cells, including peripheral leu-

kocytes. The need for peripheral blood counts to recover is the

primary reason that CTX regimens are administered in cycles.

In addition, immune system effectors are impacted during and

following CTX (Saligan & Kim, 2012). For example, increased

CD4 T-cell counts, which may result in a prolonged pro-

inflammatory state, are associated with increased fatigue in

breast cancer survivors (Bower, Ganz, Aziz, Fahey, & Cole,

2003). Downregulation of DEF103B in the high-evening-

fatigue group in the present study may have favored the pro-

duction of pro-inflammatory cytokines, which are associated

with increased fatigue severity (Aouizerat et al., 2009; Bower

et al., 2011; Jager, Sleijfer, & van der Rijt, 2008; Miaskowski

et al., 2010). Decreased expression of DOK2 in the high-

evening-fatigue group may have resulted in prolonged immune

cell activation, which could lead to higher levels of evening

fatigue. Decreased ECH1 gene expression in patients with

higher evening fatigue may be associated with decreased

energy production and delayed immune system recovery fol-

lowing CTX. While the function of YIF1B in peripheral leuko-

cytes is unknown, reduction of YIF1B in the high-evening-

fatigue group may have resulted in decreases in 5-Hydroxy-

tryptamine (Serotonin) Receptor 1A, G Protein-Coupled

(HTR1A) expression, intracellular cAMP, and immune activa-

tion (i.e., the decrease in YIF1B creates a pro-inflammatory

state that results in fatigue). While it is not known whether

lower YIF1B gene expression in the periphery is associated

with lower gene expression in the central nervous system,

increasing evidence suggests that peripheral gene expression

reflects system-wide biology (Liew, Ma, Tang, Zheng, &

Dempsey, 2006).

In addition to the identification of these DE genes with

plausible inflammatory and immune mechanisms for evening

fatigue, we identified a number of DE pathways associated

with immune cell recovery following CTX. Consistent with

established associations between inflammatory cytokines and

fatigue in oncology patients (Aouizerat et al., 2009; Bower

et al., 2009; Miaskowski et al., 2010), we identified cytokine

pathways as well as inflammation-related pathways that were

significantly differentially perturbed between the two fatigue

groups. In addition, our finding that the BioCarta pathway

(nthipathway) was significantly differentially perturbed

between the two groups (Supplemental Table S3) is consistent

with the overrepresentation of the NF-kb response elements

Bower, Ganz, Irwin, Arevalo, and Cole (2011) reported in

breast cancer survivors. Common elements (i.e., genes) of the

identified KEGG, GO, and Biocarta pathways in this study that

have been identified as harboring polymorphisms associated

with fatigue in oncology patients include IL1B (Bower et al.,

2013; Collado-Hidalgo et al., 2008; Reinertsen et al., 2011),

IL4 (Doong et al., 2015), IL6 (Bower et al., 2013; Miaskowski

et al., 2010; Reinertsen et al., 2011), and TNFA (Aouizerat

et al., 2009; Bower et al., 2013; Dhruva et al., 2015). Future

genetic association studies should be conducted that include

other members of the above-identified pathways.

Although we observed DE genes and differentially per-

turbed pathways related to inflammation, we did not detect

DE cytokine genes. This finding is consistent with previous

research that also failed to find an association between cytokine

gene expression and levels of fatigue (Landmark-Hoyvik et al.,

2009; Reinertsen et al., 2011). The lack of detectable differences

in gene expression despite the associations repeatedly reported

between cytokine genes and fatigue may be due to the timing of

cytokine gene expression in relation to the experience of fatigue

(i.e., the change in expression may occur prior to the perception

of fatigue). Alternatively, the DE genes and perturbed pathways

we detected in the current study may represent up- and/or down-

stream events in relation to cytokine gene expression. Finally,

our conservative adjustment for multiple hypothesis testing may

have resulted in the exclusion of gene expression signals that

would have been identified with a larger sample.

Circadian Rhythm

The co-occurrence of (Davidson, MacLean, Brundage, &

Schulze, 2002) and common genetic risk factors for (Aouizerat

et al., 2009; Miaskowski et al., 2010) fatigue and sleep
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disturbance suggest that their mechanisms may overlap. Cir-

cadian influences on immune function may be particularly

relevant for explaining the relationship between sleep and

fatigue in oncology patients undergoing CTX. Haimovich

et al. (2010) observed altered expression of circadian-

clock genes in peripheral leukocytes in healthy individuals

who experienced sickness behavior when exposed to endo-

toxin. The majority of immune cells (including NK cells)

demonstrate circadian rhythmicity in healthy individuals

(Mazzoccoli et al., 2011). This rhythmicity may be per-

turbed during CTX. Our finding that the KEGG circadian-

rhythm pathway (hs04710) was differentially perturbed in

the high-fatigue group supports this hypothesis. NK cells

were the cell type of origin for this perturbation (Table 3).

This observation is bolstered by the observation in a previous

study of malfunctioning NK cells in patients with chronic

fatigue syndrome (Meeus, Mistiaen, Lambrecht, & Nijs,

2009), and the relationship between circadian influences on

immune cells and fatigue warrants further study.

Neurotransmission

An unexpected finding from the pathway analyses we con-

ducted in the present study was the identification of relation-

ships between fatigue and pathways that participate in

regulation of neurotransmission, including long-term potentia-

tion of neurons (hsa04720 and hsa04260), GABA receptor life

cyle (gabapathway), SNARE interactions in vesicular transport

(hsa04130), and ErbB signaling pathway (hsa04012; Table 3

and Supplemental Table S3). It should be noted that long-term

potentiation of neurons may be a misnomer for the first of these

pathways because this pathway shares genes with others that

are not related to neurons. In addition, the long-term potentia-

tion of neurons has not been characterized specifically in per-

ipheral blood mononuclear cell. Centrally, long-term

potentiation plays an important role in a number of physiologic

processes (e.g., learning, memory, and pain). While GABA

has an effect in peripheral tissue (Erdo & Wolff, 1990), it is

the main inhibitory neurotransmitter in the cortex (Petroff,

2002). Serotonin, another neurotransmitter, modulates

GABA. SNARE proteins are involved in cell signaling in

neurons (Gotte & von Mollard, 1998). The ErbB family of

receptor tyrosine kinases performs a complex array of func-

tions including regulation of neurotransmitter receptors

(Bublil & Yarden, 2007). However, many patients with breast

cancer undergo treatment to block ErbB2 (Yarden & Sliw-

kowski, 2001), so this particular pattern may reflect differences

in treatment rather than levels of fatigue. While these results,

combined with the potential roles of the DE genes CAPSN1 and

YIF1B in neurotransmission, are intriguing, it is unclear whether

these peripherally perturbed genes and pathways reflect changes

in gene expression in the central nervous system (Cole, 2013;

Liew et al., 2006) that are associated with fatigue. If replicated in

an independent sample, these pathways would warrant further

study.

Energy Metabolism

Regulation and control of the expression of energy metabolism

genes occur through a variety of processes that cancer or its

treatment may alter (Andrews, Morrow, Hickok, Roscoe, &

Stone, 2004). Radiation treatment or CTX may result in a

decrease in adenosine triphosphate (ATP) regeneration. This

disruption of ATP metabolism may lead to a reduction in

mechanical ability (Ryan et al., 2007). The differences in

expression patterns in pathways related to mitochondrial or

energy metabolism found in our study parallel a previous report

of associations between fatigue and mitochondrial-function

genes in patients receiving radiation therapy for prostate cancer

(Hsiao, Wang, et al., 2013). The decreased expression of FBP1

in our high-fatigue group may be associated with decreased

energy production and an attempt to increase intracellular glu-

cose in order to restore energy reserves. Importantly, mitochon-

drial dysfunction has pleiotropic effects (Chan, 2006) and is

closely tied with other processes (e.g., inflammation; Liu et al.,

2012).

Similarities in Whole-transcriptome DE With Other
Studies

An evaluation of the studies we identified with ProfileChaser

suggests that the mechanisms underlying fatigue in oncology

patients are multifactorial. The mechanism of cytokine-

induced sickness behavior (B. N. Lee et al., 2004) has a

long-standing association with common symptoms experi-

enced by oncology patients, including fatigue. Interrogation

of publicly available transcriptome data sets using ProfileCha-

ser revealed a preponderance of similarities between our gene

expression study and studies that featured an inflammatory

component. Of the 20 studies we identified using ProfileChaser

and retained after in-depth review, 5 employed various experi-

mental models (e.g., healthy adults and acute pediatric viral

infection) that incorporated an endotoxin or viral challenge

(Calvano et al., 2005; Foteinou et al., 2010; Rodriguez et al.,

2007; Wang et al., 2007; Wurfel et al., 2005). In addition to

pathogen-mediated induction of cytokines, four studies

employed a more direct induction of cytokines (e.g., interferon

and IL-2) in a wide variety of experimental models (e.g., mul-

tiple sclerosis and rheumatoid arthritis; Indraccolo et al., 2007;

Zhang, Martino, & Faulon, 2007). Interestingly, in one murine-

model study that focused on radiation therapy (RT), investiga-

tors found a transcriptome profile similar to the one we found

in the present study, which supports the extant literature that

cancer treatments induce a pro-inflammatory response in per-

ipheral leukocytes that is associated with increased fatigue

(Goldrath, Luckey, Park, Benoist, & Mathis, 2004).

One study described differences in the transcriptomes of

healthy volunteers who underwent exhaustive as compared to

no or moderate physical exercise (Buttner, Mosig, Lechter-

mann, Funke, & Mooren, 2007). The differences in gene

expression between our low- and high-fatigue groups are sim-

ilar to the differences Buttner et al. found between the
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nonexhaustive and exhaustive exercise groups. These findings

suggest that exhaustive exercise may result in differences in

gene expression that overlap with those that occur in cancer

patients with high evening fatigue.

In one novel study we identified using ProfileChaser, Yang,

Wang, Valladares, Hannenhalli, and Bucan (2007) found diur-

nal variations in gene expression in the prefrontal cortex of

rodents. This finding is of interest because fatigue also displays

a diurnal variability (B. A. Fletcher et al., 2009; Miaskowski

et al., 2008). In general, evening fatigue is more severe than

morning fatigue and is associated with different risk factors

(Dhruva et al., 2010). The prefrontal cortex plays an important

role in the regulation of sleep and fatigue. Yang et al.’s (2007)

findings corroborate our finding of DE genes known to be

involved in diurnal processes (i.e., COMMD9 and CTSZ). A

complementary study identified diurnal variations in gene

expression in the pineal gland of rodents (Bailey et al.,

2009), which plays an important role in chronobiology and in

diurnal variability of genes involved in immune/inflammatory

responses.

To date, only two gene expression studies of fatigue in

breast cancer survivors have been published (Bower et al.,

2011; Landmark-Hoyvik et al., 2009). While our findings and

those of the previous studies identified differences between

patients reporting low and high levels of fatigue in gene expres-

sion related to immune function and mitochondrial dysregula-

tion, the specific genes and pathways differed. The lack of

congruence among these studies may be due in part to different

designs and study populations. The studies by Bower et al. and

Landmark-Høyvik et al. evaluated breast cancer survivors with

persistent fatigue and did not account for diurnal variations

in fatigue severity. Bower et al. evaluated and discussed

only genes responsive to NF-kb or downregulation of

glucocorticoid-responsiveness. The analytic approaches we

employed in our study and those that Landmark-Høyvik

et al. used were different. ProfileChaser did not identify either

of these studies because one (Bower et al.) did not exist in the

GEO and the other (Landmark-Hoyvik et al.) had been sub-

mitted but not curated as a GEO data set (which are used

exclusively by ProfileChaser).

Limitations

Although our study findings do not provide direct evidence of

the causal mechanisms for evening fatigue in breast cancer

patients, they do offer strong candidates for future functional

as well as intervention studies. Several limitations need to be

acknowledged. While the sample size for this study was ade-

quate and slightly larger than that of the typical gene expression

study (Bower et al., 2011), use of a larger independent sample

might allow investigators to identify additional DE genes and

pathways that differentiate between patients with high and low

levels of evening fatigue. While all of the gene expression

studies of fatigue in oncology patients, including our own,

identified differences in genes involved in inflammation, the

specific genes and pathways identified differed between

studies, which may be due to differences in the patient popula-

tions studied (e.g., patient receiving CTX vs. survivors). The

present study sample is heterogeneous for type of treatment

received, disease stage, and number of previous CTX cycles.

Finally, because the preponderance of DE genes and pathways

that we and previous researchers identified are related to

inflammation, one could hypothesize that this finding may be

a by-product of the tissues studied (i.e., peripheral leukocytes).

However, the transciptome analyses (i.e., ProfileChaser) iden-

tified gene expression studies that were performed in nonim-

mune cells, in numerous tissues, and under different

experimental conditions. Until they are replicated, the current

findings must be viewed as preliminary.

Conclusion

This study is novel because we evaluated differences between

patients with high and low levels of evening fatigue at the

levels of genes, pathways, and the entire transcriptome. Our

analyses revealed that pathways involved in inflammation,

neurotransmitter regulation, and energy metabolism are likely

associated with evening-fatigue severity; that CTX may con-

tribute to the severity of evening fatigue; and that the patterns

of gene expression may be shared with other models of fatigue

(e.g., physical exercise and pathogen-induced sickness beha-

vior). Importantly, our findings suggest that the molecular

mechanisms associated with evening fatigue are multifactorial

and that these mechanisms interact among themselves (e.g.,

neurotransmitter regulation and inflammation, inflammation,

and mitochondrial dysfunction). Future research should evalu-

ate this potential interplay among pathways to determine the

mechanisms that underlie evening fatigue.
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