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Abstract

The treatment of cancer has progressed dramatically in recent decades, such that it is no longer
uncommon to see a cure or log-term survival in a significant proportion of patients with various
types of cancer. To adequately account for the cure fraction when designing clinical trials, the cure
models should be used. In this article, a sample size formula for the weighted log-rank test is
derived under the fixed alternative hypothesis for the proportional hazards cure models. Simulation
showed that the proposed sample size formula provides an accurate estimation of sample size for
designing clinical trials under the proportional hazards cure models.
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1 Introduction

The treatment of cancer has progressed dramatically in recent decades, such that it is no
longer uncommon to see a cure or long-term survival in a significant proportion of patients
with various types of cancer, e.g., breast cancer, non-Hodgkin lymphoma, leukemia, prostate
cancer, melanoma, and head and neck cancer [1]. To adequately account for cured patients in
survival data from clinical trials, the cure models are increasingly useful. Various parametric
and semiparametric cure models have been proposed by Farewell [2], Peng et al. [3] and
Kuk and Chen [4], among others, and a maximum-likelihood EM algorithm for parametric
and semiparametric cure models has been proposed by Peng and Dear [5] and Sy and Taylor
[6]. A SAS macro PSPMCM developed by Corbiere and Joly [7] is available to fit both
parametric and semiparametric cure models.

The traditional methods for designing survival trials may not be appropriate when there is a
cure fraction. Sample size calculations have been developed for clinical trial designs under
the cure models. For example, Halpern and Brown [8] developed a computer program to
calculate the power and sample size for exponential cure models based on Monte Carlo
simulation. Ewell and Ibrahim [1] provided a power formula for exponential cure models by
considering a general alternative that allows for the effects of treatment on both short- and
long-term survival. Recently, Wang et al. [9] considered a proportional hazards (PH) cure
model, a special case of the general alternative proposed by Ewell and Ibrahim [1], and
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derived a sample size formula for the weighted log-rank test under a series of local
alternatives. However, Wu [10] has pointed out that Wang’s formula does not provide
adequate sample size or power for clinical trial designs. A series of local alternatives is that
the alternative need to change along with the sample size such that the difference in

parameter to be detected under the alternative need to diminish towards 0 in a rate of 1/vn
as the sample size 7 getting large towards infinity. The fixed alternative is that the difference
in parameter to be detected under the alternative is fixed and not depending on the sample
size. A sample size established under a series of local alternatives works well only when the
value of parameter under the alternative is very close to the one under the null hypothesis,
whereas no such restriction for the fixed alternative.

In this paper, we derived a novel sample size formula for the weighted log-rank test under
the PH cure model. The rest of the paper is organized as follows. The PH cure models are
introduced in section 2. The sample size formula is presented in section 3. Simulations are
conducted in section 4 to study the performance of the proposed sample size formula and
compared with Wang’s formula. Section 5 illustrates clinical trial design using the proposed
methods. The conclusion and additional remarks are presented in section 6.

2 Proportional Hazards Cure Models

The failure time, 77, is assumed to be 7* = vT+ (1 - Yoo, where vis an indicator of
whether a subject will eventually (v= 1) or never (v= 0) experience treatment failure, and 7
denotes the failure time if the subject is not cured, with a survival distribution S(#), which is
the conditional distribution for patients who will experience failure, and is often called the
latency distribution. Thus, the overall survival distribution of 7" is a mixture model of a cure
rate 7 = Av=0) and a latency distribution §?) given by

S*(t)=m+(1 — m)S(1).

For a two-arm randomized survival trial, let S} (¢) denote the overall survival function and let
A’ (t) denote its corresponding hazard function for group /, where j= 0, 1 represents control
group and treatment group, respectively. Similarly, let S{#) denote the survival function in
uncured patients and let A(#) denote its hazard function. The cure rate in group /is defined
by r;, where 0 < ;< 1. For the mixture cure model, we have

S;(t)=mj+(1 —7;)S;(t)

and

e (L=m)S;@)
)\j(t)iﬂﬁ(l — ;)8 (t) Al

for /=0, 1. To derive the sample size calculation, we consider a class of PH cure models [1]
[9] in which
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A1(t)=e"Ao(t) and logit(mi)=logit(mo)+v, (1)

where 7 is the log-hazard ratio of treatment vs. control for uncured patients and y is the log-
odds ratio of the cure rates for the two groups. Note that zp = 71 = 0 corresponds to the
standard PH model. However, if either mzp # 0 or 7r; # 0, the PH cure model does not satisfy
the proportional hazards condition. For a survival trial in which a proportion of patients are
cured, we are interested in testing the following null hypothesis:

H0:7T0:7T1 and So(t):Sl (t),

which is equivalent to Hy: = y = 0. Various alternative hypotheses are of interest: Hy,: n#
0, ¥ # 0, with differences in both the short-term survival and the cure fraction; Hyp : 720, ¥
= 0, with a difference in the short-term survival but not in the cure fraction; and H. : =0,
y % 0, with difference in the cure fraction but not in the short-term survival.

3 Sample Size Formula

Consider a class of PH cure models as defined by the equations in (1). The sample size
calculation is based on testing the null hypothesis

Hon=0andy=0 (2)

against one of the three alternative hypotheses, Hya, Hip, and Hc, defined in the previous
section. The weighted or unweighted log-rank test can be used for testing this hypothesis. It
is well known that the log-rank test is asymptotically normal distributed. To derive the
asymptotic distribution of the log-rank test statistic under the alternatives hypotheses,
suppose a survival trial involving 77 subjects, and let 7; and G denote the survival and
censoring times of patient / respectively, and Z = 0/1 denote the treatment group indicator
(0 for control group and 1 for treatment group). The observed data then consist of { X, A;,
Z, =1, ..., n}, where Xi =min(7;, G) and Aj = A7 < G). Let Ni(H = Ai/(X < Hand Yi(D)
= /(X = ) be the failure and at-risk processes for /=1, ..., n. The weighted log-rank test
statistic can then be written as

L:i: Jowi{zi - Z(t) } dNie),
i=1

where zis the study duration and 7@):2;12%(15)/2;15?(75) = Z(t)=E, (Z|X > t)
and w; = W) with WA J as a weight function that converges to v(#). Under the PH cure
models (1), the hazard function of patient /is given by
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_ nZ;
- T [So (1))
Ai(t)= Lt WO
moeZi 1—mo [ O(t)]e" i

1—mo+moer%i 1—7mo+moerZi

Given a type I error of a and power of 1-gunder a series of local alternatives, the sample
size formula derived by Wang et al. [9] is given by

B (Zl—(x/2+2175>2' gowa(f)G(t)So(t)dAo(f)
ol (1 — ) U eOmOGOSOdN D @)

where pis the proportion of sample size allocation for the control group, G(2) is the common
survival distribution of censoring time of two groups and m (t)=mq {v+nAo(t)} /S5(t) — 7
with Ag(9) = - log SH(9) and S§5(t)=mg+(1 — 70)So(t)-

There are two issues relating to the approach of sample size calculation based on a series of
local alternatives. The theoretical issue is that the accuracy of the formula derived under the
local alternative is not guaranteed when the alternative departures from the null. The
practical issue is that the alternative hypothesis in application is always fixed, which does
not change as the sample size changes. Thus, it is expected that the formula performances
well only when the alternative is close to the null. Our simulation will show (see section 4)
that this formula becomes practically unfitting when the alternative departs reasonably away
from the null.

To overcome the inaccuracy of the formula (3), here we derive the asymptotic distribution of
the log-rank test under the fixed alternative hypothesis by using a novel approach developed
by Xiong [11] in which a theoretic development has showed that the log-rank test is not
limited to the tests of proportional hazards model but can be used for more general survival
models including the PH cure model. The details of the derivation are very complicated and
tedious, and out of scope of this paper. Thus, we present the results in here and omit the

details. It can be shown that 7/ *L — Vn&(v,n) — N(0,0%) as n— oo, where

2_P(L=p)(1 = 70) or o
7T = ot moe) Jow™ (£)q1 (B)G () So (1) dAo (1), @

&y m=p(1 — p)(1 - m0) [gw(t)a2(NG(1) So(t)dAo(t), (5)

where ¢1(9 and g»(9) are two functions given by equations (8) and (9) below. Thus, given a
two-sided type I error of a, to achieve a power of 1 — gunder the alternative, the total
sample size n of the two groups must approximately satisfy the following equation:
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1— =0 {n1/2 (v, m)| /o — Zlfa/2} :

The total sample size required for the study can then be determined as

B (Z1fa/2+2175)202
&y ()

Substituting equations (4) and (5) into (6), the formula of the total sample size is given by

 (reptns) TP @@ 0GOS0
p(1—p)(1 = m0)(1 — mo+moe { [w(t)aa ()G () So(t)dAo(t)}  (7)

where

a(t) {p(1 = mo-+moc?)+(1 = p)3[So()]*
Q1(t): D) )
[p+(1 = p)g(t)] (8)

a(t) {3[So®)* M la(#)(1 — mo+moe)] " —1}

p+(1—plg(t) 9)

q2(t)=

where & = ¢"is the hazard ratio of group 1 vs. group 0 as defined by (1), and

moe+(1 — m0)[So (1))’
[7T06’Y+(1 — 7T0)][7T0+(1 — ’/T())So(t)] ’

q(t)=

For the sample size calculation, assume subjects are accrued over an accrual period of
duration £, and an additional follow-up time #z that gives a total study duration of z= £, + t¢
For simplicity, we assume that the only censoring is administrative censoring at time z, and
that there is no loss to follow-up. The censoring distribution G(£) considered in the trial
designs can then be uniform (the distribution of enrollment A2 with density of A% = 1/t;0n
[0, £J]). This leads to the censoring distribution G() = H(t— H = 1 if t< tg = (G + tr— D/, i0f
1< t< B+ 15 = 0 otherwise. Then the integrations in the sample size formula (6) can be
calculated by numeric integrations, for example by using the R function integrate.

4 Simulation

We conducted simulation studies to investigate three important issues: 1) whether the
proposed sample size formula provides an accurate estimation of sample size under the PH
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cure model; 2) what is the relative efficiency of the weighted log-rank test vs. the standard
log-rank test; and 3) how is the accuracy of the proposed formula compared with the
formula derived by Wang et al. [9].

To answer the first question, we assumed a PH cure model with a latency distribution of

Weibull 5 (t) :G_w. The hazard rates of uncured patients and the cure rates were varied to
examine three scenarios: (1) where there were differences in both hazard rates and cure
rates, that is, n# 0, y # 0; (2) where there were differences only between hazard rates, that
is, n# 0, y#0; and (3) where there were differences only between cure rates, that is, =10,
y # 0. The hazard rate of control was set to A = 0.1 and shape parameter was set to x = 0.5,
1 and 2, and the cure rate of control was set to zp = 0.1. The hazard ratio & = €7 under the
alternative was set in a range of 1.471 to 271, and the log-odds ratio of cure rate  was set in
a range of 0 to 1.6. It was assumed in simulations that the treatment group would have a
lower hazard rate and a higher cure rate than the control group if there were differences. In
addition, we considered a uniform accrual with accrual period £, of 1 year and a follow-up
period #rof 10 years. Under each scenario, we calculated sample sizes under equal allocation
(0= 0.5) for the standard log-rank test ({4 = 1) under various parameter configurations,
and the corresponding empirical powers via simulations with 10,000 replicates. The results
(Table 1) showed that the empirical powers were almost identical to the nominal power of
90% for all three scenarios under all parameter configurations. Therefore, we can conclude
that the formula (7) provided accurate sample size estimations.

To investigate the relative efficiency of the weighted log-rank test vs. the standard log-rank
test, we consider a class of Harrington-Fleming ¢”* weight functions

W (t) :{5 (t_)}p{l -8 (t_)}y, where § (¢ ) iis the left-continues version of the Kaplan-
Meier estimate computed from the pooled sample of two groups [12]. Sample sizes were
calculated for both weighted log-rank test and standard log-rank test under same scenarios as
above. The results (Table 2) showed: a) the weighted log-rank test was not as efficient as the
standard log-rank test (with weight function %) for scenarios 1 and 2; b) the weighted log-
rank test with weight function ¢~ was more efficient than the standard log-rank test for
scenario 3. In fact, the weight function ¢ —° is the optimal weight function in scenario 3 as
shown by Gray and Tsiatis [13] and Wu [14].

Finally, the accuracy of the proposed formula (7) was compared to Wang’s formula. We
calculated the sample sizes and the empirical powers for both formulae (Table 3) under the
exponential cure model with three scenarios similar to the Table 1 for a relative longer
follow-up time (similar results were obtained for a relative shorter follow-up time with #= 4
and results are not presented in the paper). The proposed formula (7) gave the accurate
estimation of sample sizes for all the scenarios, while Wang’s formula could either
overestimate or underestimate the sample sizes when the hazard ratio § departures from 1.
Thus, the formula derived by Wang et al. failed to provide the correct sample size estimation
and should not be used for the trial designs in practice.
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5 Example

We illustrate the application of the proposed sample size formula with the use of data from
the Eastern Cooperative Oncology Group (ECOG) trial e1684 [7]. The ECOG trial e1684
was a randomized two-arm phase 111 trial comparing an arm treated with high-dose
interferon alpha-2b with an observation arm. The primary endpoint was relapse-free survival
(RFS), with RFS defined as the time interval from the date of randomization to the date of
disease relapse or death. The trial was originally designed to detect a 50% improvement in
median RFS from 1.5 to 2.25 years, with an accrual period of 4 years and a follow-up period
of 3 years. A sample size of 286 patients was considered, which was expected to yield a
power of 83% based on the standard PH model [9].

Let us now design a randomized two-arm phase 111 trial similar to the ECOG trial by using
the treatment arm of the ECOG trial as the preliminary data for the control arm of the new
trial design. As shown by Kaplan-Meier estimate of this survival data in Fig. 1A, the relapse
events had occurred almost within 4.3 years after the start of treatment, and approximately
35% of patients were cured (in the sense that they survived throughout the study period). We
fitted survival data of all patients with the Weibull distribution, as shown in Fig. 1B. The
fitted parametric survival model obviously did not match well the survival data, especially as
the parametric model failed to present the later plateau of the empirical survival curve. The
Kaplan-Meier estimate in Fig. 1A suggests that the patient cohort consisted of two parts:
patients who would probably experience relapse within 4.3 years after the start of treatment
and patients who would be cured in the sense that they would relapse-free for 7 years after
the start of treatment. Thus, a cure model is appropriate. The SAS macro PSPMCM was
applied to this data to fit the treatment arm data under the Weibull cure model, with an
estimated shape parameter x = 1.018, scale parameter A = 0.836, and cure rate of 35%.
Then, we have the Weibull cure model Sj; (t) =m¢+ (1 — mg) So (t) for the control group
which matches well with the Kaplan-Meier survival curve, where g = 0.35 and Sy(4) =
exp(-0.8364-018) (Fig. 1C and 1D).

For the trial design under the PH cure model, assume the alternatives for the three scenarios
are as follows: 1) 7y > g and &< 1: to detect a hazard ratio §= 151 (6= €7) and a 10%
increase in cure rate (i.e., 7y = 0.45); 2) 7y = mg and 6 < 1: to detect a hazard ratio 6= 2.071
and identical 35% cure rates for the two groups; and 3) 7; > mg and § = 1: to detect a 15%
increase in cure rate (i.e., 7z; = 0.50) and keep the hazard rates the same for the two groups
(i.e., 6=1). With equal allocation (p= 0.5) and uniform accrual with £;,=4, =3, n=

o U (1 — 7T())
log(&), and Y=108 (m) we can calculate the sample sizes by using the sample
size formula (7). To achieve a power of 90% with a two-sided type I error of 0.05 under the
Weibull PH cure model, sample sizes of 468, 762, and 505 are required for scenarios 1, 2,
and 3, respectively, and corresponding empirical powers based on 10,000 simulation runs are
0.902, 0.903 and 0.904, respectively. The corresponding sample sizes calculated by Wang’s
formula are 473, 1135, and 557 for scenarios 1, 2, and 3, respectively, and corresponding
empirical powers based on 10,000 simulation runs are 0.902, 0.977 and 0.926, respectively.
The R code for the sample size calculation is given in Appendix.
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6 Conclusion

In this paper, we have derived a new sample size formula for the log-rank test under the PH
cure model. The simulations have shown that the proposed formula provides an accurate
estimation of sample size under the PH cure models and corrects the sample size calculation
proposed by Wang et al. [9]. The efficiency of a class of Harrington-Fleming ¥V weighted
log-rank test is explored. For both scenarios 1 and 2, the ¢ weighted log-rank test may not
be as efficient as the standard log-rank test. However, the weighted log-rank test with ¢~
weight function is more efficient than the standard log-rank test for the scenario 3. It is
interested to investigate the optimal weight function for the scenarios 2 and 3. This will be a
future research topic.
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Appendix: R code for the sample size calculations of the example

Size=function(kappa, lambdaO, piO, pil, p, ta, tf, HR, alpha, power)
{z0=gnorm(1-alphas/2); zl=qgnorm(power)
tau=ta+tf; delta=1/HR
gamma=log(pil/(1-pil))-log(pi0/(1-pi0))
q:function(t){num:piO*exp(gamma)+(1—piO)*SO(t)Adelta
den=(pi0*exp(gamma)+(1-pi0))*(piO+(1-pi0)*SO(L))
ans=num/den; return(ans)}
SO:function(t){exp(—lambdaO*tAkappa)}
hO:function(t){kappa*lambdaO*tA(kappa—l)}
G=function(t){1-punif(t, tf, tau)}
gl=function(t){den=(p+(1-p)*q(t)) 2
num=q(t)*(p*(1—piO+piO*exp(gamma))+(1—p)*deIta*SO(t)A(delta—l))
ans=num/den; return(ans)}
g2=function(t){den=p+(1-p)*q(t)
num:q(t)*(deIta*SO(t)A(deIta—l)/(q(t)*(l—piO+pi0*exp(gamma)))—1)
ans=num/den; return(ans)}
fl=Function(t){gl(t)*G(t)*So(t)*ho(t)}
f2=Function(t){g2(t)*G(t)*S0(t)*ho(t)}
A=integrate(fl, 0, tau)$value
B=integrate(f2, 0, tau)$value
nX=(z0+z1)"2*A/ (p*(1-p)* (1-pi0)* (1-piO+pi 0*exp(gamma))*B" 2)
m=Function(t){pi0*(gamma-log(delta)*1og(SO0(t)))/(piO+(1-pi0)*SO(L))
-log(delta)}
gl=function(t){G(t)*S0(t)*ho(t)}
g2=function(t){m(t)*G(t)*SO0(t)*ho(t)}
C=integrate(gl, 0, tau)$value
D=integrate(g2, 0, tau)$value
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nW=(z0+21) " 2*C/ (p*(1-p)*(1-pi0)*D"2)
ans=ceiling(c(nX, nW)); return(ans)}

Size(kappa=1.018, lambda0=0.836,pi0=0.35,pi1=0.45,p=0.5,ta=4,tf=3,
HR=1.5,alpha=0.05, power=0.90)

468 473

Size(kappa=1.018, lambda0=0.836,pi0=0.35,pi1=0.35,p=0.5, ta=4,tf=3,
HR=2_0,alpha=0.05,power=0.90)

762 1135

Size(kappa=1.018, lambda0=0.836,pi0=0.35,pi1=0.50,p=0.5, ta=4,tf=3,

HR=1.0,alpha=0.05,power=0.90)
505 557
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B. Standard Weibull model for all patients

t t

Figure 1. KM curves (step function) and fitted Weibull models (solid curve) for the treatment
arm of ECOG trial e1684 data

Fig. 1A: KM curve for all patients; Fig. 1B: KM curve and Weibull model for all patients;
Fig. 1C: KM curve and Weibull model for failed patients; Fig. 1D: KM curve and Weibull
cure model for all patients.
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