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Abstract

The treatment of cancer has progressed dramatically in recent decades, such that it is no longer 

uncommon to see a cure or log-term survival in a significant proportion of patients with various 

types of cancer. To adequately account for the cure fraction when designing clinical trials, the cure 

models should be used. In this article, a sample size formula for the weighted log-rank test is 

derived under the fixed alternative hypothesis for the proportional hazards cure models. Simulation 

showed that the proposed sample size formula provides an accurate estimation of sample size for 

designing clinical trials under the proportional hazards cure models.

Keywords

clinical trial; cure model; proportional hazards model; log-rank test; sample size calculation; 
survival analysis

1 Introduction

The treatment of cancer has progressed dramatically in recent decades, such that it is no 

longer uncommon to see a cure or long-term survival in a significant proportion of patients 

with various types of cancer, e.g., breast cancer, non-Hodgkin lymphoma, leukemia, prostate 

cancer, melanoma, and head and neck cancer [1]. To adequately account for cured patients in 

survival data from clinical trials, the cure models are increasingly useful. Various parametric 

and semiparametric cure models have been proposed by Farewell [2], Peng et al. [3] and 

Kuk and Chen [4], among others, and a maximum-likelihood EM algorithm for parametric 

and semiparametric cure models has been proposed by Peng and Dear [5] and Sy and Taylor 

[6]. A SAS macro PSPMCM developed by Corbiere and Joly [7] is available to fit both 

parametric and semiparametric cure models.

The traditional methods for designing survival trials may not be appropriate when there is a 

cure fraction. Sample size calculations have been developed for clinical trial designs under 

the cure models. For example, Halpern and Brown [8] developed a computer program to 

calculate the power and sample size for exponential cure models based on Monte Carlo 

simulation. Ewell and Ibrahim [1] provided a power formula for exponential cure models by 

considering a general alternative that allows for the effects of treatment on both short- and 

long-term survival. Recently, Wang et al. [9] considered a proportional hazards (PH) cure 

model, a special case of the general alternative proposed by Ewell and Ibrahim [1], and 
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derived a sample size formula for the weighted log-rank test under a series of local 

alternatives. However, Wu [10] has pointed out that Wang’s formula does not provide 

adequate sample size or power for clinical trial designs. A series of local alternatives is that 

the alternative need to change along with the sample size such that the difference in 

parameter to be detected under the alternative need to diminish towards 0 in a rate of 

as the sample size n getting large towards infinity. The fixed alternative is that the difference 

in parameter to be detected under the alternative is fixed and not depending on the sample 

size. A sample size established under a series of local alternatives works well only when the 

value of parameter under the alternative is very close to the one under the null hypothesis, 

whereas no such restriction for the fixed alternative.

In this paper, we derived a novel sample size formula for the weighted log-rank test under 

the PH cure model. The rest of the paper is organized as follows. The PH cure models are 

introduced in section 2. The sample size formula is presented in section 3. Simulations are 

conducted in section 4 to study the performance of the proposed sample size formula and 

compared with Wang’s formula. Section 5 illustrates clinical trial design using the proposed 

methods. The conclusion and additional remarks are presented in section 6.

2 Proportional Hazards Cure Models

The failure time, T*, is assumed to be T* = vT + (1 − v)∞, where v is an indicator of 

whether a subject will eventually (v = 1) or never (v = 0) experience treatment failure, and T 
denotes the failure time if the subject is not cured, with a survival distribution S(t), which is 

the conditional distribution for patients who will experience failure, and is often called the 

latency distribution. Thus, the overall survival distribution of T* is a mixture model of a cure 

rate π = P(v = 0) and a latency distribution S(t) given by

For a two-arm randomized survival trial, let  denote the overall survival function and let 

 denote its corresponding hazard function for group j, where j = 0, 1 represents control 

group and treatment group, respectively. Similarly, let Sj(t) denote the survival function in 

uncured patients and let λj(t) denote its hazard function. The cure rate in group j is defined 

by πj, where 0 ≤ πj ≤ 1. For the mixture cure model, we have

and

for j = 0, 1. To derive the sample size calculation, we consider a class of PH cure models [1]

[9] in which
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(1)

where η is the log-hazard ratio of treatment vs. control for uncured patients and γ is the log-

odds ratio of the cure rates for the two groups. Note that π0 = π1 = 0 corresponds to the 

standard PH model. However, if either π0 ≠ 0 or π1 ≠ 0, the PH cure model does not satisfy 

the proportional hazards condition. For a survival trial in which a proportion of patients are 

cured, we are interested in testing the following null hypothesis:

which is equivalent to H0: η = γ = 0. Various alternative hypotheses are of interest: H1a : η ≠ 

0, γ ≠ 0, with differences in both the short-term survival and the cure fraction; H1b : η ≠ 0, γ 
= 0, with a difference in the short-term survival but not in the cure fraction; and H1c : η = 0, 

γ ≠ 0, with difference in the cure fraction but not in the short-term survival.

3 Sample Size Formula

Consider a class of PH cure models as defined by the equations in (1). The sample size 

calculation is based on testing the null hypothesis

(2)

against one of the three alternative hypotheses, H1a, H1b, and H1c, defined in the previous 

section. The weighted or unweighted log-rank test can be used for testing this hypothesis. It 

is well known that the log-rank test is asymptotically normal distributed. To derive the 

asymptotic distribution of the log-rank test statistic under the alternatives hypotheses, 

suppose a survival trial involving n subjects, and let Ti and Ci denote the survival and 

censoring times of patient i, respectively, and Zi = 0/1 denote the treatment group indicator 

(0 for control group and 1 for treatment group). The observed data then consist of {Xi, Δi, 

Zi, i = 1, …, n}, where Xi = min(Ti, Ci) and Δi = I(Ti ≤ Ci). Let Ni(t) = ΔiI(Xi ≤ t) and Yi(t) 
= I(Xi ≥ t) be the failure and at-risk processes for i = 1, …, n. The weighted log-rank test 

statistic can then be written as

where τ is the study duration and 

and wi = W(ti) with W(t) as a weight function that converges to w(t). Under the PH cure 

models (1), the hazard function of patient i is given by
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Given a type I error of α and power of 1−β under a series of local alternatives, the sample 

size formula derived by Wang et al. [9] is given by

(3)

where p is the proportion of sample size allocation for the control group, G(t) is the common 

survival distribution of censoring time of two groups and 

with Λ0(t) = − log S0(t) and .

There are two issues relating to the approach of sample size calculation based on a series of 

local alternatives. The theoretical issue is that the accuracy of the formula derived under the 

local alternative is not guaranteed when the alternative departures from the null. The 

practical issue is that the alternative hypothesis in application is always fixed, which does 

not change as the sample size changes. Thus, it is expected that the formula performances 

well only when the alternative is close to the null. Our simulation will show (see section 4) 

that this formula becomes practically unfitting when the alternative departs reasonably away 

from the null.

To overcome the inaccuracy of the formula (3), here we derive the asymptotic distribution of 

the log-rank test under the fixed alternative hypothesis by using a novel approach developed 

by Xiong [11] in which a theoretic development has showed that the log-rank test is not 

limited to the tests of proportional hazards model but can be used for more general survival 

models including the PH cure model. The details of the derivation are very complicated and 

tedious, and out of scope of this paper. Thus, we present the results in here and omit the 

details. It can be shown that , as n → ∞, where

(4)

(5)

where q1(t) and q2(t) are two functions given by equations (8) and (9) below. Thus, given a 

two-sided type I error of α, to achieve a power of 1 − β under the alternative, the total 

sample size n of the two groups must approximately satisfy the following equation:
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The total sample size required for the study can then be determined as

(6)

Substituting equations (4) and (5) into (6), the formula of the total sample size is given by

(7)

where

(8)

(9)

where δ = eη is the hazard ratio of group 1 vs. group 0 as defined by (1), and

For the sample size calculation, assume subjects are accrued over an accrual period of 

duration ta and an additional follow-up time tf, that gives a total study duration of τ = ta + tf. 
For simplicity, we assume that the only censoring is administrative censoring at time τ, and 

that there is no loss to follow-up. The censoring distribution G(t) considered in the trial 

designs can then be uniform (the distribution of enrollment H(t) with density of h(t) = 1/ta on 

[0, ta]). This leads to the censoring distribution G(t) = H(τ − t) = 1 if t ≤ tf; = (ta + tf − t)/ta if 
tf ≤ t ≤ ta + tf; = 0 otherwise. Then the integrations in the sample size formula (6) can be 

calculated by numeric integrations, for example by using the R function integrate.

4 Simulation

We conducted simulation studies to investigate three important issues: 1) whether the 

proposed sample size formula provides an accurate estimation of sample size under the PH 
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cure model; 2) what is the relative efficiency of the weighted log-rank test vs. the standard 

log-rank test; and 3) how is the accuracy of the proposed formula compared with the 

formula derived by Wang et al. [9].

To answer the first question, we assumed a PH cure model with a latency distribution of 

Weibull . The hazard rates of uncured patients and the cure rates were varied to 

examine three scenarios: (1) where there were differences in both hazard rates and cure 

rates, that is, η ≠ 0, γ ≠ 0; (2) where there were differences only between hazard rates, that 

is, η ≠ 0, γ ≠ 0; and (3) where there were differences only between cure rates, that is, η = 0, 

γ ≠ 0. The hazard rate of control was set to λ = 0.1 and shape parameter was set to κ = 0.5, 

1 and 2, and the cure rate of control was set to π0 = 0.1. The hazard ratio δ = eη under the 

alternative was set in a range of 1.4−1 to 2−1, and the log-odds ratio of cure rate γ was set in 

a range of 0 to 1.6. It was assumed in simulations that the treatment group would have a 

lower hazard rate and a higher cure rate than the control group if there were differences. In 

addition, we considered a uniform accrual with accrual period ta of 1 year and a follow-up 

period tf of 10 years. Under each scenario, we calculated sample sizes under equal allocation 

(p = 0.5) for the standard log-rank test (w(t) = 1) under various parameter configurations, 

and the corresponding empirical powers via simulations with 10,000 replicates. The results 

(Table 1) showed that the empirical powers were almost identical to the nominal power of 

90% for all three scenarios under all parameter configurations. Therefore, we can conclude 

that the formula (7) provided accurate sample size estimations.

To investigate the relative efficiency of the weighted log-rank test vs. the standard log-rank 

test, we consider a class of Harrington-Fleming  weight functions 

, where  is the left-continues version of the Kaplan-

Meier estimate computed from the pooled sample of two groups [12]. Sample sizes were 

calculated for both weighted log-rank test and standard log-rank test under same scenarios as 

above. The results (Table 2) showed: a) the weighted log-rank test was not as efficient as the 

standard log-rank test (with weight function ) for scenarios 1 and 2; b) the weighted log-

rank test with weight function  was more efficient than the standard log-rank test for 

scenario 3. In fact, the weight function  is the optimal weight function in scenario 3 as 

shown by Gray and Tsiatis [13] and Wu [14].

Finally, the accuracy of the proposed formula (7) was compared to Wang’s formula. We 

calculated the sample sizes and the empirical powers for both formulae (Table 3) under the 

exponential cure model with three scenarios similar to the Table 1 for a relative longer 

follow-up time (similar results were obtained for a relative shorter follow-up time with tf = 4 

and results are not presented in the paper). The proposed formula (7) gave the accurate 

estimation of sample sizes for all the scenarios, while Wang’s formula could either 

overestimate or underestimate the sample sizes when the hazard ratio δ departures from 1. 

Thus, the formula derived by Wang et al. failed to provide the correct sample size estimation 

and should not be used for the trial designs in practice.
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5 Example

We illustrate the application of the proposed sample size formula with the use of data from 

the Eastern Cooperative Oncology Group (ECOG) trial e1684 [7]. The ECOG trial e1684 

was a randomized two-arm phase III trial comparing an arm treated with high-dose 

interferon alpha-2b with an observation arm. The primary endpoint was relapse-free survival 

(RFS), with RFS defined as the time interval from the date of randomization to the date of 

disease relapse or death. The trial was originally designed to detect a 50% improvement in 

median RFS from 1.5 to 2.25 years, with an accrual period of 4 years and a follow-up period 

of 3 years. A sample size of 286 patients was considered, which was expected to yield a 

power of 83% based on the standard PH model [9].

Let us now design a randomized two-arm phase III trial similar to the ECOG trial by using 

the treatment arm of the ECOG trial as the preliminary data for the control arm of the new 

trial design. As shown by Kaplan-Meier estimate of this survival data in Fig. 1A, the relapse 

events had occurred almost within 4.3 years after the start of treatment, and approximately 

35% of patients were cured (in the sense that they survived throughout the study period). We 

fitted survival data of all patients with the Weibull distribution, as shown in Fig. 1B. The 

fitted parametric survival model obviously did not match well the survival data, especially as 

the parametric model failed to present the later plateau of the empirical survival curve. The 

Kaplan-Meier estimate in Fig. 1A suggests that the patient cohort consisted of two parts: 

patients who would probably experience relapse within 4.3 years after the start of treatment 

and patients who would be cured in the sense that they would relapse-free for 7 years after 

the start of treatment. Thus, a cure model is appropriate. The SAS macro PSPMCM was 

applied to this data to fit the treatment arm data under the Weibull cure model, with an 

estimated shape parameter κ = 1.018, scale parameter λ = 0.836, and cure rate of 35%. 

Then, we have the Weibull cure model  for the control group 

which matches well with the Kaplan-Meier survival curve, where π0 = 0.35 and S0(t) = 

exp(−0.836t1.018) (Fig. 1C and 1D).

For the trial design under the PH cure model, assume the alternatives for the three scenarios 

are as follows: 1) π1 > π0 and δ < 1: to detect a hazard ratio δ = 1.5−1 (δ = eη) and a 10% 

increase in cure rate (i.e., π1 = 0.45); 2) π1 = π0 and δ < 1: to detect a hazard ratio δ = 2.0−1 

and identical 35% cure rates for the two groups; and 3) π1 > π0 and δ = 1: to detect a 15% 

increase in cure rate (i.e., π1 = 0.50) and keep the hazard rates the same for the two groups 

(i.e., δ = 1). With equal allocation (p = 0.5) and uniform accrual with ta = 4, tf = 3, η = 

log(δ), and , we can calculate the sample sizes by using the sample 

size formula (7). To achieve a power of 90% with a two-sided type I error of 0.05 under the 

Weibull PH cure model, sample sizes of 468, 762, and 505 are required for scenarios 1, 2, 

and 3, respectively, and corresponding empirical powers based on 10,000 simulation runs are 

0.902, 0.903 and 0.904, respectively. The corresponding sample sizes calculated by Wang’s 

formula are 473, 1135, and 557 for scenarios 1, 2, and 3, respectively, and corresponding 

empirical powers based on 10,000 simulation runs are 0.902, 0.977 and 0.926, respectively. 

The R code for the sample size calculation is given in Appendix.
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6 Conclusion

In this paper, we have derived a new sample size formula for the log-rank test under the PH 

cure model. The simulations have shown that the proposed formula provides an accurate 

estimation of sample size under the PH cure models and corrects the sample size calculation 

proposed by Wang et al. [9]. The efficiency of a class of Harrington-Fleming  weighted 

log-rank test is explored. For both scenarios 1 and 2, the  weighted log-rank test may not 

be as efficient as the standard log-rank test. However, the weighted log-rank test with 

weight function is more efficient than the standard log-rank test for the scenario 3. It is 

interested to investigate the optimal weight function for the scenarios 2 and 3. This will be a 

future research topic.
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Appendix: R code for the sample size calculations of the example

Size=function(kappa, lambda0, pi0, pi1, p, ta, tf, HR, alpha, power)

{z0=qnorm(1−alpha/2); z1=qnorm(power)

 tau=ta+tf; delta=1/HR

 gamma=log(pi1/(1−pi1))−log(pi0/(1−pi0))

 q=function(t){num=pi0*exp(gamma)+(1−pi0)*S0(t)^delta

   den=(pi0*exp(gamma)+(1−pi0))*(pi0+(1−pi0)*S0(t))

   ans=num/den; return(ans)}

 S0=function(t){exp(−lambda0*t^kappa)}

 h0=function(t){kappa*lambda0*t^(kappa−1)}

 G=function(t){1−punif(t, tf, tau)}

 q1=function(t){den=(p+(1−p)*q(t))^2

   num=q(t)*(p*(1−pi0+pi0*exp(gamma))+(1−p)*delta*S0(t)^(delta−1))

   ans=num/den; return(ans)}

 q2=function(t){den=p+(1−p)*q(t)

   num=q(t)*(delta*S0(t)^(delta−1)/(q(t)*(1−pi0+pi0*exp(gamma)))−1)

   ans=num/den; return(ans)}

 f1=function(t){q1(t)*G(t)*S0(t)*h0(t)}

 f2=function(t){q2(t)*G(t)*S0(t)*h0(t)}

 A=integrate(f1, 0, tau)$value

 B=integrate(f2, 0, tau)$value

 nX=(z0+z1)^2*A/(p*(1−p)*(1−pi0)*(1−pi0+pi0*exp(gamma))*B^2)

 m=function(t){pi0*(gamma−log(delta)*log(S0(t)))/(pi0+(1−pi0)*S0(t))

−log(delta)}

 g1=function(t){G(t)*S0(t)*h0(t)}

 g2=function(t){m(t)*G(t)*S0(t)*h0(t)}

 C=integrate(g1, 0, tau)$value

 D=integrate(g2, 0, tau)$value
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 nW=(z0+z1)^2*C/(p*(1−p)*(1−pi0)*D^2)

 ans=ceiling(c(nX, nW)); return(ans)}

Size(kappa=1.018,lambda0=0.836,pi0=0.35,pi1=0.45,p=0.5,ta=4,tf=3, 

HR=1.5,alpha=0.05,power=0.90)

468 473

Size(kappa=1.018,lambda0=0.836,pi0=0.35,pi1=0.35,p=0.5,ta=4,tf=3, 

HR=2.0,alpha=0.05,power=0.90)

762 1135

Size(kappa=1.018,lambda0=0.836,pi0=0.35,pi1=0.50,p=0.5,ta=4,tf=3, 

HR=1.0,alpha=0.05,power=0.90)

505 557
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Figure 1. KM curves (step function) and fitted Weibull models (solid curve) for the treatment 
arm of ECOG trial e1684 data
Fig. 1A: KM curve for all patients; Fig. 1B: KM curve and Weibull model for all patients; 

Fig. 1C: KM curve and Weibull model for failed patients; Fig. 1D: KM curve and Weibull 

cure model for all patients.
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