Skip to main content
. Author manuscript; available in PMC: 2017 Aug 30.
Published in final edited form as: Pharm Stat. 2016 Nov 8;16(1):87–94. doi: 10.1002/pst.1790

Table 1.

Sample sizes were calculated under the Weibull cure model for the standard log-rank test with a nominal level of 0.05 and power of 90% (two-sided test, uniform accrual and equal allocation). The corresponding empirical type I errors and powers were estimated based on 10,000 simulation runs.

δ−1 n
α^
EP n
α^
EP n
α^
EP

Design κ = 0.5 κ = 1 κ = 2
Scenario 1: η ≠ 0 γ ≠ 0

π0 = 0.1 1.2/0.4 3445 .050 .903 1385 .050 .902 1075 .047 .897
λ0 = 0.1 1.3/0.5 1818 .047 .902 734 .051 .901 599 .052 .902
ta = 1 1.4/0.6 1165 .052 .904 469 .053 .898 389 .052 .901
tf = 10 1.5/0.7 833 .048 .902 333 .052 .897 276 .049 .905
1.6/0.8 638 .053 .899 253 .051 .905 208 .048 .897
1.7/0.9 512 .053 .900 202 .051 .906 164 .050 .900
1.8/1.0 426 .049 .909 166 .052 .900 133 .053 .903

Scenario 2: η ≠ 0 γ = 0

π0 = 0.1 1.4/0 1783 .049 .900 801 .048 .900 1335 .048 .902
π1 = 0.1 1.5/0 1266 .044 .904 562 .052 .902 927 .052 .900
λ0 = 0.1 1.6/0 970 .049 .903 425 .048 .903 696 .049 .900
ta = 1 1.7/0 783 .048 .907 340 .049 .904 551 .051 .902
tf = 10 1.8/0 655 .053 .904 281 .052 .897 454 .050 .901
1.9/0 563 .052 .911 240 .053 .904 385 .054 .896
2.0/0 495 .051 .904 209 .050 .908 333 .052 .905

Scenario 3: η = 0 γ ≠ 0

π0 = 0.1 1/1.0 5627 .049 .900 1489 .050 .899 427 .052 .905
λ0 = 0.1 1/1.1 4306 .049 .904 1148 .050 .904 338 .047 .902
λ1 = 0.1 1/1.2 3356 .047 .897 902 .052 .900 272 .052 .901
ta = 1 1/1.3 2657 .052 .903 720 .049 .897 222 .050 .899
tf = 10 1/1.4 2133 .050 .900 583 .047 .903 184 .051 .908
1/1.5 1734 .053 .895 478 .050 .902 154 .049 .902
1/1.6 1425 .046 .908 396 .050 .898 131 .051 .911