Skip to main content
. Author manuscript; available in PMC: 2017 Aug 30.
Published in final edited form as: Pharm Stat. 2016 Nov 8;16(1):87–94. doi: 10.1002/pst.1790

Table 2.

Comparison efficiency of the weighted log-rank test versus the standard log-rank test based on calculated sample sizes under the exponential cure model with a nominal type I error of 0.05 and power of 90% (two-sided test, uniform accrual and equal allocation).

Weight function

Design δ−1/γ
G0,0
G0,1
G1,0
G1,1
G1,0
G1,1
Scenario 1: η ≠ 0 γ ≠ 0

π0 = 0.1 1.2/0.4 1385 1810 1460 1620 1446 2101
λ0 = 0.1 1.3/0.5 734 966 769 866 765 1115
ta = 1 1.4/0.6 469 617 490 556 487 708
tf = 10 1.5/0.7 333 438 347 395 345 499
1.6/0.8 253 332 264 301 261 376
1.7/0.9 202 263 210 240 207 296
1.8/1.0 166 216 173 197 170 242

Scenario 2: η ≠ 0 γ = 0

π0 = 0.1 1.4/0.0 801 1130 819 990 858 1337
λ0 = 0.1 1.5/0.0 562 788 574 694 598 925
ta = 1 1.6/0.0 425 594 435 525 451 692
tf = 10 1.7/0.0 340 472 348 419 359 547
1.8/0.0 282 389 288 347 296 449
1.9/0.0 240 330 246 295 251 379
2.0/0.0 209 287 214 257 218 327

Scenario 3: η = 0 γ ≠ 0

π0 = 0.1 1.0/1.0 1489 1554 1720 1495 1414 1687
λ0 = 0.1 1.0/1.1 1148 1202 1321 1156 1092 1304
ta = 1 1.0/1.2 902 948 1033 910 859 1027
tf = 10 1.0/1.3 720 759 821 728 687 822
1.0/1.4 583 617 662 591 557 667
1.0/1.5 478 507 540 486 457 548
1.0/1.6 396 422 446 404 379 455