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Abstract

In this article, sample size calculations are developed for use when the main interest is in the 

differences between the cure rates of two groups. Following the work of Ewell and Ibrahim, the 

asymptotic distribution of the weighted log-rank test is derived under the local alternative. The 

optimal log-rank test under the proportional distributions alternative is discussed, and sample size 

formulae for the optimal and standard log-rank tests are derived. Simulation results show that the 

proposed formulae provide adequate sample size estimation for trial designs and that the optimal 

log-rank test is more efficient than the standard log-rank test, particularly when both cure rates and 

percentages of censoring are small.
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1 Introduction

When survival data include a portion of cured patients or long-term survivors, cure models 

are useful for analyzing the data and designing clinical trials. Recently, various parametric 

and semiparametric cure models have been proposed by Farewell (1982), Peng et al. (1998), 

and Kuk and Chen (1992). A maximum-likelihood expectation-maximization (EM) 

algorithm for parametric and semiparametric cure models has been proposed by Peng and 

Dear (2000) and Sy and Taylor (2000). A SAS macro PSPMCM, developed by Corbiere and 

Joly (2007), is available to fit both parametric and semiparametric cure models. Thus, 

survival data in which a portion of patients are cured can be analyzed using these methods 

for the purpose of designing clinical trials using the selected cure models.

In a cancer clinical trial in which a portion of patients experience long-term survival, the 

main interest is often in the differences between cure rates. Examples from the Children’s 

Cancer Group trials are given by Lee and Sather (1995). To develop an appropriate test for 

testing the differences between cure rates in a two-arm randomized trial, Gray and Tsiatis 

(1989) proposed a family of cure models with a proportional distributions alternative. The 

optimal log-rank test was discussed under the proportional distributions alternative, which 

has the form of a Gρ test where ρ = −1 (Harrington and Fleming, 1982), and its efficacy 

relative to that of the standard log-rank test was also investigated. Ewell and Ibrahim (1997) 

extended the work of Gray and Tsiatis by deriving the large sample distribution of the 
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weighted log-rank test under a more general sequence of local alternatives that allows for 

treatment effects on both short- and long-term survival. They also derived a power 

calculation for the weighted log-rank test assuming exponential failure times.

In this article, we focus on the situation where the main interest is in the differences between 

the cure rates of two groups. Following the work of Ewell and Ibrahim, sample size 

formulae are derived for both the standard log-rank test and the optimal weighted log-rank 

test. The relative efficacy of the two tests is also discussed.

The rest of the paper is organized as follows. A mixture cure model is introduced in Section 

2. The sample size formula for the weighted log-rank test is derived in Section 3. The 

optimal log-rank test and its sample size formula are obtained in Section 4. In section 5, 

comparisons of the efficiency and robustness of the two tests are presented, and simulations 

are conducted to study the performance of the proposed sample size formulae. Section 6 

illustrates clinical trial design using the proposed methods. Conclusions are presented in 

section 7.

2 Cure Models

The failure time, T∗, is assumed to be vT +(1−v)∞, where v is an indicator of whether a 

subject will eventually (v = 1) or never (v = 0) experience treatment failure, and T denotes 

the failure time if the subject is not cured, with a survival distribution S(t), which is the 

conditional distribution for patients who will experience treatment failure and is often called 

the latency distribution. Thus, the unconditional survival distribution of T∗ is a mixture 

model of a cure rate π = P(v = 0) and a latency distribution S(t) given by

Let λ∗(t) and λ(t) be the hazard functions of T∗ and T, respectively. We then have the 

following relation between the two hazard functions:

For a two-arm randomized survival trial, let  and Cij denote the survival and censoring 

times, respectively, of patient i in the jth group, where j = 1, 2 (1 for the control group and 2 

for the treatment group). The observed data then consist of {Xij; Δij; i = 1, …, nj, j = 1, 2}, 

where  and . It is commonly assumed that 

 are independent and identically distributed samples of (Tj, Cj) for 

control (j = 1) and treatment (j = 2) and that Tij is independent of Cij. Let  denote the 

unconditional survival distribution and let  denote its hazard function for the jth group. 

When the main interest is in testing for differences between cure rates, it is reasonable to 

assume that the conditional survival distributions are the same for the two groups and are 

denoted by S(t), with the hazard function and cumulative hazard function being denoted by 
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λ(t) and Λ(t), respectively. The cure rate for the jth group is defined by πj, where 0 ≤ πj < 1. 

Then, the survival distribution of the mixture cure model for the jth group is given by

(1)

and the hazard function for the jth group is given by

We are interested in testing the following hypothesis:

(2)

Furthermore, we define the parameters γ and π0 as follows:

where γ is the half-log ratio of the failure rates, and π0 is the proportion of cured patients 

under the null hypothesis. Then, hypothesis (2) is equivalent to the following hypothesis:

(3)

The mixture cure model (1) can be written as

(4)

and the corresponding hazard function is given by

(5)

This alternative implies that the unconditional failure distributions for two groups are 

proportional; it is called a proportional distributions alternative by Gray and Tsiatis (1989).

To test hypothesis (2) or (3), or the difference in the unconditional failure distributions, a 

weighted score test can be used, which is given by
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where n = n1 + n2 is the total sample size of two groups, W(t) is a weight function that 

converges in probability to w(t), Nj(t) is the number of observed failures by time t, Yj(t) is 

the number of subjects at risk just prior to t in groups j = 1, 2, and Y (t) = Y1(t) + Y2(t). By 

the martingale central limit theorem (Fleming and Harrington, 1991), under the null 

hypothesis, Uw converges in distribution to a normal variable with a mean of zero and 

variance

(6)

where p = limn→∞ n1/n, and G(t) is the common survival distribution of the censoring time 

of two groups (see appendix). The variance  in (6) can be estimated by

where N(t) = N1(t) + N2(t). Therefore, under the null hypothesis, the weighted log-rank test 

 is asymptotically standard normal distributed. Thus, given a significance level 

α, we reject the null hypothesis if |Lw| > z1−α/2, where z1−α/2 is the 100(1 − α/2)th percentile 

of the standard normal distribution.

3 Sample Size Formula

To derive the sample size formula, we need to know the asymptotic distribution of the 

weighted log-rank test under the alternative hypothesis. Consider a sequence of local 

alternatives

where n1/2γn = γa. Under the local alternatives, as shown in the appendix, the weighted log-

rank test  converges in distribution to a normal variable with unit variance and 

mean μ(w, γa)/σw, where  is given by (6), and

(7)

for which .
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Therefore, on the basis of the limiting distribution of Lw under the local alternative, given a 

type I error of α, to achieve a power of 1 − β, the total sample size n of two groups must 

approximately satisfy the following equation:

For a local alternative γ, we replace γa by n1/2γ. Then, the sample size required to detect a 

local alternative γ can be determined by

(8)

Substituting equations (6) and (7) into (8), the total sample size for the weighted log-rank 

test can be calculated by

(9)

4 Optimal Log-rank Test

It is well known that the log-rank test is optimal against the proportional hazards model. 

However, the cure model (1) does not satisfy the proportional hazards assumption; thus, the 

log-rank test is not an optimal test, and a study design based on the log-rank test is not fully 

efficient. Therefore, it is desirable to find an optimal test for the cure model (1) under the 

local proportional distributions alternative. As the mean of the weighted log-rank test is 

proportional to

where h(t) = G(t)S(t)λ(t), by using the Cauchy-Schwartz inequality, we obtain the following 

inequality:

with equality if only if w(t) is proportional to . That is, the optimal weight function 

w(t) is proportional to , which minimizes the sample size given by formula (9). 

Thus, taking the weight function W (t) = {K(t−)}−1, where K(t−) is the left-continuous 

version of the Kaplan-Meier estimate computed from the pooled sample of two groups, 

gives the asymptotically optimal test for the proportional distributions alternative. Hence, by 

substituting  into formula (9), the sample size for the optimal log-rank test 

LK is given by
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(10)

and by substituting w(t) = 1 into formula (9), the sample size for the standard log-rank test L 
is given by

(11)

The asymptotic relative efficiency ρ = n/nK (Randales and Wolfe, 1979) of the optimal test 

compared to the standard log-rank test is given by

(12)

In the special case when there is no censoring, that is, when G(t) = 1, the asymptotic relative 

efficiency ρ in (12) is reduced to

5 Comparison

We investigated three important issues. First, we studied the relative efficiency of the 

optimal log-rank test versus the standard log-rank test. Second, we evaluated the robustness 

of the optimal and standard log-rank tests when the hazard parameter was misspecified in 

the trial design. Third, we investigated the performance of the two sample size formulae 

under various design scenarios.

The relative efficiency ρ given in equation (12) was calculated for selected cure rates under 

the exponential cure model with an uncured hazard parameter λ = 1. Assume a uniform 

accrual over [0, τ] and no follow-up period, where τ is determined by the percentage of 

censoring ranging from 0% to 50%. The results (Table 1) showed that when the cure rate π0 

was at most 10% and there was no censoring, the gain in efficiency of the optimal log-rank 

test versus the standard log-rank test was more than 50%, whereas if the cure rate π0 was at 

least 50%, the gain in efficiency was less than 5%. If the percentage of censoring was more 

than 50%, then the gain in efficiency was less than 10%, regardless of the cure rate. We also 

investigated the relative efficiency through the sample size calculations. Under the same 

assumptions, sample sizes were calculated under various combinations of the cure rates of 

two groups. Similarly, the largest gain in efficiency was achieved when both the cure rate 

and percentage of censoring were small (Table 2).
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To evaluate the robustness of the two tests, sample sizes (n) were calculated under 

exponential models with hazard parameters λ = 0.1 and 1. Cure rates were set to π1 = 0.1 

and , where γ0 ranged from 1.5 to 2.0, accrual time ta = 1, and 

follow-up time tf = 2. Sample sizes (n∗) were also calculated under misspecification of the 

hazard parameter within a range of λ±20%λ. The %diff = 100(n∗−n)/n was calculated for 

the evaluation of robustness. The results showed that both tests were sensitive to the 

misspecification of the hazard parameter. However, the %diff was similar for both tests, and 

the optimal test was slightly more sensitive than the standard log-rank test (Table 3).

To investigate the performance of the sample size formulae for the optimal and standard log-

rank tests, we calculated sample sizes under the cure model (1), where cure rates were set as 

in Table 3, and the conditional survival distribution was Weibull, , or log-logistic, 

. The scale parameter λ was set to 0.4, and the shape parameter κ was set to 

0.5, 1, or 2, reflecting a decreasing, constant, and increasing hazard function, respectively, 

for the Weibull distribution; and a decreasing and single-mode hazard function for the log-

logistic distribution. We assumed that subjects were recruited with a uniform distribution 

over the accrual period ta = 1, with a follow-up period tf = 2. We further assumed that no 

subject was lost to follow-up during the study. Then, the censoring time was uniformly 

distributed over the interval [tf, ta + tf], that is, the censoring survival distribution G(t) = 1 if t 
≤ tf; = (ta + tf − t)/ta if tf ≤ t ≤ ta + tf; = 0 otherwise. Therefore, given a two-sided nominal 

significance level of 0.05 and power of 90%, the required sample sizes were calculated for 

each design scenario under each distribution. The empirical type I errors and powers of the 

corresponding designs were simulated based on 100,000 runs. The simulation results 

presented in Table 4 can be summarized as follows. First, the empirical powers of both the 

optimal and standard log-rank tests were close to the nominal level of 90%. Thus, the 

sample sizes were adequately estimated. Second, the empirical type I errors of both tests 

were close to the nominal level of 5%. Thus, both tests preserved type I error well. Third, the 

sample sizes calculated from the optimal test were smaller than those calculated for the 

standard log-rank test.

Overall, the results showed that the derived sample size formulae provide adequate sample 

size estimation for trial design if the main interest is to detect the differences between the 

cure rates of two groups and that the optimal test is more efficient than the standard log-rank 

test, particular when both cure rates and percentage censoring are small.

6 Example

We illustrate study design under a parametric cure model by using the data from the Eastern 

Cooperative Oncology Group (ECOG) trial e1684. The ECOG trial e1684 was a two-arm 

phase III clinical trial to compare the relapse-free survival (RFS) of patients with melanoma 

who were treated with high-dose interferon alpha-2b or placebo as postoperative adjuvant 

therapy. The trial accrued patients between 1984 and 1990 and remained blinded under 

analysis until 1993 (Kirkwood, et al., 1996). Researchers have studied this dataset 

extensively using cure models (Corbiere and Joly, 2007). There were 92 deaths among the 

146 patients in the treatment group. The SAS macro PSPMCM was applied to this data to fit 
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the treatment arm data under the Weibull cure model (Figure 1), with an estimated shape 

parameter κ of 1.018, scale parameter λ of 0.836, and a cure rate of 35%. Suppose we wish 

to design a two-arm randomized phase III trial to detect a 20% difference between the cure 

rate in the arm that receives the new treatment and that in the control arm that receives the 

same therapy as the treatment arm of the ECOG trial, with a two-sided type I error of 0.05, 

power of 90% at the alternative, a uniform accrual with a 5-year accrual period and 5-year of 

follow-up, no loss to follow-up, and equal allocation between the two groups. Then, the 

required sample sizes calculated using formulae (10) and (11) under the Weibull cure model 

are 266 and 280 patients, respectively. The corresponding simulated empirical type I error 

and power are 0.05 and 91.4% for the optimal log-rank test, and 0.05 and 90.7% for the 

standard log-rank test. As the cure rate is relatively high, the gain in efficiency is only 

approximately 5% in this example.

7 Conclusion

For cancer clinical trials in which a portion of patients are cured, the main interest is in 

demonstrating the differences between the cure rates in the two treatment groups. In this 

article, sample size formulae are derived for both the optimal and standard log-rank tests. 

Because the proposed cure model is not a proportional hazards model, the standard log-rank 

test is not fully efficient. Thus, a sample size calculation derived under the optimal test can 

ensure the efficacy of the study design. The optimal log-rank test is implemented in the 

standard statistical software R by using the survdiff function with the option rho = −1. The 

simulation results demonstrated that the sample size formula for the optimal test provides 

adequate sample size estimation and is more efficient than the formula for the standard log-

rank test. Finally, if trials are planned to include interim analyses to enable them to be halted 

early if futility or efficacy is demonstrated, then the group sequential methods developed by 

Lee and Sather (1995) can be used.
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Appendix: Derivation of the asymptotic distribution of the weighted log-

rank test

The weighted score test is given by

where n = n1 + n2 is the total sample size of two groups, W (t) is a weight function that 

converges in probability to w(t), Nj(t) is the number of observed failures by time t, Yj(t) is 

the number of subjects at risk just prior to t in groups j = 1, 2, and Y (t) = Y1(t) + Y2(t). If 

we define martingale processes such that , j = 1, 2, where 

 is given in equation (5), then the weighted score test can be written as
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Under the null hypothesis H0 : γ = 0, we have , where

Hence, by the martingale property, the mean of Uw is 0 and the variance of Uw is given by

where . As

where  and π(t) = pπ1(t) + (1 − p)π2(t). Thus, by the 

martingale central limit theorem (Fleming and Harrington, 1991), , where

for which  and G(t) is the common survival distribution of the 

censoring time of the two groups. By noting that , we have

(13)

The variance  can be estimated by

where  and N(t) = N1(t) + N2(t). Therefore, the weighted log-rank test 

 is asymptotically standard normal distributed under the null hypothesis.

To derive the asymptotic distribution of the weighted log-rank test under the alternative, 

consider a sequence of local alternatives , or
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where n1/2γn = γa < ∞, and define martingale processes as 

. Then, Uw = U1w+U1w+U2w, where

and

As γn → 0,  and, , and by the martingale central limiting 

theorem, U1w converges to a normal variable with mean EU1w = 0 and variance

By Taylor’s expansion of  at γn = 0, we have

It then follows that

By substituting this into U2w, we have shown that U2w converges in probability to μ(w, γa), 

where
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Thus, under the local alternatives , the weighted log-rank test is asymptotically normal 

distributed with mean μw/σw and unit variance, that is,
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Figure 1. 
Relapse-free survival for ECOG e1864 data. The step function is the Kaplan-Meier survival 

curve. The solid curve is the fitted Weibull cure model.
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