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Abstract

In this article, sample size calculations are developed for use when the main interest is in the
differences between the cure rates of two groups. Following the work of Ewell and Ibrahim, the
asymptotic distribution of the weighted log-rank test is derived under the local alternative. The
optimal log-rank test under the proportional distributions alternative is discussed, and sample size
formulae for the optimal and standard log-rank tests are derived. Simulation results show that the
proposed formulae provide adequate sample size estimation for trial designs and that the optimal
log-rank test is more efficient than the standard log-rank test, particularly when both cure rates and
percentages of censoring are small.
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1 Introduction

When survival data include a portion of cured patients or long-term survivors, cure models
are useful for analyzing the data and designing clinical trials. Recently, various parametric
and semiparametric cure models have been proposed by Farewell (1982), Peng et al. (1998),
and Kuk and Chen (1992). A maximum-likelihood expectation-maximization (EM)
algorithm for parametric and semiparametric cure models has been proposed by Peng and
Dear (2000) and Sy and Taylor (2000). A SAS macro PSPMCM, developed by Corbiere and
Joly (2007), is available to fit both parametric and semiparametric cure models. Thus,
survival data in which a portion of patients are cured can be analyzed using these methods
for the purpose of designing clinical trials using the selected cure models.

In a cancer clinical trial in which a portion of patients experience long-term survival, the
main interest is often in the differences between cure rates. Examples from the Children’s
Cancer Group trials are given by Lee and Sather (1995). To develop an appropriate test for
testing the differences between cure rates in a two-arm randomized trial, Gray and Tsiatis
(1989) proposed a family of cure models with a proportional distributions alternative. The
optimal log-rank test was discussed under the proportional distributions alternative, which
has the form of a G” test where p = -1 (Harrington and Fleming, 1982), and its efficacy
relative to that of the standard log-rank test was also investigated. Ewell and Ibrahim (1997)
extended the work of Gray and Tsiatis by deriving the large sample distribution of the
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weighted log-rank test under a more general sequence of local alternatives that allows for
treatment effects on both short- and long-term survival. They also derived a power
calculation for the weighted log-rank test assuming exponential failure times.

In this article, we focus on the situation where the main interest is in the differences between
the cure rates of two groups. Following the work of Ewell and Ibrahim, sample size
formulae are derived for both the standard log-rank test and the optimal weighted log-rank
test. The relative efficacy of the two tests is also discussed.

The rest of the paper is organized as follows. A mixture cure model is introduced in Section
2. The sample size formula for the weighted log-rank test is derived in Section 3. The
optimal log-rank test and its sample size formula are obtained in Section 4. In section 5,
comparisons of the efficiency and robustness of the two tests are presented, and simulations
are conducted to study the performance of the proposed sample size formulae. Section 6
illustrates clinical trial design using the proposed methods. Conclusions are presented in
section 7.

2 Cure Models

The failure time, 7%, is assumed to be v7 +(1-1)oo, where vis an indicator of whether a
subject will eventually (v= 1) or never (v = 0) experience treatment failure, and 7 denotes
the failure time if the subject is not cured, with a survival distribution S(#), which is the
conditional distribution for patients who will experience treatment failure and is often called
the latency distribution. Thus, the unconditional survival distribution of 7* is a mixture
model of a cure rate =z = A'v=0) and a latency distribution S given by

S (t)=m+(1 — m)S(%).

Let A*() and (5 be the hazard functions of 7* and 7, respectively. We then have the
following relation between the two hazard functions:

__(A=m5(@)

A= T ms®

A(t).

For a two-arm randomized survival trial, let 77; and Cj;denote the survival and censoring
times, respectively, of patient /in the /% group, where j= 1, 2 (1 for the control group and 2
for the treatment group). The observed data then consist of {Xj; Ay /=1, ..., nj, j=1, 2},

where X;;=T7; A Cjjand Ay=I(T;; < Cy;). Itis commonly assumed that

{Tf}, Cij,i=1,... JU} are independent and identically distributed samples of (7;, C)) for
control (= 1) and treatment (/= 2) and that 7;;is independent of Cj; Let S7(¢) denote the

unconditional survival distribution and let A’ (¢) denote its hazard function for the /7 group.
When the main interest is in testing for differences between cure rates, it is reasonable to
assume that the conditional survival distributions are the same for the two groups and are
denoted by S(2), with the hazard function and cumulative hazard function being denoted by
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A(H and A(d, respectively. The cure rate for the /# group is defined by m;, where 0 < ;< 1.
Then, the survival distribution of the mixture cure model for the /7 group is given by

Sj(t)=mj+(1 = m;)S(t), (1)

and the hazard function for the /# group is given by

(I —m)S()

X;-(t):ﬂ.j+(1 — Wj)S(t)

A(t).

We are interested in testing the following hypothesis:

Hy:m=my vs. Hyvmy # mo. (2)

Furthermore, we define the parameters ¥ and g as follows:

177‘(2

_—z
T=5lo9 T

mo=1 — [(1 = m)(1 - m)]"/2,

where y is the half-log ratio of the failure rates, and g is the proportion of cured patients
under the null hypothesis. Then, hypothesis (2) is equivalent to the following hypothesis:

Hoy=0 vs. Hixy #0. (3)

The mixture cure model (1) can be written as

Sit)=1- V(1 —m) {1 =S}, (g

and the corresponding hazard function is given by

6( )Jﬁf(l — WO)S(t) )\(f)

Aj(t)= 1—e=D7(1 = mp)4e=D"7(1 — m0)S(t) (®)

This alternative implies that the unconditional failure distributions for two groups are
proportional; it is called a proportional distributions alternative by Gray and Tsiatis (1989).

To test hypothesis (2) or (3), or the difference in the unconditional failure distributions, a
weighted score test can be used, which is given by
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U 25w () { TNt - T amio)}.

where n=m + m, is the total sample size of two groups, WA is a weight function that
converges in probability to u(#), N{(2) is the number of observed failures by time £ Y(2) is
the number of subjects at risk just prior to ¢in groups j=1, 2, and Y (9 = Y1() + Y>(). By
the martingale central limit theorem (Fleming and Harrington, 1991), under the null
hypothesis, U, converges in distribution to a normal variable with a mean of zero and
variance

ou=p(1 = p)(1 = m) [gw* O)G()S(H)dA(), (g)

where p=lim, . m/n, and G(2) is the common survival distribution of the censoring time
of two groups (see appendix). The variance ¢2 in (6) can be estimated by

(D)Ya(t)

Ph=n W) ),

where M?) = Ny(9) + No(d). Therefore, under the null hypothesis, the weighted log-rank test
L,=U, /&, is asymptotically standard normal distributed. Thus, given a significance level
a, we reject the null hypothesis if |L,) > 2-4,», Where z_, is the 100(1 — a/2)? percentile
of the standard normal distribution.

3 Sample Size Formula

To derive the sample size formula, we need to know the asymptotic distribution of the
weighted log-rank test under the alternative hypothesis. Consider a sequence of local
alternatives

87" (=1 - ¢V (1= 7o) {1 - S(1)},

where 2y, = 72 Under the local alternatives, as shown in the appendix, the weighted log-
rank test 1,,=U,, /&, converges in distribution to a normal variable with unit variance and

mean (W, yz)/oy, Where o2 is given by (6), and

w

p(w,7a)=2p(1 = p)(1 = m0)va T w(t){S5 (1)} ' G(1)S()AA(), (7

for which S (t)=mo+(1 — 70)S(t)-
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Therefore, on the basis of the limiting distribution of L,, under the local alternative, given a
type | error of a, to achieve a power of 1 — g, the total sample size 77 of two groups must
approximately satisfy the following equation:

1= B~ o{u(w,va)/ow — 21-a/2}-

For a local alternative y, we replace y,by 2. Then, the sample size required to detect a
local alternative i can be determined by

2
(21—a/2t21-8) o2

pw,y? (@)

Substituting equations (6) and (7) into (8), the total sample size for the weighted log-rank
test can be calculated by

(21-a2t21-5)"w? ()G (1) S (H)dA(1)
4p(1 = p)(1 = mo)72[ [ w(t){S5 (1)} ' G(t)S()dA(t)

n= ]2.

©)

4 Optimal Log-rank Test

It is well known that the log-rank test is optimal against the proportional hazards model.
However, the cure model (1) does not satisfy the proportional hazards assumption; thus, the
log-rank test is not an optimal test, and a study design based on the log-rank test is not fully
efficient. Therefore, it is desirable to find an optimal test for the cure model (1) under the
local proportional distributions alternative. As the mean of the weighted log-rank test is
proportional to

S w(t){S5(6)} ~ hlt)dt,

where A8 = G(H S(HA.(9), by using the Cauchy-Schwartz inequality, we obtain the following
inequality:

St (S5 ®} bt < { JFwdOnde (S50} e},

with equality if only if u(2) is proportional to { S (t)}*l. That is, the optimal weight function

w(D) is proportional to {57 ()} ", which minimizes the sample size given by formula (9).
Thus, taking the weight function W (8 = {K(r)}1, where K(r) is the left-continuous
version of the Kaplan-Meier estimate computed from the pooled sample of two groups,
gives the asymptotically optimal test for the proportional distributions alternative. Hence, by

substituting w(t)={S; (,5)}*1 into formula (9), the sample size for the optimal log-rank test
Lk is given by
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i (21-ajatz1-)
“ap(1 - p) (1 — mo)V2[P{S ()} PG () S(H)dA(E) (10)

and by substituting u(? = 1 into formula (9), the sample size for the standard log-rank test L
is given by

(21-aj2t21-8)" [ G(1)S(H)AA(t)
p(1 — p)(1 — mo)V?[ o2 {S5 (1)} ' G(£)S(t)dA(t)

n— ]2.

(11)

The asymptotic relative efficiency p = n/nx (Randales and Wolfe, 1979) of the optimal test
compared to the standard log-rank test is given by

_IFASH0) GOSN [T G S(DAAD).
S50} G0 Sman()” (12)

In the special case when there is no censoring, that is, when G() = 1, the asymptotic relative
efficiency pin (12) is reduced to

_ (1—m)?
ﬂo[lag(ﬂo)}Q .

5 Comparison

We investigated three important issues. First, we studied the relative efficiency of the
optimal log-rank test versus the standard log-rank test. Second, we evaluated the robustness
of the optimal and standard log-rank tests when the hazard parameter was misspecified in
the trial design. Third, we investigated the performance of the two sample size formulae
under various design scenarios.

The relative efficiency p given in equation (12) was calculated for selected cure rates under
the exponential cure model with an uncured hazard parameter A = 1. Assume a uniform
accrual over [0, z] and no follow-up period, where zis determined by the percentage of
censoring ranging from 0% to 50%. The results (Table 1) showed that when the cure rate
was at most 10% and there was no censoring, the gain in efficiency of the optimal log-rank
test versus the standard log-rank test was more than 50%, whereas if the cure rate g was at
least 50%, the gain in efficiency was less than 5%. If the percentage of censoring was more
than 50%, then the gain in efficiency was less than 10%, regardless of the cure rate. We also
investigated the relative efficiency through the sample size calculations. Under the same
assumptions, sample sizes were calculated under various combinations of the cure rates of
two groups. Similarly, the largest gain in efficiency was achieved when both the cure rate
and percentage of censoring were small (Table 2).
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To evaluate the robustness of the two tests, sample sizes (7) were calculated under
exponential models with hazard parameters A = 0.1 and 1. Cure rates were set to ; = 0.1
and mo=m1e /(1 — 71 +m1e7°), where yg ranged from 1.5 to 2.0, accrual time £,= 1, and
follow-up time #= 2. Sample sizes (/7*) were also calculated under misspecification of the
hazard parameter within a range of A+20%A.. The %diff = 100(/7*-r)/nwas calculated for
the evaluation of robustness. The results showed that both tests were sensitive to the
misspecification of the hazard parameter. However, the %diff was similar for both tests, and
the optimal test was slightly more sensitive than the standard log-rank test (Table 3).

To investigate the performance of the sample size formulae for the optimal and standard log-
rank tests, we calculated sample sizes under the cure model (1), where cure rates were set as

in Table 3, and the conditional survival distribution was Weibull, S(t)ze_w, or log-logistic,

S (t)=1+ﬁ. The scale parameter A was set to 0.4, and the shape parameter xwas set to
0.5, 1, or 2, reflecting a decreasing, constant, and increasing hazard function, respectively,
for the Weibull distribution; and a decreasing and single-mode hazard function for the log-
logistic distribution. We assumed that subjects were recruited with a uniform distribution
over the accrual period £, =1, with a follow-up period #= 2. We further assumed that no
subject was lost to follow-up during the study. Then, the censoring time was uniformly
distributed over the interval [# £, + 14, that is, the censoring survival distribution G(§) = 1 if ¢
St = (G + - D/A,If e E< £+ t = 0 otherwise. Therefore, given a two-sided nominal
significance level of 0.05 and power of 90%, the required sample sizes were calculated for
each design scenario under each distribution. The empirical type | errors and powers of the
corresponding designs were simulated based on 100,000 runs. The simulation results
presented in Table 4 can be summarized as follows. First, the empirical powers of both the
optimal and standard log-rank tests were close to the nominal level of 90%. Thus, the
sample sizes were adequately estimated. Second, the empirical type | errors of both tests
were close to the nominal level of 5%. Thus, both tests preserved type | error well. Third, the
sample sizes calculated from the optimal test were smaller than those calculated for the
standard log-rank test.

Overall, the results showed that the derived sample size formulae provide adequate sample
size estimation for trial design if the main interest is to detect the differences between the
cure rates of two groups and that the optimal test is more efficient than the standard log-rank
test, particular when both cure rates and percentage censoring are small.

6 Example

We illustrate study design under a parametric cure model by using the data from the Eastern
Cooperative Oncology Group (ECOG) trial €1684. The ECOG trial 1684 was a two-arm
phase Il clinical trial to compare the relapse-free survival (RFS) of patients with melanoma
who were treated with high-dose interferon alpha-2b or placebo as postoperative adjuvant
therapy. The trial accrued patients between 1984 and 1990 and remained blinded under
analysis until 1993 (Kirkwood, et al., 1996). Researchers have studied this dataset
extensively using cure models (Corbiere and Joly, 2007). There were 92 deaths among the
146 patients in the treatment group. The SAS macro PSPMCM was applied to this data to fit
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the treatment arm data under the Weibull cure model (Figure 1), with an estimated shape
parameter x of 1.018, scale parameter A of 0.836, and a cure rate of 35%. Suppose we wish
to design a two-arm randomized phase 111 trial to detect a 20% difference between the cure
rate in the arm that receives the new treatment and that in the control arm that receives the
same therapy as the treatment arm of the ECOG trial, with a two-sided type | error of 0.05,
power of 90% at the alternative, a uniform accrual with a 5-year accrual period and 5-year of
follow-up, no loss to follow-up, and equal allocation between the two groups. Then, the
required sample sizes calculated using formulae (10) and (11) under the Weibull cure model
are 266 and 280 patients, respectively. The corresponding simulated empirical type | error
and power are 0.05 and 91.4% for the optimal log-rank test, and 0.05 and 90.7% for the
standard log-rank test. As the cure rate is relatively high, the gain in efficiency is only
approximately 5% in this example.

7 Conclusion

For cancer clinical trials in which a portion of patients are cured, the main interest is in
demonstrating the differences between the cure rates in the two treatment groups. In this
article, sample size formulae are derived for both the optimal and standard log-rank tests.
Because the proposed cure model is not a proportional hazards model, the standard log-rank
test is not fully efficient. Thus, a sample size calculation derived under the optimal test can
ensure the efficacy of the study design. The optimal log-rank test is implemented in the
standard statistical software R by using the survdiff function with the option rho = -1. The
simulation results demonstrated that the sample size formula for the optimal test provides
adequate sample size estimation and is more efficient than the formula for the standard log-
rank test. Finally, if trials are planned to include interim analyses to enable them to be halted
early if futility or efficacy is demonstrated, then the group sequential methods developed by
Lee and Sather (1995) can be used.

Acknowledgments

Appendix:
rank test

The author acknowledges an anonymous reviewer for his/her valuable comments that improved an earlier version of
the paper. This work was supported in part by the National Cancer Institute support grant CA21765 and ALSAC.

Derivation of the asymptotic distribution of the weighted log-

The weighted score test is given by

Yi(?)
Y (t)

Yg(t)
o, (t)} ,

Uy=n""2[2W (1) { AN (t) —

where n=m + m, is the total sample size of two groups, W () is a weight function that
converges in probability to u(#), N{(2) is the number of observed failures by time £ Y2 is
the number of subjects at risk just prior to ¢in groups j=1,2,and Y () = Y1(d + Yo(). If

we define martingale processes such that M (t)=N;(t) — j‘f))\; (t)Y;(t)dt, j=1, 2, where
A (t) is given in equation (5), then the weighted score test can be written as
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Yl(t) dM Yg(t)

Yi (t)YQ (t)
vin M0 v "

AN (0) -+ W (O 2 (35(0) = A ()} .

Under the null hypothesis Hp : =0, we have \(t)=\3(t)=\(t), where

_’/T()+(1 — WQ)S(t)

Hence, by the martingale property, the mean of U, is 0 and the variance of U, is given by

Y1(t)Ya(t)

Var(U,)=n""E [°W?(t)
where Aj(t)= [\ (u)du. As

mi(H)ma(t)
m(t)

i) _mng {Ya(t)/m} {Ya(t)/na}

Y@)  n? Y () /n p(l=p)

where p=lim,, _,,,n1/n, 7;(t)=P(T;;>t)and m(f) = prey(9 + (1 - p) (9. Thus, by the
martingale central limit theorem (Fleming and Harrington, 1991), i/,, — N (0, o2 ), where

o2=p(1 - p) [Fw (OG0 53 (N (1),

for which S (t)=mg+(1 — m)S(t) and G(2) is the common survival distribution of the
censoring time of the two groups. By noting that Sj(¢)\j=(1 — 7)S(t)A(t), we have

oo=p(1—p)(1 —m) [Fw* (G SOA®)AE.  (13)

The variance o2 can be estimated by

Y1 (t)YQ (t)

Y(t) dAO(t)v

oL =n W)

where d]\; (t)=dN (t)/Y (t)and M) = Ny(9) + No(2). Therefore, the weighted log-rank test
L,=U, /&, is asymptotically standard normal distributed under the null hypothesis.

To derive the asymptotic distribution of the weighted log-rank test under the alternative,

consider a sequence of local alternatives H{"):Sj(”) (t)=1 — e 1Im (1 — 7) {1 — S(t)}, or
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=D (1 — 1) S(t)
1 — et Vi (1 — 7o) +eC i (1 — m0)S (1)

#(n) 1y _
A ()=

AD),

where 2+, = y,< 00, and define martingale processes as

M ()=N;(t) — [6Y; ()" (w) du_ Then, Uy = Uyy#Usy+Us,y, Where

Urw=n""2[&W (t) {5;3((;)) aM™ () — 1;1((;)) amm (t)} ,

and

Upy=n""/? ngW(t)—(Y)é:;( ) N -2 @)} at.

As y,— 0, H"™ — Hyand, )\;(”) (t) — Aj(t), and by the martingale central limiting
theorem, U}, converges to a normal variable with mean £}, = 0 and variance

EUE,=n"'E[FW2(t) {?zg Yl(t))q(n) (t)+Y12(t) Y'Q(t))\;(n) (t)} du — p(1

B ) {(1 p)’%fﬁ—g“)wnpww} a

=p(1

) fEwr ()T “(”)2“) X5 (1)

=p(1 - p) [5 W ()G() S () A5 (t)dt=,.

By Taylor’s expansion of \}(t)at y, = 0, we have

M) ~ (1 —m)S(t) A+ (1 —mp)S(¢)

A 7T0+(1 - Wo)S(t) ’ {7T0+(1 _ ﬂ_O)S(t)}Q)\(t)(_l)Lyn

It then follows that

im /2 i - 20l = m0) S)A(E)
i 0500 - ¥i)) = 22l SO,

By substituting this into 5, we have shown that U5, converges in probability to (v, y.,),
where
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plw, 7a)=2p(1 = p)(1 = mo)ya [5w(t){S5 (1)}~ G()S(E)A(t)dt.
Thus, under the local alternatives Hl("), the weighted log-rank test is asymptotically normal
distributed with mean /o, and unit variance, that is,
Ly=Uy/6uw = N(p(w,va)/ow, 1)-
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ECOG e1684 data

0.0 02 04 06 08 1.0

Relapse-free survival probability

Year from on study
Figurel.

Relapse-free survival for ECOG e1864 data. The step function is the Kaplan-Meier survival
curve. The solid curve is the fitted Weibull cure model.
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