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ABSTRACT

High-throughput structural proteomics is expected
to generate considerable amounts of data on the
progress of structure determination for many
proteins. For each protein this includes information
about cloning, expression, purification, biophysical
characterization and structure determination via
NMR spectroscopy or X-ray crystallography. It will be
essential to develop specifications and ontologies
for standardizing this information to make it
amenable to retrospective analysis. To this end we
created the SPINE database and analysis system for
the Northeast Structural Genomics Consortium.
SPINE, which is available at bioinfo.mbb.yale.edu/
nesg or nesg.org, is specifically designed to enable
distributed scientific collaboration via the Internet. It
was designed not just as an information repository
but as an active vehicle to standardize proteomics
data in a form that would enable systematic data
mining. The system features an intuitive user inter-
face for interactive retrieval and modification of
expression construct data, query forms designed to
track global project progress and external links to
many other resources. Currently the database
contains experimental data on 985 constructs, of
which 740 are drawn from Methanobacterium ther-
moautotrophicum, 123 from Saccharomyces cerevi-
siae, 93 from Caenorhabditis elegans and the
remainder from other organisms. We developed a
comprehensive set of data mining features for each
protein, including several related to experimental
progress (e.g. expression level, solubility and crys-
tallization) and 42 based on the underlying protein
sequence (e.g- amino acid composition, secondary

structure and occurrence of low complexity regions).
We demonstrate in detail the application of a partic-
ular machine learning approach, decision trees, to
the tasks of predicting a protein’s solubility and
propensity to crystallize based on sequence
features. We are able to extract a number of key rules
from our trees, in particular that soluble proteins
tend to have significantly more acidic residues and
fewer hydrophobic stretches than insoluble ones.
One of the characteristics of proteomics data sets,
currently and in the foreseeable future, is their inter-
mediate size (~500-5000 data points). This creates a
number of issues in relation to error estimation.
Initially we estimate the overall error in our trees
based on standard cross-validation. However, this
leaves out a significant fraction of the data in model
construction and does not give error estimates on
individual rules. Therefore, we present alternative
methods to estimate the error in particular rules.

INTRODUCTION

The role of computational techniques in biological research is
certain to increase with the advent of genomics. Databases in
particular have become invaluable tools in molecular biology.
The current landscape of biological databases includes large,
general purpose repositories for nucleotide sequences, such as
GenBank (1), DDBJ (2) and EMBL (3), and protein sequences,
like PIR (4), SWISS-PROT (5) and the Protein Data Bank (6).
Likewise, there are many specialized databases storing infor-
mation related to model organisms, such as SGD (7), MIPS (8)
and FlyBase (9), comparative genomics (10,11), gene expres-
sion (National Center for Biotechnology Information;
ncbi.nlm.nih.gov/geo) (12), protein—protein interactions
(13,14) and protein motions (15). The PartsList (16) system
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encapsulates the results of surveying the occurrence of folds
and protein features in genomes (17,18), while the Presage
database (19) was recently developed for target selection in
structural genomics. Software tools are also available for the
creation of project-specific laboratory information manage-
ment systems (LIMS), such as LabBase (20).

Many biological databases are developed and maintained
strictly for warehousing purposes, without consideration of the
analyses that may be performed on the data. Conversely,
computational studies are often performed outside the context
of information management, without a clear connection to
biological reality. Our work explores a fusion of these two
processes, where database design is influenced by analytical
requirements.

Such an undertaking requires a centralized repository to inte-
grate and manage the data generated, coupled with strategies
for subsequent computational analysis. By maintaining a
shared infrastructure accessible to all the participating
members of a project, distributed access to large subsets of
data is possible. This not only promotes collaborative effort
among investigators by providing a common information
exchange platform, but also avoids costly and time-consuming
duplication of experimental work. Further, data is maintained
in a consistent format across many laboratories and investiga-
tors, promoting further analysis.

To this end we have developed the SPINE database and anal-
ysis system, an integrated approach to interactive database
system design and computational analysis in a distributed
framework, using the recently formed Northeast Structural
Genomic Consortium (www.nesg.org) as a model for multi-
laboratory collaborative research. The system is designed to
generate standardized data files from user-definable subsets of
the proteomics information entered into the database, which
are then used for classification tasks. Key issues in effective
data mining are introduced, with emphasis on decision trees, a
supervised machine learning approach. We conclude with a
discussion of prediction results for several macromolecular
properties based on features derived from the database
contents.

DATABASE SYSTEM REQUIREMENTS

SPINE (structural proteomics in the northeast) was designed
for the Northeast Structural Genomics Consortium (NESG), a
multi-institutional collaboration for the high-throughput deter-
mination of protein structures on a genomic scale, with an
emphasis on model eukaryotes. The project coordinates the
identification of suitable target proteins and the production of
expression constructs from which proteins will be purified,
followed by biophysical characterization via circular dichr-
oism and a series of NMR or X-ray crystallography studies to
determine tertiary structures. Experimental data generated by
this project were used for the development of a distributed data
archival and analysis framework suitable for laboratory infor-
mation management, standardization of experimental parame-
ters and data mining techniques. Several views of the database
developed for this project are shown in Figure 1.

A critical issue in designing a system of this kind is deter-
mining the fundamental ‘unit’ to be tracked by the database. In
many cases this process is straightforward. For example, a
database suited to classical genetics would most likely record
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parameters related to the expression of individual genes under
various experimental conditions and the function of their asso-
ciated proteins. In this case the fundamental unit of informa-
tion would most likely be the gene. However, in our case the
solution is not so obvious, as a variety of choices exist. A data-
base record can be based on any number of entities, such as the
protein itself, a construct used to express the protein, a specific
experimental preparation or a more abstract ‘target’ represen-
tation encompassing multiple proteins in a particular family.
The most appropriate representation depends on the scope of
the project and the relative stability of the data types under
consideration.

An obvious candidate for the fundamental database unit is
the protein. However, in certain instances homologous proteins
from other organisms prove more experimentally tractable
than the actual target; this scenario would be a source of confu-
sion when maintaining a resource based on proteins. An alter-
native is to focus on the expression construct made for a given
protein. Multiple constructs can be made for a single protein,
because a construct could be designed to express only a single
domain from a complex protein or contain a slightly altered
protein sequence that aids in protein production and structure
determination. This one-to-many relationship between target
proteins and their associated expression constructs would
imply that several database entries might be related to the same
target. A third option is to use the specific preparation associ-
ated with each experiment, where a database record could
represent a set of conditions by which a protein sample is
prepared. An immediate concern with this representation is
that protein preparations will vary constantly, requiring an
unforeseeable number of relational tables to accommodate
their parameters.

Because multiple constructs can be generated for each target,
the single protein representation is too limited for our
purposes. Conversely, experimental conditions for individual
protein preparations are highly variable and it was decided that
this data should be compiled separately. From these candidates
it was decided that the expression construct captured the most
appropriate level of detail for this project. It was selected as the
basic unit to be tracked by the database, essentially recording
the best experimental results for the expression, purification
and characterization of each target protein.

To address these requirements, software components were
developed for entry and updating of expression construct
records, database searching, bulk data retrieval and tracking
the global progress of the entire project. Intuitive HTML form-
based interfaces were implemented to facilitate distributed
Internet access from participating laboratories. The implemen-
tation of the database system is described in detail in Figure 2.
The modular organization of software components permits
relatively straightforward implementation of additional func-
tionality. This aspect is independent of the underlying database
architecture, allowing a great deal of programming flexibility
while maintaining strict compliance to the standardized data
types established for various experimental parameters.

Database fields

The SPINE database fields were compiled with subsequent
computational analysis in mind. Information having disparate
formats and types would make data mining impossible, so an
important role of the system is the standardization of expres-
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Figure 1. Global project summary (A), statistics display (B) and database home page (C). The summary table can be dynamically reconfigured to present subsets
of database entries, selected based on a number of simple parameters such as the target genome the protein originates from or the institution submitting the entries.
An additional parameter, labeled ‘Attribute’, is used to narrow the search to entries whose experimental progress corresponds to a particular chronological stage in
the table. For example, entries can be selected with an attribute of ‘secondary structure’, which will retrieve all constructs having secondary structure data derived

through various biophysical characterization methods.

sion construct data sets. Using a centralized data repository
having a defined table structure, information is maintained in a
consistent format regardless of the investigator or laboratory
where the data originates. Another benefit is the introduction
of numerical values in place of the text descriptors sometimes
used by experimentalists.

To accommodate the needs of various Consortium projects
where different experimental methodologies are used, prin-

cipal investigators from several laboratories were involved in
the process of selecting the most appropriate information to be
tracked by the system. Fields from existing data sets were used
to develop a consensus of experimental parameters and this
was adapted to the current database framework.

A listing of the fields used for the prototype database is
shown in Table 1. The information maintained by the system
initially comprised 63 fields for protein sequences, cloning
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Table 1. Listing of prototype database fields and their utility in data mining analysis

Descrigtion

BIOPHYSICAL
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Experimentalist

Common name, gene________
Open reading frama 1D

Pratain Data Bank 1D

Primary Idanfilior

H

Last modified
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Entry protection

Principal inmvestigator
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 Proteinodgin

ing w r

hexaHis Typa of sequance tag
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=T 1
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Lo nf iz in
Solubslity in coll axtract [1-5]
Link o CD data
CD nedes
Link to HSOC spectea
HSQC notes

Ofigomarization of targat
Mathod of datermination

Quality of 16M-1H HSOC spactra |

Biophysical characterization

|

Link 10 spacloscopy dala

NMR noles

¢
]
g
| MMR structuraldata
scray_resolution 32 A Refinement resolulion
xray rfactor 20.0 R-factar
wrdy Free risctor 25.0 Free R-lactor
=] 'xray_url hitpaff... Link o diffraction data
i Bl L text] | Crystaliography notes |
E ESTRET N (| Heve Crystal | Difiraction proqress
EETEET || foiocd | Stucture determinalion stale
]
w | mum binding partrers 2 Target-bindin in
8 binding partmers YALOODC Binding protein identifiers
i) function ¥ AA synihesis | Target genalprodain function
3 __| AT ¥ Globular protin
Igeneral coment i Ltext] Additional notes
é o e L s e ) 50 Computed rank gn aftribute 1
s EARKE T e R R 50 Computed rank on attribute 2
b Bl s 50 Compated rank on attrioute 3

Record keeping fizld, standardized or froe text
M Standardized alphanumerical field
I Standardized field, useful data mining featurs
M Data mining feature and predictable property

The level of standardization of experimental parameters is indicated by the shading of each database attribute, fol-
lowed by example values and a description of each field. Darkly shaded fields were the focus of classifier training
and predictions.

parameters, expression level and purification yield and data
derived from biophysical characterization and structural
biology experiments (oligomerization, CD, HSQC, NMR and
X-ray crystallography). In addition, a number of fields are
devoted to keeping track of the laboratory and investigator
responsible for working with the target protein, dates when
experiments were performed, comments relating to experi-
mental conditions for each group of related fields and variable
access levels for individual database records. The database is

not intended to manage all aspects of experimental research;
rather, it is designed to standardize and track key parameters
related to structural proteomics. However, the system does
include user accounts, transaction history information and
some laboratory management tables.

The development of this system is an ongoing project.
Following the establishment of a prototype database, addi-
tional features were implemented to reflect the needs of the
Consortium laboratories and its schema was expanded over a
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Figure 2. (A) Relationships between database system components. (B) Soft-
ware module dependencies. The system was developed using the mySQL data-
base engine for the Linux platform, in conjunction with two programming
languages to facilitate low level database interaction and development of the
user interface software: Perl 5.005 with the Perl Database Interface (DBI)
module and the PHP 3.0 hypertext preprocessor. While syntactically similar,
each language features distinct capabilities. Because the PHP interpreter is
integrated as an Apache web server module, execution of PHP programs is
generally faster than that of Perl-based CGI programs. This makes PHP well
suited to interactive systems where timely server responses are a priority.
While syntactically straightforward, the PHP language does not offer the
extensive programming flexibility of Perl5. The core of the user interface sys-
tem was therefore developed in PHP, while auxiliary components requiring
more sophisticated functionality were implemented in Perl.

number of relational tables (Fig. 3). The current design allows
various groups of database fields to be accessed and updated,
depending on the type of experiments typically performed by
different investigators. Users may limit the parameters to be
input for a database record to a subset of fields that are relevant
to their work by selecting forms specialized for NMR spectros-
copy, X-ray crystallography, etc. By using only those fields
that are applicable to a particular experimental process, navi-
gating through long forms with potentially unused elements is
avoided.

Users of the database access the system through a password
protected interface. The instantiation of individual user spaces
aids in managing proprietary data associated with each experi-
mentalist. This modification is beneficial in terms of designing
more transparent user interfaces. For example, investigator
profiles are maintained which keep track of routinely used
field values and experimental methods, allowing the system to
complete certain fields automatically.

For many experimental methods a data file is generated
comprising an entire set of results distinct from the information
tracked by the main database. The inclusion of these parame-
ters into the existing infrastructure would be beyond the scope
of the system; HSQC spectra, X-ray diffraction data and NMR

assignments can span large files that would be impractical to
incorporate directly into database tables. Instead, these are
stored on a separate file server and the associated URL
addresses are recorded in construct records and linked to each
record display. Thus, a key feature of the system is maintaining
a central collection of pointers to additional experimental data
sets. This mechanism is, of course, extended to allow pointers
into other information repositories associated with the project,
for instance into a crystallization database or a list of targets.
We also link the system with other protein sequence and struc-
ture resources, such as SWISS-PROT (5), PartsList (16),
GeneCensus (17,18), ProtoMap (21), SCOP (22) and CATH
(23).

User interaction and dynamic content modification

The design of the system’s front end allows expression
construct records to be entered, edited and retrieved by indi-
vidual users without frequent intervention of a database
curator. An important goal in this work is to design a system
that works in a practical laboratory setting, i.e. the software is
operationally robust and straightforward, so that using it on a
regular basis will not disrupt work flow. The system provides a
consistent and intuitive user interface to complex database
functions, as well as error recovery features when conflicting
or incomplete information is submitted. Search functions were
developed for the intelligent retrieval and display of informa-
tion from the database, as well as the ability to generate bulk
dumps of large subsets of data records and protein sequences in
interchangeable file formats, including CSV and XML.

As experimental work progresses on a given target, addi-
tional data is collected which may have been unavailable at the
time its expression construct record was created. Therefore, an
essential requirement of the database is the ability to recall
records to alter or augment their associated information.
Consequently, the contents of individual database records are
changing over time in a user-mediated fashion, in contrast to
more archive-oriented resources. This imposes additional sets
of operational considerations, requiring provisions to ensure
internal ID consistency and overwrite protection when users
enter or modify database records.

SYSTEM FUNCTIONALITY
Data entry and editing

The creation of expression construct records is generally
performed on a per instance basis, using a series of HTML
forms. Database records are keyed on an identifier string that
can be selected by the investigator or generated automatically
by the system. The custom identifier feature is particularly
useful in cases where a construct for a given protein is derived
from an organism different from the target organism in which
the protein originates. For example, the identifier HTECS
could be used to represent the fifth Escherichia coli expression
construct (EC) for a human target protein (H) originating from
a Toronto laboratory (T). The data entry procedure is designed
to be simple and intuitive. During the process of generating
identifiers and creating new records key parameters are
retained as subsequent web forms are encountered, to mini-
mize effort and eliminate user error. This process is depicted in
Figure 4.
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Figure 3. Core schema for the expanded database. Relational tables capture data for target proteins, their related expression constructs and separate sets of
experimental parameters for expression, purification, X-ray crystallography, NMR and biophysical characterization. Additionally, a number of features have been
developed to record laboratory management and transaction information (tables not shown).

As new experimental data is accumulated, existing records
must be augmented and modified. This is accomplished via
editor forms identical in layout to the data entry forms. Data-
base attribute values are recalled and inserted into their corre-
sponding editor fields, where they may be modified. After
changes have been made and any additional data have been
entered, the record is updated to reflect the new information.

Searching the database and visualizing progress

The retrieval of records from the database is accomplished
through the use of a search engine interface (Fig. SA), where a
variety of terms may be selected and combined with Boolean
connectives. Based on the values of the elements submitted via
the interface form, the software builds an SQL query to
execute against the database and returns any records matching
the search terms (Fig. 5B). The subset of database records
returned by the search may be optionally downloaded as a CSV
formatted text file, suitable for importing into another database
or spreadsheet program. Individual expression construct
records are displayed in a static web page (Fig. 5C), with data-
base fields organized in a logical hierarchy. A number of local
and distributed Internet resources are automatically linked to
record display pages, such as Protein Data Bank searching,
organism-specific databases and specialized structural annota-
tion reports.

To provide a global view of project growth, programs were
developed to summarize the nature of the database holdings
and illustrate the relative progress made on target proteins (Fig.
1A). Using a subset of the main search engine functionality,
users can recall sets of database entries and display them in a
large table, organized to represent a time line in the structure
determination process. Advanced features allow users to
reconfigure the display to generate a custom table that presents
any combination of database fields in lieu of the standard table
layout.

DATA MINING APPLICATIONS FOR HIGH-
THROUGHPUT PROTEOMICS

The success of the high-throughput aspect of structural
proteomics relies on the optimization of target selection and
experimental protocols. This, in turn, involves identifying
proteins that can be readily expressed, solubilized, purified and
crystallized under a given set of standard conditions (i.e. the
most tractable instances). These factors will strongly influence
whether or not a given protein is pursued for X-ray or NMR
structure determination. One of the main goals of the SPINE
system was to capture the data in a way that made it suitable for
subsequent analysis. In the following sections we present a
representative application: classification of soluble proteins
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Figure 4. Overwrite protection during the creation of new database records. The first step in creating a database record is assigning an identifier to the new entry.
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construct identifiers are examined by the software and guaranteed not to conflict with those of existing entries, protecting against the accidental overwriting of data.
Once a valid identifier has been assigned to the new database record the user may input relevant experimental parameter values using the construct entry form.
Database records may be recalled and updated in two ways: by pressing the edit button available on its associated display page or by entering an expression con-
struct identifier directly into a form accessible from the main database web interface. Once a record has been selected all of its existing field values are displayed
in the construct editor, which shares a layout similar to the entry form. Users are then able to enter additional data and/or edit the current values associated with the
construct and store the updated record in the database.
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Figure 5. Database searching and record retrieval. Users can construct complex Boolean searches on a number of database key fields with an intuitive form (A);
the form elements are then parsed internally and an SQL query is created based on the values of the form elements and executed against the database. The search
results are then summarized in a table, displaying a user-selectable number of entries per page (B). The query terms also appear above the table in a pseudo-English
format, to assist in performing effective searches. Selecting an entry from the table displays the expression construct record in a separate web page (C), which
contains all the database fields associated with the record, in addition to a number of links to external resources (D).

using decision trees. Before presenting the details, it is worth-
while to review some key elements of this approach.

Machine learning concepts

The term machine learning applies to a wide range of compu-
tational methodologies. However, the models most suitable for
our applications belong to the class of algorithms that employ
supervised learning. Under supervised learning the classification

process consists of two phases: training and testing. The set of
all available examples or instances (formally termed input
vectors) is divided into two non-intersecting sets. The first set
is used to train the model. During this phase correct classifica-
tion of the examples is known a priori. Supervised learning
strategies rely on this information to adjust the performance of
the model until the classification error rate is sufficiently
reduced. Learning is no longer performed after training is
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completed; instead, unseen instances in the test set are classi-
fied according to the partitioning established during the
training phase. The performance of a learning algorithm is
determined by its ability to correctly classify new instances not
present in the initial training set.

The features of each sample can be represented as a vector
that corresponds to a point in an n-dimensional space. Classifi-
cation is then performed by partitioning this feature space into
regions, where most of the points in a region correspond to a
particular category. The goal in training classifiers is to find an
optimal partitioning of the input space separating the highest
number of disparate examples. An ideal classifier will demon-
strate strong predictive power, while explaining the relation-
ships between the variable to be predicted and the variables
comprising the feature space.

Machine learning applications to proteomics data

One property of a proteomics feature set that one must adhere
to is the appropriate time frame in which classifications are
performed. In many cases the experimental results are serially
related, constraining the composition of useful training sets to
expression constructs having a priori prediction data. For
example, one cannot expect to optimally classify crystalliza-
tion targets if the available training set contains experimental
results only up to the expression stage, because the available
feature set will not contain a response variable for crystalliza-
tion. Conversely, it is entirely possible to classify proteins
based on some property corresponding to an earlier experi-
mental stage, e.g. solubility data has already been gathered for
proteins having HSQC spectra, enabling one to train a classi-
fier to partition these proteins based on solubility information.

While there are many possible issues that data mining can
address in relation to the proteomics data collected by the
Consortium, we have focused on protein solubility prediction
due to the importance of this property and the availability of a

Table 2. Protein sequence features used for solubility prediction

large set of Methanobacterium thermoautotrophicum expres-
sion construct records having solubility measurements. The
size of this data set provides the best opportunity for generali-
zation during training, increasing an algorithm’s prediction
success when presented with new examples. An accurate
prediction method for this property can also be an extremely
useful tool, as insolubility accounts for almost 60% of experi-
mentally recalcitrant proteins (24). Here we refer to solubility
as ‘soluble in the cell extract’, a property that is correlated
with, but not necessarily identical to, the solubility of a purified
protein.

In a supervised learning approach for solubility prediction
the training set consists of a subset of input vectors extracted
from the database and is used by the classifier model to parti-
tion the sample space based on solubility, the dependent vari-
able to be predicted. After training the feature space will be
partitioned into two regions: one containing proteins labeled as
soluble and another with proteins labeled as insoluble. The
second part of this approach is to determine a trained classi-
fier’s ability to generalize to unseen examples, by presenting
the model with a test set containing new feature vectors and re-
evaluating its performance.

Methanobacterium thermoautotrophicum data set

A data set comprising 562 proteins from the M.thermo-
autotrophicum genome was compiled from the database and
used for machine learning. Although SPINE currently holds
740 construct entries for this organism, 178 of these do not
have solubility information and thus are not suitable for classi-
fication. As summarized in Table 2, a total of 42 features were
extracted from the corresponding protein sequences, such as
amino acid composition, hydrophobicity, occurrence of low
complexity regions, secondary structure, etc. Combined with
the database fields highlighted in Table 1, these features

Feature Description Number
C(r) Single residue composition (occurrence over sequence length: r=A,C,D,E,F, G, H, [I], K, L, M, N, P, Q,R, S, [T], V, W, [Y] 20
C(c) Combined amino acid compositions; ¢ = [KR], NQ, [DE], ST, LM, [FWY], HKR, AVILM, [DENQ], GAVL, SCTM 11
C(a) Predicted secondary structure composition: a = [a], B, [coil] 3
[Signal] Presence of signal sequence 1
[Length] Amino acid sequence length 1
[CPLX(x)] Number of amino acids in low complexity regions; x = s (short), 1 (long) 2
[CPLXn(x)] Normalized low complexity value (CPLX over sequence length); x = s (short), 1 (long) 2
[Hphobe] Minimum GES hydrophobicity score calculated over all amino acids in a 20 residue sequence window 1
HP-AA Number of amino acids within a hydrophobic stretch below a threshold of —1.0 kcal/mol 1
Total 42

Amino acid compositions and biochemical properties formed the basis of the feature set, secondary structure prediction, hydrophobicity scores on the GES scale
(31) and entropic complexity measures calculated by the SEG program (37). Long low complexity regions were identified with SEG using the standard parame-
ters, a trigger complexity K(1) of 3.4, an extension complexity K(2) of 3.75 and a sequence window of length 45. These domain sized compositionally biased ele-
ments are often associated with non-globular parts of proteins that do not readily fold and may aggregate in solution. Short low complexity regions were identified
using a trigger complexity of K(1) = 3.0, an extension complexity K(2) = 3.3 and a window of length 25. In order to enhance predictability and model simplicity,
feature selection algorithms were implemented to extract a feature subset, highlighted in brackets. The experimentally determined solubility values were used in
the training phase of supervised learning. Secondary structure prediction was carried out with the GOR program (38). Signal sequences are identified via pattern
matching and contain a charged residue within the first seven amino acids, followed by a stretch of 14 hydrophobic peptides (measured on the GES hydrophobic-

ity scale).



comprise the input vector used for the classification study
presented here.

To identify which proteins were used for this study we
constructed a ‘frozen’ version of the database at
bioinfo.mbb.yale.edu/nesg/frozen. This contains the entries
reported here and will not change in the future. The M.thermo-
autotrophicum protein expression constructs on which the
analysis was performed are also highlighted in the frozen data-
base.

It should be noted that prediction results for a proteomics
data set may exhibit some degree of specificity to the expres-
sion vectors and experimental conditions of cell growth, induc-
tion, etc. used for protein production. A characteristic of this
specific M.thermoautotrophicum data is the uniform set of
conditions that were used to prepare protein samples (26).
Additionally, the experimental targets selected by the Consor-
tium consist largely of non-membrane proteins, so the avail-
able data set is biased in this regard.

DECISION TREE ANALYSIS

The selection of an appropriate learning algorithm depends on
several factors, such as the type of data to be classified
(numeric or symbolic), the number of available examples in
the data set and how many of the examples are likely to be
noisy or inaccurate. Computational considerations, such as
processing time, memory limitations and feasibility of imple-
mentation, are also influential. Another issue is the degree of
desired interpretability of the results, which is largely deter-
mined by the representation language used by a given algo-
rithm. One method may exhibit advantages in interpretation,
but may generalize less optimally than another (or vice versa).
The most appropriate balance between prediction success and
interpretation depends on which quality is more important for
the application. We evaluated a number of different
approaches for this study, including neural networks, decision
trees, support vector machines, Bayesian networks and linear
discriminants. Here we focus on decision trees due to the rela-
tive ease of interpretability afforded by the model.

Model description

Decision tree learning (25,26) is a widely used and effective
method that can partition data that is not linearly separable
(Fig. 6). An individual object of unknown type may be classi-
fied by traversing the tree. At each internal node a test is
performed on the object’s value for the feature expressed at
that node (often called the splitting variable, e.g. alanine
composition). Based on this value, the appropriate branch is
followed to the next node. This procedure continues until a leaf
node is reached and the object’s classification is determined. In
classifying a given object a variable number of evaluations
may be performed or omitted, depending on the path taken
when the tree is traversed. In this manner a heuristic search is
performed to find a compact, consistent solution that general-
izes to unseen examples.

During training the tree is grown in two stages: (i) splitting
the nodes and (ii) pruning the tree. A common criterion for
binary node splitting entails maximizing the decrease in an
impurity measure, such as residual mean deviance. The lower
the deviance the better the tree explains the variability in the
data. A binary split for a continuous feature variable v is of the
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Figure 6. Conceptual structure of the decision tree model used for classifica-
tion problems. Instances are sorted from root to leaf nodes, based on a number
of properties defined at each node by splitting variables. Pictured is a decision
tree built to predict the tendency for protein crystallization based on sequence
features such as amino acid content, hydrophobicity and homology to other
sequences. The nodes of the tree are represented by ellipses; the values to the
left of each node indicate the number of proteins which are unable to crystal-
lize, while those to the right denote the crystallized examples. The splitting
threshold for each node appears directly under its associated variable. The
decision tree algorithm calculates all possible splitting thresholds for each var-
iable, selecting each variable and its threshold to optimize the homogeneity of
the two subsequent nodes. When a variable v is split, the right branch is
assigned to v < threshold and the left branch corresponds to v > threshold.

form v < threshold versus v > threshold; for a ‘descriptive’
feature a binary split divides the feature’s value range into two
classes. The size of the decision tree necessary to classify a
given set of examples varies according to the order in which
properties are tested and growing a tree usually has the effect
of overfitting the training set. A common strategy in most
pruning algorithms is to choose the smallest tree whose error
rate performance is closest to the minimal error rate of the
larger, original tree, as this is the model most likely to correctly
classify unknown objects. Pruning is particularly important
with noisy data (where the distribution of observations from
the classes overlap), as growing the tree in this case will
usually overfit the training set.

A number of advantages are evident in the decision tree
model. Classification can be based on an arbitrary mixture of
symbolic and numeric variables and (for axis-parallel splitting)
one is not required to scale the variables relative to each other.
The model is generally robust when presented with missing
values. In addition, straightforward and concise rules can be
inferred from the tree by following the path from root to leaf
nodes.

Feature selection

We used decision trees to partition the 562 M.thermo-
autotrophicum proteins into soluble and insoluble classes,
based on a subset of the features listed in Table 2. The features
that are relevant to a given problem domain are often unknown
a priori and removing those which are redundant or irrelevant
can produce a simpler model which generalizes better to
unseen examples. Automated feature selection attempts to find
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a minimal subset of the available features, in order to either
improve classification performance or to simplify the model’s
structure while preserving prediction accuracy (27). Typically,
a search algorithm is used to partition the available feature set.
Classifiers are then trained on the feature combinations
presented by the search algorithm to identify those features
which have the greatest impact on learning. In our case we
used a genetic algorithm (28) to search the space of possible
feature combinations; the relevance of individual feature
subsets was estimated with several machine learning methods,
including decision trees and support vector machines (29). We
arrived at a feature subset consisting of the amino acids E, I, T
and Y, combined compositions of basic (KR), acidic (DE) and
aromatic (FYW) residues, the acidic residues with their amides
(DENQ), the presence of signal sequences and hydrophobic
regions, secondary structure features and low complexity
elements. These are highlighted in Table 2.

Decision tree results

The trees that were trained on this data set had a misclassifica-
tion rate of 12%. Decision trees built on the training set are
always overly optimistic and contain a large number of nodes.
Only the upper region of the tree is significant in terms of
yielding a generalized concept and this is the segment from
which useful rules can be derived. After training and pruning
of the decision trees we extracted several classification rules
for distinguishing between soluble and insoluble proteins, as
described in Figure 7. Two trees are shown in this example.
Figure 7A illustrates the upper five levels of a decision tree
built on the entire set of 562 proteins and subjected to cross-
validation. The tree in Figure 7B was trained on a 375 protein
subset of the data and tested with the remaining 187.

Both of these exhibit simple rules for classifying soluble and
insoluble proteins, illustrated by the green and red paths on
either side of the root node. In the case of Figure 7A soluble
proteins are selected by the right branching path of the tree,
provided their amino acid sequences have a combined aspar-
tate and glutamate composition [represented as C(DE)] of at
least 18%. This path further classifies soluble proteins based
on the length of their sequences, although the most discrimi-
nating variable is clearly the presence of acidic residues.
Following the left branching path of the tree, insoluble proteins
are selected based on the conditions that their sequences
contain fewer than 18% acidic residues [C(DE)], a long (at
least 20 residue) stretch of amino acids with a minimum hydro-
phobicity of less than —0.78 kcal/mol on the GES scale (30)
(labeled Hphobe) and a combined composition of acidic amino
acids and their polar amides [C(DENQ)] under 16%.

The decision tree depicted in Figure 7B further isolates the
two most discriminating features: acidic residue composition
and the presence of a hydrophobic stretch. Aside from their
metal ion binding abilities, aspartic and glutamic acid are nega-
tively charged due to their carboxyl side chains. These highly
polar residues are often found on the surface of globular
proteins, where they can interact favorably with solvent mole-
cules. They have, in fact, the highest charge density per atom
of all the amino acids, a property obviously associated with
solubility. The hydrophobic region identified is not long
enough to be considered a transmembrane helix, but clearly
identifies an ‘adhesive’ area of the protein.

Decision tree learning produces a variety of tree topologies
depending on the specific data and features used for training.
We divided the 562 protein data set into random training and
testing sets of 66 and 33% of the input vectors, respectively,
and built decision trees using all of the available features. A
number of interesting patterns emerge based on the utilization
of classification features in various trees. Examining the deci-
sion tree paths reveals intricate sorting based on amino acid
composition in addition to the most widely used features. For
example, a rule was discovered which selects soluble proteins
having >18% DE composition, <8% arginine and >3% lysine
residues. Another tree exhibited similar prediction success by
combining arginine and lysine into a common splitting vari-
able immediately following the 18% DE rule, identifying
soluble proteins having <14% KR composition. However,
aspartic and glutamic acids were then isolated in lower levels
of the tree, achieving a finer partitioning by sorting on the indi-
vidual acidic residues.

Cross-validation

Overfitting can occur when a model performs well on the
training set but fails to generalize to unseen examples. In these
instances the algorithm has partitioned the data too finely and
has mapped a decision surface to the training data that too
closely follows intricacies in the feature space without
extracting the underlying trends, essentially ‘memorizing’ the
training set. In practice we can say that if an alternative
learning solution exists with a higher error rate but generalizes
better over all available input vectors, overfitting has occurred.
One way of studying (and hence subsequently preventing)
overfitting is cross-validation, which gives an estimate of the
accuracy of a classifier based on re-sampling.

Stratified 10-fold cross-validation was performed on the
decision trees, where each successive application of the
learning procedure used a different 90% of the data set for
training and the remaining 10% for testing. Each of these
training sets produced different trees from those constructed
based on the entire data set. Using the testing sets for validation
with their corresponding tree models, we took the sum of the
number of incorrect classifications obtained from each one of
the 10 test subsets and divided that sum by the total number of
instances that had been used for testing (i.e. the total number of
instances in the data set), thereby producing the estimated error
for the entire tree. This cross-validation approach resulted in an
overall prediction success of 61-65% over the various data
subsets. This does not correspond directly to the decision tree
performance based on the entire data set, as cross-validation
results are produced from many different partitions of the
training and testing sets.

While typically used for error estimation, cross-validation is
not optimal for medium sized or ‘mesoscale’ data sets, such as
our proteomics set. This is because the procedure excludes a
large fraction of the data during training, resulting in insuffi-
ciently sized testing sets. Consequently, other non-cross-vali-
dated estimates of classification error have been developed. In
the next section we apply one such method, called pessimistic
error estimation (25).

Rule assessment

Regardless of the specific method of error estimation used,
some paths, i.e. sequences of rules, within the decision tree
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Figure 7. Decision trees built for solubility prediction. Tree pruning methods are designed to reduce the number of nodes and arrive at the smallest tree whose error
rate performance is closest to the minimal error rate of the entire tree. (A and B) Uppermost levels of two decision trees, highlighting paths for classification rules.
The original trees from which these subsets of nodes were derived are inset to the right. Decision tree (A) was built using the entire set of 562 proteins, while (B)
was trained and tested on discrete randomized subsets of the proteomics data: 375 proteins were used for training and the remaining 187 for testing. Soluble and

insoluble proteins are indicated by the numbers to the right and left of each node,
corresponding to the training (left) and testing (right) phases. Decision pathway.

respectively. In the case of decision tree (B) two values are used for each class,
s which terminate in highly homogeneous nodes (mostly dark, soluble; mostly

white, insoluble) and are not distant from the root define more robust rules which can generalize against unseen examples. Heterogeneous nodes could be further
split by extending the tree downward, improving the error rate but overfitting the training set. The pathways indicated in each decision tree represent sets of rules.

For instance, the right branching path of example (A) (indicated in green) selects
of acidic residues [C(DE)] in their sequences exceed 18%. The left branching pat!

mostly soluble proteins, based on the condition that the combined compositions
h of the same tree (in red) outlines the following set of conditions and classifies

proteins which are likely to be insoluble: C(DE) < 18%; presence of a stretch of amino acids with average hydrophobicity <—0.78 kcal/mol (labeled Hphobe); fewer

than 16% acidic amino acids and their amides [C(DENQ)]. (C) Thresholds at wh

ich each node partitions the input vectors in the upper levels of the two decision

trees. At each level the nodes are listed sequentially from left to right [e.g. at level 2 in tree (A) the left-most node represents the splitting variable Hphobe having

a threshold of —0.78 on the GES hydrophobicity scale, followed by a node in the
a threshold of 95 amino acids].

may perform significantly better than others. These rules
provide a straightforward way for others to apply the classifi-
cation results in a practical context. Moreover, a few simple
rules extracted from the tree may be considerably more robust
to changes in the underlying data than the original tree
topology. Consequently, we describe in this section a way to

right-most branch of the tree corresponding to the splitting variable Length with

measure the quality of a particular rule, in constrast to the
overall estimate of a tree’s performance reported above.

For this rule assessment we do not perform cross-validation
at all, due to the scarcity of the data underlying any particular
rule. Instead, we use Quinlan’s pessimistic estimation method,
calculating a rule’s accuracy over the training examples to
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which it applies and then calculating the standard deviation in
this estimated accuracy assuming a binomial distribution.
More specifically, given the set C of training cases at node Q,
its majority class and the number of cases outside that class,
error-based pruning interprets C as a binomially distributed
sample with well-defined confidence limits and estimates the
Q error rate as the upper limit on its posterior probability distri-
bution. Equivalently, for a given confidence level the lower
bound estimate is then taken as the measure of rule perform-
ance.

The default accuracy of choosing a soluble protein in our
data set is defined by S/T, where § is the number of soluble
proteins and T is the total number of proteins. The accuracy of
the rule that predicts solubility is s/t, where s is the number of
proteins reaching the leaf node at the end of a decision path and
t is the total number of proteins reaching that node. It is
straightforward to evaluate the probability that a randomly
chosen rule will do as well as or better than a decision rule with
accuracy s/t. This probability is given by:

w03
L0

Note that the sum is over the hypergeometric distribution.
Small values of this measure correspond to good rules because
this means there is a small probability that a rule has arisen by
chance.

For example, the branching of the tree at the root, based on
the condition that the overall composition of aspartate and
glutamate in protein sequences is >18%, defines a rule which
classifies many proteins as soluble. This rule has an observed
accuracy of 108/136 (0.79) over the training set and a proba-
bility of 6 x 10~ of arising by chance. We must take into
account the fact that the observed accuracy is overly optimistic
and correct it by subtracting 1.96 times the binomial standard
deviation (for the lower bound of a 95% confidence interval).
For ¢ > 30 the binomial distribution can be approximated by the
normal distribution.

The probability that a random variable X, with mean 0, lies
within a certain confidence range of width 2zis P(—z< X <z) =
c¢. For a normal distribution the value of confidence ¢ and the
corresponding values of z are given in standard tables. In our
case we want to standardize s/t. To do this we first assert that
the observed success rate s/t is generated from a Bernoulli
process with success rate b. If ¢ trials are taken, the expected
success of the random variable s/t is the mean of a Bernoulli
process b and the standard deviation:

Ab(1-b)/t

The variable s/t can be standardized by subtracting it from the
mean b and dividing by the standard deviation. The standard-
ized random variable X is defined as:

[(s/t) = b1//b(1 = b)Y/t
Assuming that ¢ is large enough, the distribution of X

approaches the normal distribution. As mentioned above, the
probability that the random variable X with mean 0 lies within

a certain confidence range of width 2z is P(-z < X <z) =c¢, or
explicitly:

P{-z<[(s/t)-b]/Jb(1-b)/t<z} = ¢

Choosing a confidence probability ¢ corresponds to a partic-
ular value of z [note that standard Z values are given for the
one-tailed P(X < z). For example, P(X < z) = 5% corresponds to
P(—z < X <7)=90%]. Solving for the value of b will give us the
range of success rate and we will choose the lower bound to
find the pessimistic error rate (success rate + error rate = 1;
taking the largest error that corresponds to the smallest success
rate will yield the pessimistic error rate).

Inspecting the argument of the above equation, we can solve
for b at the boundaries +z and —z, i.e.

[(s/t) = bl/Nb(1 =Db)/t = z,[(s/t) - b]l/Nb(1 -D)/t = —2

Then we can express the confidence range as:

b=(s/t+7°/2t% s/i PR Ay s+ i

and take the lower limit. Taking the pessimistic lower bound
estimate for a 95% confidence interval gives an overall 0.71
success ratio, in contrast to the default rule at the root of the
tree, which has a success rate of 330/562 (0.59). The proba-
bility of this rule occurring by chance is <0.1%.

A statistically valid approach to estimate the true error (e,) of
a hypothesis within a 95% confidence interval is given in terms
of a sample error (e,) and the sample size n (n > 30):

e,=e.t Je(l-e/)/n

In addition to cross-validation and error estimation, model
combination techniques were applied using decision trees
derived from random subsets of the available data. These
methods included bagging (bootstrap aggregating) and
boosting (31), where each new model is influenced by the
performance of those built previously and is trained to classify
instances handled incorrectly by earlier ones. No significant
improvement in prediction rates was found with any of these
approaches. Similarly, the approach of stacking several
different classifiers, such as a decision tree with a support
vector machine, to another higher level meta-learner (e.g.
another decision tree classifier) also did not change the predic-
tion accuracy.

Identification of potential crystallization targets

We also performed machine learning analyses on other aspects
of the proteomics data set, such as the potential for crystalliza-
tion. An example decision tree built to classify 64 proteins
based on their tendency to crystallize is shown in Figure 6.
From this result it appears that the top level rule in the tree,
aspartate composition of greater or less than 4.5%, is a discrim-
inating feature. Significantly less data is available for this clas-
sification task than for solubility prediction, hence, these
preliminary results are not statistically robust. When more data
becomes available we should be able to derive rules relating
other protein attributes using the decision tree approach.



DISCUSSION

Comprehensive data management practices coupled with
computational analysis can be a powerful tool for large scale
proteomics. An interactive, dynamically modifiable database
is an important component in collaborative research, enabling
global protein target prioritization and synchronization of
efforts across many laboratories. If data resources are designed
for subsequent analysis, data mining strategies can be an effec-
tive way to make sense of experimental data and discover
hidden trends. Implementing robust, standardized archival
procedures to maintain data from disparate sources is critical to
the success of large scale projects where many laboratories
may be collaborating. In turn, the effective application of retro-
spective (post-experimental) analysis methods is dependent
upon the availability of comprehensive data sets having
standard formats easily parsed by computer programs.

By its nature, large scale genomics and proteomics research
cannot be performed by a conventional single investigator
laboratory. It will be carried out in large central facilities or via
consortia of many laboratories. Our system is designed to
facilitate the latter research model. This approach enables not
only integration of data from various sources, but also formu-
lation of statistical predictions of various macromolecular
properties, which can potentially enhance the efficiency of
laboratory research.

In particular, decision tree models feature a number of prac-
tical advantages, such as the straightforward interpretation of
results, ability to mix numeric and symbolic features and invar-
iance to numeric scaling. The ability to devise prediction rules
from the paths through the tree is perhaps the most powerful
feature of this approach. Eventually we plan to do a compara-
tive study of several machine learning algorithms, to assess the
capabilities of various methods for predicting macromolecular
properties of new proteins based on the training sets produced
by the database.

Database extensions: sparse data records and multiple
expression constructs

The prototype database system is currently implemented as a
multi-table relational model. The limited scalability of this
design may become problematical as the system expands to
capture more diverse experimental data, resulting in a larger
number of unused fields. To circumvent this ‘sparse matrix’
problem future versions of the system are moving towards the
entity attribute value (EAV) representation (32). This design
would allow various sets of database fields to be accessed and
updated, depending on the type of experiments typically
performed by different investigators. Efforts are ongoing to
standardize and incorporate more experimental data into this
format, so that computational methods can be applied to a
wider range of features.

A related issue concerns the way multiple expression
constructs having a shared protein target should be considered
for analysis. In order to predict various properties of proteins it
may be necessary in some cases to collapse the data from
related expression constructs to the target protein level.
Although this problem was not encountered with the data sets
used for the studies presented here, it remains to be seen which
approaches are most suitable for handling instances with this
type of complexity.
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In the future the results of data mining analysis may be incor-
porated directly into the database web site, instead of being
computed off-line. This more explicit integration could allow
investigators to perform computational predictions on target
proteins as they are entered into the system.

Future directions: global surveys

SPINE currently focuses on the front end of large scale
proteomics efforts, collecting the experimental data generated
before structures have been determined. As the NESGC project
matures we anticipate that the database will incorporate more
and more information about completed protein structures. The
analytical theme will then shift from optimization of high-
throughput structure determination to presenting a global
survey or protein folds in various genomes, similar in spirit to
a number of previous studies (33-36).
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