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Summary

Across the domains of spatial navigation and episodic memory, the hippocampus is thought to 

play a critical role in disambiguating (pattern separating) representations of overlapping events. 

However, it is not fully understood how and why hippocampal patterns become separated. Here, 

we test the idea that event overlap triggers a ‘repulsion’ among hippocampal representations that 

develops over the course of learning. Using a naturalistic route-learning paradigm and 

spatiotemporal pattern analysis of human fMRI data, we found that hippocampal representations 

of overlapping routes gradually diverged with learning to the point that they became less similar 

than representations of non-overlapping events. In other words, the hippocampus not only 

disambiguated overlapping events, but formed representations that ‘reversed’ the objective 

similarity among routes. This finding, which was selective to the hippocampus, is not predicted by 

standard theoretical accounts of pattern separation. Critically, because the overlapping route 

stimuli that we used ultimately diverged (so that each route contained overlapping and non-

overlapping segments), we were able to test whether the reversal effect was selective to the 

overlapping segments. Indeed, once overlapping routes diverged (eliminating spatial and visual 

similarity), hippocampal representations paradoxically became relatively more similar. Finally, 

using a novel analysis approach, we show that the degree to which individual hippocampal voxels 

were initially shared across route representations was predictive of the magnitude of learning-

related separation. Collectively, these findings indicate that event overlap triggers a repulsion of 

hippocampal representations—a finding that provides critical mechanistic insight into how and 

why hippocampal representations become separated.

Graphical abstract

*Correspondence: avi.chanales@nyu.edu (A.J.H.C), bkuhl@oregon.edu (B.A.K).
3Lead Contact

Author Contributions: A.J.H.C, S.E.F. and B.A.K designed the experiment. A.J.H.C. and A.O. ran the experiment. A.J.H.C. analyzed 
the data. A.J.H.C., S.E.F., and B.A.K. wrote the paper.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Curr Biol. Author manuscript; available in PMC 2018 August 07.

Published in final edited form as:
Curr Biol. 2017 August 07; 27(15): 2307–2317.e5. doi:10.1016/j.cub.2017.06.057.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Chanales et al. report that representations of overlapping spatial routes in the human hippocampus 

dramatically diverge with learning, ultimately becoming less similar than representations of non-

overlapping routes. These findings suggest that event overlap triggers repulsion of hippocampal 

representations.

Introduction

Distinct experiences often contain overlapping elements, creating the potential for memory 

interference. For example, a single location (e.g., a living room) may be the site of many 

different experiences and corresponding memories. The hippocampus is widely thought to 

play a critical role in coding overlapping events such that interference is minimized. 

Compelling evidence for this function comes from intracranial recordings in rodents during 

spatial navigation. For example, when rodents alternate between left- and right-hand turns in 

a T-maze, cells within the hippocampus differentially fire during the central stem (the 

overlapping path), according to whether the current route is a ‘right-turn’ or ‘left-turn’ route 

[1, 2]. Likewise, hippocampal place fields may completely remap with contextual changes in 

a rodent's environment [3, 4]. In human studies of episodic memory, fMRI evidence 

indicates that visual stimuli that are shared across multiple event sequences are distinctly 

coded in the hippocampus according to the specific sequence to which they belong [5]. 

While these studies and others have led to general agreement that the hippocampus forms 

distinct codes for overlapping experiences [6-16], the factors that trigger divergence of 

hippocampal representations are not fully understood.

The formation of distinct hippocampal representations is traditionally thought to be a result 

of sparse coding within the hippocampus [17-22]. Although there are not enough neurons in 

the hippocampus to entirely avoid representational overlap, sparse coding ensures that 

similar experiences are less likely to share neural units, thereby resulting in orthogonalized 

representations. While this coding property of the hippocampus may play a critical role in 

reducing overlap during initial encoding, it is unlikely to provide a complete account of how 

hippocampal representations become distinct. In particular, overlap among hippocampal 

representations also changes with experience, suggesting learning-related factors that 

contribute to divergence. For example, hippocampal remapping in rodents may emerge over 

the course of learning [3, 23], and even the sensitivity of stable hippocampal place fields can 

be tuned by experience [24]. Similarly, experience-dependent divergence of hippocampal 

activity patterns has been observed in human fMRI data [6, 13, 25, 26]. Computational 

models suggest that one factor that drives learning-related divergence of hippocampal 

representations is competition [26-29]. When activity patterns overlap–which may reflect 

residual overlap following initial orthogonalization–this creates competition during learning 

that the hippocampus ‘solves’ by reducing similarity among representations. This 

perspective makes a critical prediction: that overlapping representations should 

systematically move apart from one another over the course of learning. Indeed, the 

representational distance between overlapping events should increase to a greater degree 

than the distance between non-overlapping events. This idea, which can be thought of as 

repulsion, is quite distinct from the idea of orthogonalization because repulsion necessarily 

requires that an event's representation is directly shaped by a similar (competing) event's 
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representation. Limited evidence from human fMRI studies hints at repulsion among 

overlapping hippocampal representation [6, 13, 25] but these observations come from 

episodic memory paradigms with static visual stimuli, which contrasts sharply with the 

spatial learning and navigation paradigms that have been used to study disambiguation of 

hippocampal activity patterns in rodents.

Here, we bridge evidence from spatial learning paradigms in rodents and human episodic 

memory paradigms by testing, in a pair of human fMRI studies, whether overlap among 

spatial routes triggers an experience-dependent repulsion of hippocampal representations. 

Modeled after canonical rodent T-maze paradigms, we used a real-world route-learning 

paradigm that contained pairs of spatially-overlapping routes. However, in contrast to rodent 

T-maze paradigms, we also included pairs of non-overlapping routes, so that the similarity of 

overlapping route representations could be expressed relative to the similarity of non-

overlapping route representations–a critical comparison for testing whether divergence 

preferentially occurs among overlapping events. fMRI data were collected over the course of 

an extended learning session, allowing for representational similarity to be compared across 

time. Additionally, because our route stimuli were temporally dynamic, we used a novel 

spatiotemporal pattern analysis method wherein neural representations consisted of patterns 

of activity distributed across space (fMRI voxels) and time.

Our paradigm allowed us to test several critical predictions. First, if repulsion occurs, 

representations of overlapping events should diverge to a greater degree than non-

overlapping events—that is, overlapping events should systematically move apart from each 

other. An unambiguous sign of repulsion is if overlapping event representations become less 

similar than non-overlapping event representations—what we will refer to as a ‘reversal 

effect’–as this outcome cannot be explained by orthogonalization of neural codes. Recently, 

we have shown at least one learning context in which a reversal effect is observed in the 

hippocampus [6], but it remains to be determined whether this seemingly paradoxical result 

is a general property of the hippocampus and whether it applies to the types of spatial 

learning paradigms commonly used in rodent studies. Second, to establish the critical point 

that event overlap itself triggers repulsion of hippocampal representations, it is essential to 

establish that repulsion only occurs for the segments of routes that actually overlap. For 

example, in a T-maze paradigm, repulsion should only occur in the central stem of the maze, 

which is shared across the left- and right-turn routes. To our knowledge, rodent studies have 

not directly compared population-level neural similarity during overlapping vs. non-

overlapping segments of a maze. Third, repulsion should be relatively slow to develop as it 

is inherently a learning phenomenon [29], which contrasts with the idea that coding 

properties of the hippocampus allow for an immediate orthogonalization of activity patterns. 

Finally, as an extension of the prediction that event overlap triggers divergence, we also 

conducted a novel analysis in which we tested whether the degree of learning-related 

plasticity that an individual hippocampal voxel experienced was predicted by initial 

representational overlap within that voxel. This allowed us to determine whether learning-

related plasticity preferentially occurs in representational units that are shared across events 

[27, 28].
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Results

Behavioral measures of route discrimination

In an initial behavioral experiment, each subject studied sets of real-world routes that 

included pairs that shared a common path before diverging to terminate at distinct 

destinations (‘overlapping routes’) and pairs with no paths in common (‘non-overlapping 

routes’) (Figure 1A). Importantly, each route contributed to both conditions. For example, 

‘route 1’ and ‘route 2’ were overlapping routes, but ‘route 1’ and ‘route 3’ were non-

overlapping routes (Figure 1C). Each route contained an initial segment that was shared with 

another route (Segment 1), and a later segment, including the destination, that was route-

specific (Segment 2; Figure 1A). Although the real-world spatial locations of the 

overlapping segments were identical, the pictures for each route were taken at different times 

and therefore differed subtly in terms of pedestrians, vehicles, etc. (Figure 1C and Movies 

S1-S4). Routes were studied twice per round for 14 rounds. Subjects were instructed to learn 

the specific path to each destination, but were not told the destination at the start of the 

route. After each study round, subjects were shown individual pictures drawn from the 

routes and selected the destination associated with each picture. Of central interest was 

accuracy for pictures drawn from Segment 1 of each route because selecting the correct 

destination for these pictures required discriminating between overlapping routes. Overall, 

subjects selected the correct destination (‘target’) at a higher rate than the destination of the 

overlapping route (‘competitor’) and selected the competitor at a higher rate than 

destinations from non-overlapping routes (‘other’) (ps < 0.000003; Figure 2A). Thus, there 

was competition between overlapping routes, but subjects generally succeeded in 

discriminating between them. Moreover, the relative percentage of target vs. competitor 

responses markedly increased across learning rounds (F1,21 = 38.11, p = 0.000004; Figures 

2B and 2C).

Hippocampal representations of overlapping routes diverge with learning

We next tested for hippocampal repulsion of overlapping routes in two fMRI studies. The 

first fMRI study used the same stimuli as the behavioral study (Figure 1A). The second 

fMRI study used a new set of stimuli that again included overlapping and non-overlapping 

routes, but some of the non-overlapping routes terminated at a common destination (Figure 

1B). Except where noted otherwise, all analyses below combine data across experiments and 

analyses of non-overlapping routes are restricted to those that terminated at distinct 

destinations (so that comparisons of overlapping and non-overlapping routes were matched 

in that every route terminated at a distinct destination). For Segment 1 of each route, we 

obtained a corresponding neural activity pattern by extracting voxel-wise patterns of activity 

as they unfolded over time. These spatiotemporal activity patterns were then correlated for 

every pair of routes, resulting in a correlation matrix reflecting pairwise route similarity 

(Figure 3A). We considered pattern similarity for (1) repetitions of the same route, (2) 

overlapping routes, and (3) non-overlapping routes. Separate correlation matrices were 

generated for each subject's hippocampus and for a control region: the ‘parahippocampal 

place area’ (PPA), which is adjacent to the hippocampus and is involved in scene processing 

and navigation (Figure 3B) [30, 31]. Because our behavioral experiment indicated that 

discrimination of overlapping routes robustly improved from the 1st to 2nd half of learning 
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(Figure 2C), we divided the fMRI data into halves and independently computed pattern 

similarity measures within each of these halves. As in the behavioral experiment, subjects in 

both fMRI experiments were able to successfully discriminate between the overlapping 

routes by the end of learning (see Figure S1).

Of critical interest, there was a learning-related decrease in pattern similarity among 

overlapping compared to non-overlapping routes, as reflected by an interaction between 

overlap (overlapping/non-overlapping) and learning (1st half/2nd half) (F1,39 = 13.163, p = 

0.0008; Figure 3C). Whereas pattern similarity among overlapping routes decreased with 

learning (F1,39 = 35.21, p = 0.0000006), similarity among non-overlapping routes did not 

change (F1,39 = 0.24, p = 0.63; Figure 3E). This dissociation is striking when considering 

that all routes contributed to both the overlapping and non-overlapping comparisons. Thus, 

learning did not globally reduce similarity among routes; rather, learning specifically 

reduced similarity between overlapping routes. Moreover, overlapping route similarity 

decreased to the point that in the 2nd half of learning overlapping routes were markedly less 

similar than non-overlapping routes (F1,39 = 14.20, p = 0.0005; Figure 3F). This result was 

significant in each of the fMRI Experiments (ps < .05; see Figure S2 for results separated by 

experiment). Thus, despite the fact that overlapping routes were spatially and visually more 

similar than non-overlapping routes, the hippocampus represented overlapping routes as less 

similar than non-overlapping routes–a result we refer to as a ‘reversal effect’ because the 

representational structure is opposite to the inherent similarity structure of the routes. This 

reversal effect was not present in the 1st half of learning (F1,39 = 1.41, p = 0.24), confirming 

that it developed over learning (see Figure S3 for finer-grain consideration of learning-

related changes over time).

We also tested whether overlapping route similarity decreased relative to repetitions of the 

same route. Indeed, there was a significant learning-related decrease in overlapping route 

similarity relative to same route similarity (F1,39 = 7.59, p = 0.009). Overlapping route 

similarity was significantly lower than same route similarity in the 2nd half of learning (F1,39 

= 5.61, p = 0.023), but not in the 1st half of learning (F1,39 = 0.85, p = 0.35).

As a comparison point for the hippocampal data, we considered representational structure 

within PPA. However, there was no learning-related reduction in the similarity of 

overlapping vs. non-overlapping routes in PPA (Segment 1 data only; F1,39 = 2.42, p = 0.13; 

Figure 3D). In fact, overlapping route similarity was greater than non-overlapping route 

similarity in the 1st half (F1,39 = 21.01, p = 0.00005) and 2nd half of learning (F1,39 = 4.63, p 

= 0.038; Figure 3F; note: this effect differed across Experiments, see Figure S2). Thus, the 

reversal effect observed in the hippocampus by the end of learning was absent in PPA. The 

dissociation between PPA and hippocampus at the end of learning was reflected in a highly 

significant region × overlap interaction (F1,39 = 22.18, p = 0.00003). Similar dissociations 

were also observed when comparing hippocampus to other cortical areas involved in spatial 

navigation (retrosplenial cortex), object processing (lateral occipital cortex), and medial 

temporal lobe cortex, more generally (see Figure S4). Within PPA, there was also no 

learning-related change in overlapping vs. same route similarity (F1,39 = 0.003, p = 0.96) 

with no significant difference between overlapping and same route similarity in the 1st half 

(F1,39 = 0.89, p = 0.35) or 2nd half of learning (F1,39 = 0.86, p = 0.36).
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Divergence of hippocampal patterns is triggered by route overlap

If the reversal effect was triggered by route overlap, this makes a paradoxical prediction: that 

the reversal effect should diminish once overlapping routes diverge. Indeed, when 

considering data from Segment 2–i.e., after overlapping routes diverged– the reversal effect 

was absent (F1,39 = 0.31, p = 0.58; Figures 4A and 4B). The selectivity of the reversal effect 

to the overlapping portion of the overlapping routes was confirmed by a significant overlap × 

segment interaction (2nd half data only: F1,39 = 4.28, p = 0.045). Thus, the reversal effect 

only occurred for route segments where visual and spatial overlap was actually present 

(Segment 1), strongly suggesting that route overlap triggered the reversal effect.

To further strengthen the argument that the reversal effect was a reaction to route overlap, we 

next tested whether time point by time point fluctuations in the reversal effect (Figure 4B) 

were related to behavioral measures of route discrimination. Because memory-based route 

discrimination was more extensively tested in the behavioral experiment (Figure 2), we used 

data from this experiment to calculate mean discrimination difficulty for each picture 

sampled from each route. We then binned these data to match the temporal resolution of the 

fMRI data (see STAR Methods) so that time point by time point fluctuations in 

discrimination accuracy could be correlated with fluctuations in the reversal effect. Indeed, 

there was a remarkably strong correlation between these measures (r = 0.87, p = 0.0003; 

Figure 5A and 5B). Specifically, the reversal effect was relatively stronger at time points 

where the routes were relatively difficult to discriminate. The correlation remained 

marginally significant when only considering time points from Segment 1 (r = 0.58, p = 

0.061). These data strongly support the idea that the reversal effect was triggered by 

competition between route representations.

Learning-related changes do not reflect destination coding

One way in which hippocampal route representations may diverge is through the learned 

ability to predict destinations [32-36]. To test this possibility we considered data from 

Experiment 2, which contained pairs of non-overlapping routes that terminated at distinct 

destinations as well as pairs of non-overlapping routes that terminated at the same 

destination. If hippocampal activity patterns reflected navigational goals, pattern similarity 

from Segment 1 should be greater for ‘same destination’ routes than ‘distinct destination’ 

routes. However, there was no learning related increase in hippocampal similarity for same 

destination relative to distinct destination routes (F1,20 = 0.53, p= 0.47), nor was there a 

difference between same and distinct destination routes when considering 2nd half data alone 

(M = 0.016 and M = 0.012, respectively; t20 = 0.98, p = 0.34). Thus, the observed divergence 

of hippocampal activity patterns is not readily explained by destination coding.

Voxel-Level changes in route similarity

The preceding results indicate that hippocampal representations of overlapping events 

diverged with learning, and that this divergence was triggered by route overlap. But what 

factors determined the level of plasticity that individual voxels exhibited? On the one hand, 

the reversal effect potentially reflects a global form of plasticity, with all voxels showing a 

comparable degree of learning-related divergence. However, a theoretically important 

alternative, motivated by our main findings above, is that the amount of initial 
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representational overlap (within a voxel) determines the degree to which divergence occurs 

[27, 28].

To test whether voxel-level divergence varied according to initial representational overlap, 

we characterized every voxel in terms of the similarity with which it responded to 

overlapping routes. Because spatial pattern similarity cannot be computed at the level of 

individual voxels (i.e., a single voxel has no spatial pattern), we instead capitalized on the 

temporal dimension of our stimuli, computing the similarity of each voxel's timecourse 

across pairs of routes. We refer to this measure as ‘timecourse similarity’ (Figure 6A). 

Voxels were rank-ordered by 1st half timecourse similarity and binned into groups 

corresponding to ‘weak,’ ‘moderate,’ or ‘strong’ similarity (i.e., the bottom 1/3, middle 1/3, 

and top 1/3 of similarity values). Importantly, this binning was independently repeated for 

every pair of routes, each voxel in each region of interest, and each subject. Performing the 

analysis in a route-specific manner is important because a given voxel may exhibit strong 

timecourse similarity across one pair of routes but weak timecourse similarity across a 

different pair of routes (see Figure S6). Timecourse similarity values from the 2nd half of 

learning were then obtained from these voxel bins. This allowed for timecourse similarity 

values at the end of learning to be expressed as a function of timecourse similarity at the 

beginning of learning. Note: we did not measure changes in timecourse similarity from the 

1st to 2nd half because such measures would be distorted by regression to the mean.

Within the hippocampus, an ANOVA with factors of overlap (overlapping/non-overlapping) 

and bin (weak/moderate/strong) revealed a significant overlap × bin interaction (F278 = 3.19, 

p = 0.046). This interaction reflected a relatively greater difference between overlapping and 

non-overlapping routes (reversal effect) for voxels that exhibited ‘moderate’ timecourse 

similarity during the 1 st-half of learning. Namely, the reversal effect was highly significant 

in the ‘moderate’ bin (F1,39 = 19.17, p = 0.00009), marginally significant in the ‘weak’ bin 

(F1,39 = 3.62, p = 0.064), and not significant in the ‘strong’ bin (F1,39 = 1.53, p = 0.22). 

Thus, the reversal effect was most pronounced among voxels that exhibited moderate 

similarity across overlapping routes at the beginning of learning. Considering overlapping 

routes alone-as opposed to the difference between overlapping and non-overlapping routes–

2nd half timecourse similarity also significantly varied according to 1st half similarity (F2,78 

= 4.74, p = 0.012), with the function qualitatively characterized by a dip for voxels in the 

‘moderate’ bin (Figure 6B). Indeed, adding a quadratic term to a mixed-effects regression 

model that included a linear term significantly improved the model fit (χ2= 6.06, p = 0.014), 

indicating a non-monotonic relationship between timecourse similarity at the beginning vs. 

end of learning. For non-overlapping routes, 2nd half timecourse similarity did not vary 

according to 1st half similarity (F2,78 = 0.28, p = 0.76). See Figure S5 for the results of a 

complementary Bayesian curve-fitting analysis that relates 1st half timecourse similarity to 

2nd half timecourse similarity.

The relationship between 1st and 2nd half timecourse similarity for overlapping routes was 

markedly different in PPA, as reflected by a significant region (hippocampus/PPA) × bin 

interaction (F2,78 = 18.12, p = 0.0000003). A region × bin × overlap interaction was 

marginally significant (F2,78 = 2.95, p = 0.058). Qualitatively, PPA voxels that were 
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moderately shared across overlapping routes in the 1st half of learning remained moderately 

shared in the 2nd half of learning (Figure 6C).

Collectively, these findings suggest a ‘Goldilocks effect,’ wherein intermediate levels of 

overlap produce the strongest amount of learning-related divergence in the hippocampus. At 

a more general level, these findings provide unique evidence that initial overlap among 

hippocampal representations is an important determinant of learning-related plasticity.

Discussion

Here, we found that hippocampal representations of overlapping spatial routes dramatically 

diverged with learning–to the point that overlapping routes were coded as less similar than 

non-overlapping routes. This ‘reversal effect’ clearly emerged with learning and it paralleled 

behavioral improvement in memory-based route discrimination. The result was also selective 

to the hippocampus, with no evidence of a reversal effect in PPA or other cortical regions 

(Figure S4). Finally, using a novel analysis approach, we show that plasticity within 

hippocampal activity patterns was most pronounced for voxels that were moderately shared 

across overlapping routes at the beginning of learning.

Measuring hippocampal representations of overlapping events

Several details of our paradigm and analyses are critical for interpreting our findings. First, 

we specifically compared representations of overlapping events to representations of non-

overlapping events [6]. This allowed for learning-related changes to be expressed relative to 

a meaningful baseline—a baseline that, to our knowledge, is absent in rodent T-maze 

paradigms. Indeed, the fact that hippocampal representations of visually- and spatially-

overlapping routes became less similar than routes that contained no spatial overlap or visual 

similarity is not only striking, but it provides essential insight into the underlying mechanism 

(a point we detail below). Second, our design did not involve separate sets of routes for the 

overlapping and non-overlapping comparisons [5, 11, 12]; rather, each route was included in 

each comparison. For example, whereas routes 1 and 2 represent overlapping routes, routes 

1 and 3 represent non-overlapping routes. As such, any observed differences between 

overlapping and non-overlapping routes cannot be attributed to differences between the 

actual stimuli or to differences in attention, familiarity, vigilance, etc. It is also of note that 

our findings generalized across entirely different sets of stimuli (Experiments 1 and 2). 

Lastly, for our critical comparison of overlapping vs. non-overlapping routes, we focused on 

spatiotemporal activity patterns during the overlapping segments of the routes (Segment 1 

data)–that is, before the overlapping routes diverged. Indeed, once the overlapping routes 

diverged (Segment 2 data), the hippocampal reversal effect ‘disappeared’ (Figures 4A and 

4B). Thus, hippocampal representations of overlapping routes were most dissimilar when 

routes actually overlapped, clearly suggesting that the reversal effect was triggered by event 

overlap.

Mechanism underlying hippocampal reversal effect

While there is general agreement that the hippocampus disambiguates overlapping event 

representations—a phenomenon that has been termed ‘pattern separation’—there remains 
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debate about how pattern separation is achieved, with an emerging perspective that multiple, 

computationally distinct mechanisms are involved [18, 22]. However, the most prominent 

account is that pattern separation is achieved by sparse coding in the hippocampus—

particularly within the dentate gyrus [17-22]. With sparse codes, the probability of 

individual neurons being shared across representations is reduced and resulting 

representations are orthogonalized. While our data do not argue against this idea, this 

account fails to explain our central findings. In particular, sparse coding does not explain 

why overlapping route representations would be less similar than non-overlapping 

representations. If every route were represented by a unique hippocampal code (due to 

sparse coding), then the similarity among overlapping routes would be equal to—but not 

lower than—the similarity among non-overlapping routes.

An additional important consideration in understanding the observed reversal effect is that it 

emerged with learning. While there are several existing accounts of how learning contributes 

to divergence of hippocampal activity patterns, the critical test of these accounts is whether 

they can explain why the hippocampus would represent overlapping routes as less similar 

than non-overlapping routes. For example, the hippocampus is thought to play a critical role 

in establishing unique contexts for overlapping events [5, 10, 33]. By learning to associate 

overlapping events with distinct contexts, hippocampal activity patterns should diverge over 

time [10, 37]. However, associating each route with a unique context should only reduce 

global similarity among events and does not explain why overlapping routes would be less 

similar than non-overlapping routes. In fact, this account would, if anything, predict greater 

hippocampal pattern similarity for overlapping routes than non-overlapping routes because 

overlapping routes inherently share more contextual information (e.g., spatial locations and 

landmarks) [10, 37]. Similarly, hippocampal activity patterns may diverge with learning if 

subjects learn to predict route destinations [32-36], but this account, like a context account, 

fails to explain why overlapping event representations would be less similar than non-

overlapping event representations. Moreover, we did not observe any evidence of destination 

coding in the present study. Finally, it is possible that, with learning, subjects selectively 

oriented attention to route-unique features. Again, however, attending to route-unique 

features should reduce global similarity but does not explain the reversal effect. Moreover, if 

hippocampal activity patterns were influenced by attention, we would expect to see 

attention-related effects in high-level visual cortical areas as well [38], but the reversal effect 

was fully absent in scene- and object-related cortical areas (Figures 3F and S4).

Conceptually, an appealing way to account for the hippocampal reversal effect is that route 

overlap triggered a repulsion of event representations [27-29]. From this perspective, co-

activation of similar memories triggered adaptive changes in hippocampal representations 

such that overlapping memories specifically ‘moved apart’ from one another. By analogy, 

this repulsion is similar to a teacher moving feuding children to opposite corners of a 

classroom in that the goal is to specifically increase the distance between the feuding 

children (as opposed to the distance between all children). Thus, in contrast to 

orthogonalization, where overlapping memories are represented as ‘unique,’ a repulsion 

account holds that overlapping memories are represented as ‘different from one another.’ A 

repulsion account is not only consistent with the observed reversal effect but also readily 

explains the striking and seemingly paradoxical finding that the hippocampal reversal effect 
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‘disappeared’ precisely once routes diverged (Segment 2; Figures 4A and 4B). In fact, when 

considering more fine-grained temporal fluctuations, the reversal effect was strongly 

correlated with the difficulty of memory-based discrimination (Figure 5). These findings 

clearly indicate that the reversal effect was most pronounced when competition between 

overlapping routes was highest. The idea of competition-induced repulsion among 

hippocampal representations has been elegantly described in biologically plausible 

computational models of the hippocampus, and the mechanism underlying this repulsion has 

been termed ‘differentiation’ [26, 29]. While a limited number of human fMRI studies have 

provided strong hints of differentiation in the hippocampus [6, 13, 25, 26, 29], the present 

findings provide the strongest and most unambiguous evidence to date that hippocampal 

representations of overlapping events diverge to the point that they are less similar than non-

overlapping events.

Because we measured hippocampal similarity over the course of an extended learning 

paradigm, we were also able to show that the reversal effect was remarkably slow to emerge

—only emerging after routes had been presented ∼20 times (Figure S3). However, this slow 

emergence strongly paralleled behavioral improvements in memory-based discrimination of 

the overlapping routes, as identified in a separate behavioral study (Figure 2). The parallel 

between the emergence of the reversal effect and behavioral improvement is consistent with 

the idea that differentiation is a learning-related [26, 29] and behaviorally-relevant 

mechanism [6].

While we primarily focus on the hippocampal reversal effect as measured during the 2nd half 

of learning, two other comparisons are worth noting. First, in the 1st half of learning, 

hippocampal pattern similarity for overlapping routes was numerically, but not significantly, 

greater than for non-overlapping routes (Figure 3A). While this null result may be partly due 

to immediate orthogonalization of route representations in the hippocampus [17-22], it is 

important to note that when considering spatial pattern similarity on a time point by time 

point basis (as opposed to spatiotemporal pattern similarity), representations of overlapping 

routes tended to be more similar than representations of non-overlapping routes (Figure 4B); 

in fact, when aggregating across time points, the difference between overlapping and non-

overlapping routes was significant (F1,39 = 6.06, p = 0.018). Thus, there was mixed evidence 

for greater similarity among overlapping compared to non-overlapping routes at the 

beginning of learning, which may indicate that initial orthogonalization reduced, but did not 

fully eliminate, similarity between overlapping and non-overlapping routes [39], and the 

reversal effect operated upon this residual overlap. Second, it is potentially surprising that 

hippocampal pattern similarity was not significantly greater (in the 1st or 2nd halves of 

learning) for same route comparisons relative to non-overlapping routes [by comparison, this 

difference was highly robust in PPA (1st half: F1,39 = 19.88, p = 0.00007; 2nd half: F1,39 = 

9.85, p = 0.003]. However, this curious result is not necessarily at odds with our other 

findings. Namely, if representations of overlapping routes diverge with learning, this 

necessarily entails that each route representation changes relative to itself [40]. Critically, 

whereas a given route representation may systematically move away from its initial state, it 

need not systematically move away from non-overlapping route representations. Thus, 

gradual within-route representational changes (which are necessary to achieve differentiation 
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of overlapping routes) may have contributed to the relatively low same route similarity 

values that we observed.

Voxel-level plasticity

Motivated by our primary findings that route overlap triggered repulsion of hippocampal 

representations, we considered a separate and novel question: whether the degree of 

plasticity (reversal effect) that an individual voxel experienced was predicted by 

representational overlap within that voxel. In most fMRI studies, this question would be 

difficult to address because representational overlap, as indexed by spatial pattern similarity, 

cannot be computed at the level of a single voxel. Here, however, because of the temporally-

dynamic nature of our stimuli, we used timecourse similarity to measure the similarity with 

which a single voxel responded to each pair of routes. Indeed, we observed that the reversal 

effect was not evenly distributed across voxels; rather, there was a ‘sweet spot,’ with the 

reversal effect disproportionately occurring in voxels that exhibited ‘moderate’ degrees of 

timecourse similarity at the beginning of learning.

Why might the reversal effect disproportionately occur for voxels with moderate levels of 

initial timecourse similarity? When a voxel responds similarly to a pair of overlapping routes 

(i.e., high timecourse similarity), this suggests that the voxel–or ensembles of neurons within 

that voxel–are ‘shared’ across those routes' representations. Critically, it is proposed that this 

form of representational ‘sharing’ is precisely what triggers hippocampal differentiation. 

Namely, if two overlapping events— A and A′—share common representational units 

(voxels, neurons, or connections between neurons), then activation of one event (A) is likely 

to activate the overlapping event (A′), and vice versa. For example, when viewing route 1, 

route 2 (the overlapping route) is likely to be partially activated [41-43]. When this occurs, 

the co-activated representation is subject to plasticity. Interestingly, and central to 

interpreting the present findings, it is argued that the plasticity that these co-activated units 

experience is non-monotonically related to their level of activation, with moderately 

activated units subject to weakening, whereas strongly activated units are strengthened and 

weakly activated units do not experience plasticity [27-29, 40, 44-46]. Putatively, this non-

monotonic plasticity rule reflects a competition between excitation and inhibition, with 

moderate activation corresponding to inhibition ‘overcoming’ excitation. From this 

perspective, the present finding of a non-monotonic relationship between initial timecourse 

similarity and the reversal effect potentially reflects the same putative non-monotonic 

relationship between activation and plasticity. That said, our analysis does not constitute a 

direct test of this model—mainly because timecourse similarity is not a direct measurement 

of co-activation. However, this perspective offers a theoretically grounded and biologically 

plausible interpretation of our findings. Regardless of the specific mechanistic account, the 

present findings provide novel evidence that the degree of representational divergence 

experienced by individual hippocampal voxels is determined, at least in part, by the degree 

of representational overlap during initial stages of learning. This finding further strengthens 

our central argument that overlap itself triggers a repulsion of hippocampal representations.
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Comparison to rodent studies

While, the experimental design of the present study was inspired by canonical rodent T-

maze paradigms [1, 2], our paradigm and analyses afford unique insight relative to these 

studies. A classic finding from T-maze studies is that the hippocampus differentially 

represents the central stem of the maze according to whether the upcoming turn is a left or 

right turn. Put another way, two left-turn trials will elicit more similar hippocampal 

responses than will left- and right-turn trials. However, this L-L vs. L-R comparison is most 

closely aligned with the comparison of same vs. overlapping routes in the present study. 

While we did find greater hippocampal similarity for same routes than overlapping routes 

(Figure 3C), this comparison is open to many mechanistic interpretations. Instead, our 

critical focus was on the comparison between overlapping and non-overlapping routes. In a 

T-maze paradigm, this comparison would be most analogous to comparing the similarity of 

L-R trials in the central stem of one maze to the central stem responses across two different 

mazes. Based on our findings, the predicted result would be that L-R hippocampal similarity 

within the central stem of a maze would be lower than central-stem similarity across two 

different mazes. To our knowledge, however, this comparison/result has not been reported in 

rodent T-maze studies.

Pattern separation in the rodent hippocampus has also been studied in the context of 

remapping [4]. The present findings raise the question of whether remapping might also be 

triggered by overlap. While we are not aware of prior evidence suggesting this, it is difficult 

to compare the present findings with evidence for remapping in rodents. First, remapping 

depends on identifying the spatial preference of individual place cells, which is beyond the 

current resolution of fMRI. Second, remapping takes multiple forms (global remapping and 

rate remapping) [47] and these distinct forms of remapping are thought to be differentially 

related to coding for spatial vs. non-spatial information [47, 48]. In the present study, 

because we did not record from individual place cells, it is difficult to infer whether changes 

in hippocampal activity patterns more likely reflected something akin to global remapping or 

rate remapping. For example, it is possible that changes in hippocampal activity patterns 

reflected changes in spatial reference frames [3, 47, 49] and/or changes in the features 

represented at specific locations. Although beyond the scope of the present study, an 

important objective for future research will be to reconcile human fMRI evidence of 

learning-related changes in hippocampal activity patterns with the phenomena of global and 

rate remapping in rodents.

Star Methods

Contact For Reagent And Resource Sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Brice Kuhl (bkuhl@uoregon.edu).

Experimental Model and Subject Details

Subjects—New York University (NYU) students and alumni who were familiar with the 

NYU campus participated in the study. Subjects were restricted to NYU alumni and students 

in order to facilitate route learning and to reduce potential between-subject variance. 
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Subjects were between the ages of 18-35, right-handed, native English speakers, had normal 

or corrected-to-normal vision and had no history of neurological disorders. Twenty-two 

subjects participated in the behavioral experiment (15 female; mean age = 20.77). Two 

additional subjects’ data were not collected due to technical errors. Twenty subjects (13 

female; mean age = 22.15) participated in fMRI Experiment 1. Four additional subjects were 

excluded from data analysis - one for falling asleep in the scanner, two for technical errors 

during scanning, and one due to unreliable localizer data (see Regions of Interest). Twenty-

one subjects (9 female; mean age = 23.17) participated in fMRI Experiment 2. One 

additional subject's data was excluded from data analysis due to excessive head motion and 

another additional subject was excluded for technical errors during scanning. Sample sizes 

for the fMRI studies were based on a similar experiment from our lab [6]. Informed consent 

was obtained according to procedures approved by the New York University Committee on 

Activities Involving Human Subjects.

Method Details

Stimuli and Design—In the behavioral experiment and fMRI Experiment 1 the stimuli 

consisted of eight routes that traversed the NYU campus (Figure 1A). Each route was 

comprised of a series of 98 unique pictures. All pictures were taken at regular intervals 

(every 10 paces) from an egocentric perspective by a researcher walking along the route. All 

routes started in the same location and made exactly three turns before ending at distinct 

destinations. Critically, the 8 routes consisted of 4 overlapping pairs. Overlapping pairs 

followed the same path for the majority of the route before diverging on the third turn to 

their respective destinations. The pictures for each route were taken at different times and 

therefore the pictures during the overlapping portion of routes were subtly different and 

could be distinguished from one another based on subtle differences in the pedestrians, 

vehicles, lighting, etc. For analysis purposes, routes were divided into pairs that shared an 

overlapping path (‘overlapping routes’; e.g. routes 1 and 2) or took distinct paths (‘non-

overlapping routes’; e.g. routes 1 and 3). Furthermore, each route was divided into two 

segments: ‘Segment 1’ refers to the segment of each route that overlapped with another route 

and ‘Segment 2’ refers to the route-unique segment of each route. The third turn–which 

marked the boundary between Segments 1 and 2– occurred at the exact same picture 

numbers within pairs of overlapping routes (e.g., for routes 1 and 2) and varied minimally 

(between picture numbers 74-77) across sets of overlapping pairs (e.g., for routes 1/2 vs. 

routes 3/4). Likewise, all turns within a pair of overlapping routes occurred at identical time 

points in order to maximize the similarity of overlapping routes. There was exactly one 

overlapping pair that left the starting point in each cardinal direction (north, south, east, 

west). The 8 routes were divided into 2 sets (north/south routes and east/west routes). Each 

subject was assigned one set of routes (4 routes total) to learn, with the assignment of route 

sets alternating subject-by-subject. We included 2 sets of routes in order to ensure our results 

could not be explained by the idiosyncrasies of any one route.

A new set of 8 routes was used in fMRI Experiment 2 (Figure 1B). The routes were 

constructed using the same parameters as the routes used in the behavioral and first fMRI 

experiments, with one key difference. Instead of all routes terminating at distinct locations, 

fMRI Experiment 2 contained pairs of routes that took distinct paths but ended at the same 
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destination. As before, the 8 routes were divided into two sets of 4 and each set of 4 

contained two pairs of overlapping routes. The routes in each set could be divided into pairs 

that (a) shared an overlapping path but terminated at distinct destinations (‘overlapping 

routes’; e.g. routes 1 and 2), (b) had non-overlapping paths and terminated at distinct 

destinations (‘non-overlapping routes’; e.g. routes 1 and 4) or (c) had non-overlapping paths 

but terminated at the same destinations (‘same destination’; e.g. routes 1 and 3). Due to 

geographical constraints, the third turn (i.e. when overlapping routes diverged) in this set of 

routes occurred slightly later (between picture numbers 84-86) than in the set used in the 

behavioral and first fMRI experiments.

Movies of the overlapping route pairs used in the experiments are available in Supplemental 

Movies 1-4.

Procedure

Behavioral Experiment

Route Learning: Subjects completed 14 rounds of route learning, with each route presented 

twice per round in random order. During a route learning trial, pictures from a route were 

presented in rapid succession (220 ms per picture, 10 ms blank screen in between pictures). 

Importantly, subjects were not told the destination of the route prior to the trial. Rather, the 

destination was only revealed at the end of the route, with the final picture (the destination) 

presented for 1690 ms. The destination's name was also displayed above the final picture. 

Each route learning trial lasted a total of 24s and was followed by a 1-s inter-trial interval 

(ITI) during which a fixation cross was presented. Each round also contained two ‘catch’ 

trials to ensure subjects' vigilance but were excluded from all analyses. For each catch trial, 

a route began as with a normal trial but the presentation stopped at a pre-selected picture 

number. A cue then appeared above the picture either instructing participants to identify (1) 

the routes' final destination (destination test) or (2) the direction of the next turn (direction 

test). During the 3s response period the picture and test cue remained on screen with the four 

destination labels (destination test) or left/right labels (direction test) printed below the 

picture and participants selected their response using a keyboard. Catch trials stopped on 

pictures presented between 3-15s after the trial onset and at intervals of 1.5 s (to coincide 

with the TR length in the fMRI experiments; see fMRI Acquisition). The combined duration 

of the two test trials within each round were constrained to equal the duration of a full route 

learning trial (24 seconds). Although each subject completed an equal number of destination 

and direction catch trials throughout the experiment, and each route was tested an equal 

number of times, the assignment of catch trial type to both route number and round was 

randomized so as not to be predictable. That is, within a given round there could be 2 

destination catch trials, 2 direction catch trials, or 1 of each, and a given route could be 

tested twice via a destination catch trial, twice as a direction catch trial, or once as each test.

Inter-Round Picture Test: At the end of each of the 14 route learning rounds, subjects were 

shown 20 static pictures, one at a time, drawn from the routes (5 per route in random order) 

and for each picture subjects were asked to select the corresponding destination from a set of 

four label options. The inter-round picture test was self-paced and subjects responded via 

keyboard. To ensure that the five pictures tested from each route in each test round were 
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evenly sampled across positions in the route, each route's 95 pictures (excluding the last 3 

pictures that contained visuals of the destination) were divided into 5 time-bins of 19 

pictures. For each inter-round picture test, one picture from each time-bin, from each route, 

was randomly selected to be tested with the constraint that a given picture was only tested 

once throughout the experiment. Responses on the test were divided into three groups: (1) 

‘target’ if subjects selected the correct destination, (2) ‘competitor’ if subjects selected the 

overlapping route's destination, and (3) ‘other’ if subjects selected the destination from a 

non-overlapping route.

Map Test: In order to assess each subject's spatial knowledge of the routes, subjects also 

completed a map test after finishing all rounds of route learning. For each trial on the map 

test, subjects were cued with a picture of a route's destination for 4s. A map of the NYU 

campus then appeared on screen and subjects had 8s to click on the spatial location of the 

cued destination using a computer mouse. They were then prompted to draw with a pen the 

route taken to that destination on a paper print out of the campus map. Finally, participants 

completed both the Santa Barbara Sense of Direction Scale (SBSOD) and the Questionnaire 

on Spatial Representation (QSR) to assess their spatial acuity and reasoning. Results from 

the map test and questionnaires are not reported in the current study.

fMRI Experiments 1 and 2

Route Learning: The procedures from the behavioral experiment were slightly modified to 

be suitable for fMRI scanning. In both fMRI experiments, subjects first completed 2 practice 

route learning rounds (2 repetitions of each route per round) to familiarize them with the 

routes and task structure. Subjects then entered the scanner and completed an additional 14 

rounds of route learning. Each of the 14 rounds of route learning was scanned as a separate 

run. The practice rounds were identical to the scanner rounds except that the first practice 

round did not contain any catch trials. During the scanned route learning rounds, the ITI was 

6s (fixation cross) to allow for better separation of the hemodynamic response.

Inter-Round Picture Test: The inter-round picture test used in the fMRI experiments was 

shorter than in the behavioral experiment. In the fMRI version, there were a total of only 4 

trials which contained pictures randomly sampled from the 4 routes. The sampled pictures 

were not constrained to be from different routes. The only constraint was that the pictures 

used in the inter-round picture test were not used in the post-scan memory test (described 

below). Additionally, in the fMRI version of the inter-round picture test subjects were shown 

each picture for a fixed amount of time (2.5s) and could only respond during that time, using 

an MRI-compatible button box. Because the inter-round picture tests in the fMRI 

experiments only sparsely assessed route learning, these data are not reported. These test 

trials were only included to motivate subjects to learn the routes.

Functional Localizer: Following the 14 rounds of route learning subjects completed one 

localizer scan that was used to functionally define regions of interest for the fMRI analyses. 

The localizer scan contained 36 alternating blocks of three image types (12 blocks per 

category): faces, scenes (hallways or houses), and objects (cars or guitars). Each block lasted 

a total of 6s and contained 12 greyscale images presented for 500ms each. Subjects pressed a 
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button whenever they detected a scrambled image, which occurred on half of all blocks 

(counterbalanced across category). An additional 12 baseline ‘blocks’ showing a blank grey 

screen (also 6s each) were randomly interspersed with the other blocks.

Post Tests: After exiting the scanner subjects first completed a map test (identical to the 

behavioral experiment). Next, subjects completed an extended picture test which included 

ten pictures drawn from each route (every 10th picture from picture 4 to 94), tested in 

random order. On each trial, the route picture was presented above the set of destination 

names (4 destination names in Experiment 1 and 2 destination names in Experiment 2). 

Subjects used a computer mouse to click on the destination name associated with each 

picture. This test was self-paced. Finally, subjects completed the Santa Barbara Sense of 

Direction Scale (SBSOD) and the Questionnaire on Spatial Representation (QSR).

fMRI Data Analysis

MRI Acquisition: Scanning was performed on a 3T Siemens Allegra head-only scanner at 

the Center for Brain Imaging at New York University using a Siemens head coil. Structural 

images were collected using a T1-weighted protocol (256 × 256 matrix, 176 1-mm sagittal 

slices). Functional images were acquired using a T2* weighted EPI single shot sequence 

containing 26 contiguous axial slices oriented parallel to the long-axis of the hippocampus 

(repetition time = 1.5 s, echo time = 23 ms, flip angle = 77 degrees, voxel size = 2 × 2 × 2 

mm). The functional images did not cover the entire brain; rather, a limited field of view 

centered on the hippocampus was chosen in order to improve spatial resolution of data from 

the hippocampus. For the route learning scans, the first 6 volumes (during which time a “Get 

Ready” screen was presented, followed by a fixation cross) were discarded to account for T1 

stabilization. For the localizer scan, the first 8 volumes and last 8 volumes (during which 

time a fixation cross was presented) were discarded. Field map and calibration scans were 

collected to improve functional-to-anatomical coregistration.

fMRI Preprocessing: Images were preprocessed using SPM8 (Wellcome Department of 

Cognitive Neurology, London, United Kingdom), FSL (FMRIB's Software Library, Oxford, 

United Kingdom) and custom Matlab (The MathWorks, Natick, MA) routines. The 

preprocessing procedures included correction for head motion, coregistration of functional 

to anatomical images (using a registration procedure that aligned both functional and 

anatomical images to a calibration scan), and an unwarping procedure. Images from the 

functional localizer scan were spatially smoothed using a 4-mm full-width/half-maximum 

Gaussian kernel. Images from the route learning phase, which were used for pattern 

analyses, were smoothed using a moderate 2-mm full-width/half-maximum Gaussian kernel 

in order to improve signal-to-noise ratio. Prior research suggests that smoothing does not 

reduce sensitivity of pattern-based fMRI analyses [50]. All analyses were performed in 

subjects' native space.

fMRI univariate analysis: To analyze the localizer data, SPM was used to construct a 

general linear model with three regressors of interest corresponding to the three visual 

categories (scenes, faces, objects). These regressors were constructed as boxcar functions 

that onset at the first image of a category block and lasted for the duration of the block. 
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Motion, block, and linear drift were modeled as regressors of no interest. All regressors were 

convolved with a canonical double-gamma hemodynamic response function. A linear 

contrast of scenes vs. faces and objects was used to obtain voxelwise estimates of scene 

sensitivity and a linear contrast of faces, scenes, and objects vs. baseline was used to obtain 

voxel-wise estimates of visual sensitivity.

Regions of interest: Analyses were performed using a region of interest (ROI) approach 

targeting the hippocampus, parahippocampal place area (PPA), retrosplenial cortex (RSC), 

medial temporal lobe cortex (MTL cortex), and lateral occipital cortex (LO). Anatomical 

hippocompal and MTL cortex ROIs were defined using freesurfer's automated cortical and 

sub-cortical segmentation procedure. MTL cortex ROIs were defined as the conjunction of 

freesurfer's entorhinal and parahippocampal regions. The resultant ROIs were then visually 

inspected and manually edited for any inaccuracies before registering them to each subject's 

functional space. Voxels in the MTL cortex mask that were overlapping with the final PPA 

mask (see below) were removed from the MTL cortex mask to ensure independent ROIs. In 

order to identify voxels with high signal-to-noise ratios and to create ROI masks the same 

size as the PPA, RSC, and LO masks (see below), the hippocampal and MTL cortex ROIs 

consisted of the top 300 visually-responsive voxels within bilateral hippocampus and MTL 

cortex, as determined from the category localizer (contrast of faces, scenes, and objects vs. 

baseline). Although this voxel selection procedure was implemented to increase our 

sensitivity to detect small differences in hippocampal patterns, it is important to note that our 

main findings were not dependent on such selection methods. Indeed when no voxel 

selection was applied within the hippocampus the interaction between overlap (overlap/non-

overlap) and learning (1st half/2nd half) remained significant (F1,39 = 4.75, p = 0.0354), as 

did the reversal effect in the 2nd half of learning (F1,39 = 7.30, p = 0.0102).

PPA, RSC, and LO were identified using a combination of the category localizer and group-

based probabilistic category-selective ROIs identified from previous studies [51]; http://

web.mit.edu/bcs/nklab/GSS.shtml). First, the group-based probabilistic PPA, RSC, and LO 

masks were registered to each subject's native space and voxels overlapping with the 

anatomically defined hippocampal masks were removed from the PPA/RSC/LO masks to 

ensure independent ROIs. Then, the top 300 scene-selective voxels (contrast of scenes vs. 

faces and objects from the category localizer) within PPA and, separately, within RSC were 

selected. Likewise, the top 300 object-selective voxels (contrast of object vs. scene and faces 

from the category localizer) within LO were selected. This method ensured that these 

category selective cortical ROIs were subject-specific but equal in size (number of voxels) 

and general location across all subjects [52]. Note: we chose 300 voxels as an a priori 

threshold for all our ROIs. This number corresponded to roughly the top 20% of the 

hippocampal and MTL cortex voxels, 30% of the voxels within the group-based PPA mask, 

15% of the voxels in the group-based RSC mask, and 6% of the group-based LO mask. One 

subject from Experiment 1 was excluded because the average t value within their PPA ROI 

was more than two standard deviations below the mean PPA response in Experiment 1 (this 

was the only subject with a mean PPA or RSC response that was more than 2 standard 

deviations below the experiment mean); subjective assessment of the data from this subject 
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confirmed that there was no well-defined cluster within the group-based PPA mask that 

selectively responded to scenes.

Spatiotemporal pattern similarity: Pattern similarity analyses were performed on ‘raw’ 

(unmodeled) fMRI data. Several additional preprocessing steps were performed prior to 

performing pattern analyses. Functional images were detrended, high-pass filtered (0.01 Hz), 

and then z-scored within run. For route learning trials, volumes 3-19 (corresponding to 3-27s 

after stimulus onset) were divided into volumes corresponding to Segment 1 (i.e. the portion 

of each route that shared a path with another route) and Segment 2 (i.e. the unique portion of 

each route after overlapping paths diverged). The volume in each route corresponding to the 

transition between Segments 1 and 2 (i.e., the third turn in the routes) was discarded from 

analyses in order to keep Segments 1 and 2 distinct. In Experiment 1, Segment 1 occurred 

within the first 11 volumes and Segment 2 occurred within the last 4 volumes. In Experiment 

2 the overlapping routes diverged slightly later; thus, Segment 1 corresponded to the first 12 

volumes Segment 2 corresponded to the last 3 volumes. To perform pattern analyses, spatial 

activity patterns were concatenated across volumes of interest so that each route Segment 

was represented by a spatiotemporal pattern of activity whose vector length was equal to the 

number of voxels within an ROI × the number of TRs included in the Segment.

For each subject and each ROI, we computed pattern similarity scores (Pearson correlations) 

reflecting the representational similarity across each pair of routes. Correlations were always 

performed using data from distinct fMRI runs (odd and even runs) in order to ensure 

independence. Thus, for analysis of data from the first half of learning, each route's average 

spatiotemporal activity pattern was obtained from runs 1, 3, and 5 (odd runs) and, separately, 

from runs 2, 4, and 6 (even runs); average ‘odd run patterns’ were then correlated with 

average ‘even run patterns.’ Likewise, for analysis of data from the second half of learning, 

each route's average spatiotemporal activity pattern was obtained from runs 9, 11, and 13 

(odd runs) and, separately, from runs 10, 12, and 14 (even runs), and odd and even patterns 

were correlated. Data from runs 7 and 8 were excluded in order to ensure an equal number 

of odd and even runs within each half. Because each subject studied 4 routes, a 4 × 4 

correlation matrix was generated for each subject (Figure 3A). Unless noted, all analyses 

below combine data across experiments and all comparisons of non-overlapping routes are 

restricted to those that terminated at distinct destinations. Before any correlation values were 

averaged within conditions (e.g., overlapping routes), correlation coefficients were z-

transformed (Fisher's z).

Time point by time point analysis of memory-based discrimination accuracy: To 

compare TR-by-TR fluctuations in hippocampal pattern similarity with behavioral measures 

of route discrimination, we used behavioral accuracy data from the Inter-Round Picture Test 

in the behavioral Experiment (see above). This test required that subjects match a randomly 

sampled picture with its corresponding destination. It therefore required memory-based 

discrimination between overlapping routes. We first computed mean accuracy (across routes, 

learning rounds, and subjects) as a function of pictures' serial position. This produced a set 

of mean accuracy values for every serial position from 1 (the first picture in each route 

stimulus) to 95 (the last picture in each route tested). To align these behavioral data with the 
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fMRI data—which was sampled at a coarser rate (16 total time points)—the behavioral 

accuracy values were grouped into bins according to the TR during which they were 

presented in the fMRI sessions (after adjusting for the hemodynamic response lag; see 

above). Pictures presented between 0–1.5s relative to trial onset were grouped into the TR 1 

bin, pictures presented between 1.5–3s relative to trial onset were grouped into the TR 2 bin, 

etc. Mean behavioral accuracy was then computed within each of these bins, yielding a 

vector that could be correlated with the TR-by-TR fMRI data. Note that since TR 16 

included just an extended visual of the destination and this final picture was not tested in the 

behavioral experiment, there is no behavioral accuracy for this TR.

Timecourse similarity: Timecourse similarity indexed the degree to which individual 

voxels were ‘shared’ across a given pair of routes. To compute timecourse similarity, we first 

obtained route-specific vectors of activation (using Segment 1 data only) for each voxel. The 

length of each timecourse vector was equal to the number of Segment 1 TRs (11 in 

Experiment 1; 12 in Experiment 2). Timecourse vectors were separately averaged across odd 

and even runs within each half (as with the spatiotemporal pattern analyses). Average 

timecourse vectors were then correlated (Pearson correlation) for every pair of routes, 

separately for each learning half (Figure 6B and 6C). Resulting correlation coefficients were 

z-transformed (Fisher's z).

Quantification and Statistical Analysis

For all behavioral and fMRI analyses we used standard random-effects statistics (paired 

sample t-tests and repeated measures ANOVA). Two-tailed tests were used throughout at an 

alpha threshold of 0.05. These statistical tests were implemented in R (https://www.r-

project.org). Unless otherwise noted, analyses combined data across Experiments 1 and 2. 

For all ANOVAs run on these combined data, experiment number was included as a 

between-subjects factor. For all of the hippocampal ANOVA effects described in the main 

text, interactions with experiment number were not significant (Ps > 0.2). See Figure S2 for 

hippocampal and PPA data separated by experiment. Mixed-effects regression models were 

used to assess the shape of the function relating timecourse similarity measures across 

experimental halves and were implemented in the lme4 package for R (http://lme4.r-forge.r-

project.org). All models were constructed with random intercepts for each subject.

Data and Software Availability

Raw data from the experiment is available on OpenFMRI (https://openfmri.org/dataset/

ds000217) and code to run the analyses are available upon request from the first author 

(avi.chanales@nyu.edu).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Human hippocampal representations of overlapping spatial routes diverge with 

learning

Representations of overlapping routes become less similar than non-overlapping 

routes

Representational structure in hippocampus sharply contrasts with other brain 

regions

Hippocampal voxels exhibit divergence in relation to initial representational 

overlap
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Figure 1. 
Route stimuli and experimental design.

(A) In the behavioral experiment and fMRI Experiment 1, stimuli consisted of 8 routes that 

traversed the New York University campus. Each subject learned 4 routes–either Set 1 

(routes 1-4) or Set 2 (routes 5-8). Each set included pairs of routes that shared a common 

path (‘overlapping routes’; e.g. routes 1 and 2) and pairs of routes with no common paths 

(‘non-overlapping routes’; e.g. routes 1 and 3). Individual routes contained two segments: 

Segment 1 refers to the portion of each route that shared a path with another route; Segment 

2 refers to the unique portion of each route (after the overlapping routes diverged). (B) In 

fMRI Experiment 2 the stimuli again consisted of 8 routes with each subject learning 4 of 

the 8 routes, with the 4 routes per set containing overlapping and non-overlapping pairs. 

However, some of the non-overlapping route pairs in Experiment 2 terminated at the same 

destination (e.g. routes 1 and 3) whereas others terminated at distinct destinations (e.g., 

routes 1 and 4). (C) In each Experiment, each trial consisted of a series of rapidly presented 

pictures that lasted a total of 24s.

See also Movies S1-S8.

Chanales et al. Page 24

Curr Biol. Author manuscript; available in PMC 2018 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Memory performance for Segment 1 pictures in the behavioral experiment.

(A) After each learning round subjects were shown static images sampled from each route 

and were asked to choose the corresponding destination from a set of four picture options: 

the target destination, the destination associated with the overlapping route (‘competitor’) 

and two destinations associated with non-overlapping routes (‘other’). Subjects were 

significantly more likely to select the target destination than competitor destination (F1,21 = 

43.31, p = 0.000002) and significantly more likely to chose the competitor destination than 

other destinations (F1,21 = 41.39, p = 0.000002), despite the fact that ‘other’ options were 

more prevalent (2/4) than competitor options (1/4). (B) The relative percentage of target vs. 

competitor responses markedly increased over learning rounds (F1,21 = 38.11, p = 

0.000004). (C) Discrimination between overlapping routes (percentage target responses - 

competitor responses) was significantly greater in the 2nd half of learning than the 1st half 

(t21 = 5.78, p = 0.00001). Error bars reflect +/- SEM. *** p < 0.001. See also Figure S1.

Chanales et al. Page 25

Curr Biol. Author manuscript; available in PMC 2018 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Learning-related changes in hippocampal pattern similarity.

(A) Sample similarity matrices depicting analyses for Experiments 1 and 2 (routes 5-8 are 

not shown). For each Experiment, Pearson correlations were applied to spatiotemporal 

activity patterns to measure the similarity between: repetitions of the same route (‘same 

route’), routes with overlapping paths but distinct destinations (‘overlapping routes’), and 

routes with non-overlapping paths and distinct destinations (‘non-overlapping routes’). 

Experiment 2 included an additional comparison of routes with non-overlapping paths that 

ended at a common destination (‘same destination’). All correlations were applied to 

spatiotemporal activity patterns from independent fMRI runs (odd vs. even runs). (B) 

Hippocampus and parahippocampal place area (PPA) regions of interest for a representative 

subject, displayed on their T1 anatomical scan. (C) Within the hippocampus, the similarity 

of overlapping routes relative to same routes decreased across learning (1st vs. 2nd half; p = 

0.009). Likewise, there was a learning-related decrease in the similarity of overlapping 

routes relative to non-overlapping routes (p = 0.0008). (D) Within PPA, there was no 

learning-related change in the relative similarity of overlapping vs. same routes (p = 0.96) 

nor in the relative similarity of overlapping vs. non-overlapping routes (p = 0.13). (E) Within 

the hippocampus, overlapping route similarity decreased across learning (1st vs. 2nd half, p 

= 0.0000006) whereas non-overlapping route similarity did not change with learning (p = 

0.63). (F) In the 2nd half of learning, overlapping route similarity was significantly lower 

than non-overlapping route similarity within the hippocampus (p = 0.0005; ‘reversal effect’) 

whereas in PPA the opposite was true: overlapping route similarity was significantly greater 

than non-overlapping route similarity (p = 0.038). Error bars reflect +/- SEM. * p < 0.05, ** 

p < 0.01, *** p < 0.001. See also Figures S2-S4.
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Figure 4. 
Hippocampal reversal effect across route segments.

(A) In the 2nd half of learning, the hippocampal reversal effect (overlapping route similarity 

< non-overlapping route similarity) was significant for Segment 1 (p = 0.0005), but not 

Segment 2 (p = 0.58) and the interaction between overlap and segment was significant (p = 

0.045). (B) Time point by time point comparison of spatial pattern similarity for overlapping 

vs. non-overlapping routes for each learning half. Spatial patterns analyzed at each time 

point [time to volume repetition (TR)] were computed as the average pattern of a sliding 3-

TR window. Transition TRs reflect time points that included the end of Segment 1 and the 

beginning of Segment 2 Error bars reflect +/-SEM. * p < 0.05.
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Figure 5. 
Hippocampal reversal effect as a function of memory-based discrimination.

(A) Grey lines: time point by time point measures of mean memory-based route 

discrimination in the behavioral Experiment. Colored lines: 2nd-half hippocampal pattern 

similarity for overlapping – non-overlapping routes in fMRI Experiment 1. Note: fMRI data 

were only used from fMRI Experiment 1 because fMRI Experiment 2 used different stimuli 

than the behavioral Experiment. (B) Scatterplot showing the relationship between behavioral 

discrimination accuracy and hippocampal pattern similarity for overlapping – non-

overlapping routes (each dot corresponds to data from one TR/time bin). There was a strong 

positive correlation (r = 0.87, p = 0.00003) between these measures, reflecting a weaker 

reversal effect for time points where behavioral discrimination was relatively easy (top-right 

corner of scatter plot) and a stronger reversal effect for time points where behavioral 

discrimination was relatively difficult (bottom-left corner of scatter plot). This correlation 

remains marginally significant if restricted to the time points within Segment 1 (r = 0.58, p = 

0.061). Error bars reflect +/- SEM.
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Figure 6. 
Voxel-level plasticity.

(A) Timecourse similarity was defined as the correlation of a single voxel's temporal pattern 

of activity across two different routes. For each voxel, timecourse similarity was separately 

computed for the 1st half and 2nd half of learning. (B,C) Second-half timecourse similarity 

plotted as a function of 1st-half timecourse similarity, separately for the hippocampus (B) 

and PPA (C) and for overlapping (blue) and non-overlapping (orange) routes. Within the 

hippocampus, 2nd-half timecourse similarity was markedly lower for overlapping than non-

overlapping routes (reversal effect) for voxels that were moderately shared at the beginning 

of learning (p = 0.00009). Error bars reflect +/- SEM. ∼ p < 0.1, *** p < 0.001. See also 

Figures S5 and S6.
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