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Abstract

Obesity is a heritable trait that contributes to substantial global morbidity and mortality. Here, we 

summarize findings from the past decade of genetic and epigenetic research focused on 

unravelling the underpinnings of adiposity. More than 140 genetic regions now are known to 

influence adiposity traits. The genetics of general adiposity, as measured by body mass index, and 

that of abdominal obesity, as measured by waist-to-hip ratio, have distinct biological backgrounds. 

Gene expression associated with general adiposity is enriched in the nervous system. In contrast, 

genes associated with abdominal adiposity function in adipose tissue. Recent population-based 

epigenetic analyses have highlighted additional distinct loci. We discuss how associated genetic 

variants can lead to understanding causal mechanisms, and to disentangling reverse causation in 

epigenetic analyses. Discoveries emerging from population genomics are identifying new disease 

markers and potential novel drug targets to better define and combat obesity and related diseases.
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Obesity is a global epidemic and its subsequent health conditions, including nonalcoholic 

fatty liver disease, type 2 diabetes, and cardiovascular disease, result in extensive morbidity, 

mortality, and health care expenditures (Figure 1).1 Few effective treatments exist for 

obesity, in part owing to a limited understanding of its complex and multifactorial etiology. 
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Discoveries emerging from population genomics are identifying biomarkers and relevant 

causal mechanisms, which enable the development of better preventive, diagnostic, and 

therapeutic approaches.

Population Genomics as a Window on Obesity Biology

Measures of adiposity are heritable across generations, in part owing to inherited variations 

in the genetic code.2 In addition to genetic contributions, obesity is the result of a complex 

interplay of environmental, behavioral, and social factors, which can be relayed from parent 

to offspring independent of genetic sequence variation. At the molecular level, exposures 

may influence obesity through lasting epigenetic modifications of DNA. With advances in 

genomic technologies we can integrate genetic, epigenetic, and environment factors among 

thousands of individuals to gain insight into the biology of obesity and related traits.

What Genomic Elements Can Be Studied in Relation to Adiposity in a 

Population?

Although the vast majority of the human DNA code is nonvariable, a typical genome is 

reported to differ from a reference human genome at 4.1–5.0 million sites.3 The majority of 

these variations (>99.9%) consist of single-nucleotide polymorphisms (SNPs) (Figure 2) and 

short insertions or deletions; however, larger structural changes occur and in total affect 

more base pairs.3 Genetic sequence variants can influence the overall function and the 

quantity of a gene product. The expression of genes, which varies across tissues and time 

points, also can be influenced by DNA methylation, an epigenetic modification, through 

alterations of transcription factor binding and chromatin structure (Figure 2). Modifications 

to histones, proteins to which DNA coils around to form condensed structures, also are 

correlated to gene expression. It is not clear whether these modifications have a direct 

regulatory function or play a stabilizing role after gene expression changes occur.4 Segments 

of RNA, present in various lengths, which do not code proteins (micro RNAs or long 

noncoding RNAs), also can influence the quantity and structure of messenger RNA and 

subsequent protein production. In summary, genetic and epigenetic changes may be silent or 

alter the quantity, structure, and function of RNA and proteins, which ultimately can 

influence fat mass and distribution. Both genetic and epigenetic variations across individuals 

thus can alter adiposity phenotypes and lead to variation in traits across individuals.

How Are Obesity-Related, Population-Based Genomic and Epigenomic 

Associations Identified?

Up to the end of the past century, identification of genetic variants associated with obesity 

relied heavily on linkage studies in rodents with obesity caused by a mutation in a single 

gene (monogenic obesity) and candidate-gene–based approaches in severely obese human 

beings. During this time period, several loss-of-function mutations causing monogenic 

obesity were identified in the appetite-regulating leptin-melanocortin pathway, including 

leptin,5 leptin receptor,6 pro-opiomelanocortin (POMC), and melanocortin 4 receptor 

(MC4R).7,8 Children with MC4R mutations experience mealtime hyperphagia and more 
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frequent snacking compared with other obese children.9 In addition, children with leptin 

deficiency have intense hyperphagia with food-seeking behavior and show aggressive 

behavior when food is denied.10 This behavior can be normalized with leptin 

supplementation. Such disrupting mutations, however, explain only a small part of the 

etiology of early onset severe obesity and very little of the etiology of adiposity in the 

general population. Although these early studies suggested that appetite regulation was 

important in genetic susceptibility to obesity, hypothesis-free unbiased approaches in recent 

years have implicated a wide range of obesogenic mechanisms.

In the past 15 years, technical advancements in molecular biology and genomics have 

enabled researchers to study variation at millions of sites in the human genome in relation to 

adiposity. These genome-wide association studies (GWAS) require large numbers of 

individuals to distinguish real associations from background variation, combining 

individuals from many smaller studies to increase sample sizes. With the availability of 

larger biobanks such as the UK Biobank,11 the US Million Veterans Program,12 and the 

Kadooire Biobank,13 comprising approximately half a million to a million participants each, 

there likely will be larger single-study reports and massive meta-analyses in the near future.

DNA methylation is the most frequently studied epigenetic modification in population-based 

studies, largely because of its relative stability and ease of measurement in high-throughput, 

array-based assays. Methylation of DNA involves the addition of a methyl group to the 5′ 
position of a cytosine residue of the DNA, specifically at cytosine-phosphate-guanine 

dinucleotides (CpG) (Figure 2). DNA methylation modulates gene expression and may 

influence an individual’s susceptibility to obesity or its downstream consequences. Unlike 

genotype, DNA methylation is cell-and tissue-specific,14 and the procurement of relevant 

tissues remains a major limitation in population-based epigenome studies of adiposity traits. 

Second, unlike genotypes, DNA methylation and other epigenetic modifications are 

malleable and may change in response to environmental exposures or disease states.15,16 

Third, DNA methylation and other epigenetic modifications also partly are under genetic 

control and influenced by nearby genetic sequence variants,17–21 and thus are not entirely 

independent of genetic effects.

Overall and Abdominal Obesity

Body mass index (BMI) and waist-to-hip ratio controlled for BMI (WHRadjBMI) are simple 

measures of overall and abdominal adiposity, respectively. Both adiposity measures are 

associated with the development of metabolic complications of obesity. In 2007, Frayling et 

al22 showed that the FTO locus was associated with both BMI and diabetes, identifying the 

first common genetic locus for an adiposity measure and a cardiometabolic disease trait. It 

should be noted that for this locus and others, the closest gene often has been used to denote 

the locus, even when the causal gene is not known. By increasing sample sizes and power, 

international collaborative efforts performed successively larger meta-analyses of 

approximately 339,000 individuals for overall obesity, as measured using BMI,23–27 and 

approximately 224,000 individuals for central obesity, as measured using WHRadjBMI.28–30 

These studies have greatly expanded the number of implicated loci to 98 for BMI and 49 for 

WHRadjBMI, with no overlapping loci between the 2 adiposity traits (Figure 3 and 
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Supplementary Table 1). Examination of the identified loci showed common variants in or 

near genes previously found in monogenic obesity studies in human beings or mice. 

Examples include mutations in POMC31 and MC4R.7,8 Specifically, these findings showed 

that common variants with subtle effects on the function or expression of these genes can 

influence population BMI, whereas severe rare mutations can lead to early onset monogenic 

obesity. A study assessing genetic associations with the tails of the BMI and WHR 

distribution in the general population of adults32 highlighted the same loci as the top 

findings in the population-based approaches (Figure 3). Once again, this highlighted the 

observation that similar genes can influence common and extremes of obesity in the general 

population.

The remarkable overlap between genes identified from studies in the general population, 

extremes of distribution, and severe early onset monogenic disorders suggest that targeting 

the genes identified in adiposity GWAS with small effect sizes could have strong effects on 

preventing obesity. As proof of principle, for example, the common SNP at the HMG-CoA 

reductase locus has a small effect size in relation to increased low-density lipoprotein (LDL) 

cholesterol, where each effect allele increases LDL cholesterol by only 2.5 mg/dL.33 

However, statin therapy, which directly inhibits the HMG-CoA reductase enzyme, has a 

large effect on LDL cholesterol levels. Statins routinely lower LDL cholesterol by 30%–

50%,34 and reductions of more than 100 mg/dL can occur for some individuals, which is an 

approximately 40 times greater effect than that observed with naturally occurring genetic 

variation.

Furthermore, the adiposity GWAS shows that many of the identified common variants do not 

fall in the coding regions of genes. This suggests that most SNPs identified in adiposity 

GWAS may regulate the magnitude of gene expression, rather than cause severe changes to 

the coding part of the gene that can precipitate syndromic changes. After identifying 

adiposity-related loci, it is possible to examine the effects of genetic variants identified in 

adiposity GWAS on the development of obesity-related metabolic disorders. As expected, 

there was enrichment for variants that increase both obesity and metabolic diseases, such as 

type 2 diabetes, dyslipidemia, and cardiovascular disease, although some variants have the 

opposite effect (see the Pleiotropic Effects section).

From Genetic Variants to Function to Better Understand Obesity Biology

To identify tissues, genes, and pathways that influence adiposity traits, investigators 

integrated genetic sequence variants with gene expression across tissues and grouped genes 

by related pathways. These integrative analyses showed that the nervous system, in general, 

and the hypothalamus, hippocampus, and limbic system, specifically, play prominent roles 

for regulating BMI (Figure 4).24 Further analyses highlighted genes related to synaptic 

function and neurotransmitter signaling (ELAVL4, GRID1, CADM2, NRXN3, NEGR1, and 

SCG3), and energy homeostasis (HNF4G, TLR4, BDNF, POMC, MC4R, and ETV5) as 

important for influencing overall obesity. For abdominal obesity, in contrast, integrative 

analyses highlighted effects in abdominal and subcutaneous adipose tissues (Figure 4).29 

Highlighted genes function in adiponectin signaling, insulin sensitivity and regulation of 

glucose levels, skeletal growth, angiogenesis (VEGFA, VEGFB, RSPO3, STAB1, WARS2, 
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PLXND1, MEIS1, FGF2, SMAD6, and CALCRL), transcriptional regulation (CEBPA, 

PPARG, MSC, SMAD6, HOXA, HOXC, ZBTB7B, JUND, KLF13, MEIS1, RFX7, 

NKX2-6, and HMGA1), and adipose tissue development (CEBPA, PPARG, BMP2, HOXC-
mir196, SPRY1, TBX15, and PEMT).29 Taken together, integrating genetic variation with 

multitissue gene expression helps to dissect the causal biological susceptibility to identify 

new targets for therapeutic interventions.

More Detailed Adiposity Measures: Fat Mass and Visceral and 

Subcutaneous Adipose Tissue

Although BMI and WHR are easy to measure in the population, they do not directly 

quantify fat mass or fat depots, which are likely more relevant in disease development. 

GWAS analysis in approximately 100,000 individuals identified 12 loci associated with 

body fat percentage (BF %), as measured by bioimpedance analysis or dual-energy X-ray 

absorptiometry.35 The majority of BF% loci overlap with BMI findings, and one, COBLL1/
GRB14, with WHRadjBMI (Figure 3). The BF% increasing allele at COBLL1/GRB14 was 

associated with lower WHRadjBMI, suggesting that the risk variant promotes gluteal rather 

than abdominal fat storage. Seven loci showed a larger effect on BF% than on BMI, 

suggestive of a primary association with adiposity in particular. Five loci showed larger 

effects on BMI than on BF%, which may be explained by an association with increases in 

both fat and lean mass.

The ratio of visceral adipose tissue to subcutaneous adipose tissue (VAT/SAT) is an 

alternative measure of body fat distribution with cardiometabolic disease relevancy because 

a higher VAT/SAT is correlated with the development of metabolic complications.36 Fox et 

al37 performed a GWAS analysis of VAT/SAT in approximately 10,000 individuals. They 

found that a variant at the LYPLAL1 locus, previously identified in association with WHR, 

also was associated with a VAT/SAT ratio with larger effect sizes in women as compared 

with men. The strongest association for SAT was within the FTO locus. Unlike SAT, the 

largest effect sizes for VAT were seen at a variant near THNSL2, also with greater effects in 

women as compared with men. Thus, examining the genetic associations of complementary 

measures of adiposity (BMI, %BF, SAT, VAT) can begin to show the underlying biology by 

which specific fat deposition may contribute to disease development.

FTO/IRX3, Variant to Function Studies Identifies Novel Obesity Biology

SNPs within the first intron (ie, the noncoding part) of the FTO gene have been reported to 

be associated robustly with common obesity since 2007. Recent studies have suggested a 

recessive effect, in which individuals carrying zero vs one BMI-raising allele have a similar 

BMI, however, individuals with zero vs two BMI-raising alleles at the FTO locus had an 

average BMI of 27.3 vs 28.1 kg/m2, respectively.38 The strongest effect of the FTO locus 

was observed in individuals younger than 50 years of age.39 There is some evidence from 

observational studies in human beings that the FTO SNP effect on adiposity is modified by 

physical activity level40,41 and may affect dietary preferences.42 However, the association of 

FTO locus variation and obesity is not completely explained by interactions or mediation by 

lifestyle factors. So how do these FTO variants actually exert their effect on BMI?
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Smemo et al43 found that obesity-increasing noncoding variants within the first FTO intron 

are associated with increased expression of the neighboring gene IRX3, but not with FTO in 

human brains. Furthermore, Irx3-deficient mice had a reduction in body weight of 25%–

30%, primarily through the loss of fat mass and increase in basal metabolic rate, with 

browning of white adipose tissue. Previous work has shown that IRX3 and other homeobox 

transcription factors were overexpressed in adipocytes after weight loss, indicating that 

changes in these genes were important in weight regulation.44 Claussnitzer et al45 combined 

information on regulatory elements and methylation patterns to show that the FTO SNP 

rs1421085 disrupts the binding site of the ARID5B repressor. The disruption of the repressor 

led to increased expression of IRX3 and IRX5 during adipocyte differentiation, causing 

energy-consuming beige adipocytes to become energy-storing white adipocytes. This 

decade-long effort to understand the biology of one of the earliest and most robust 

association signals for adiposity highlights the challenges and rewards in translating 

genomic discoveries to validated, potentially actionable, biology.

Pleiotropic Effects

Although obesity is known to increase the risk of metabolic diseases, some extremely obese 

individuals do not develop adiposity-related metabolic diseases. Why this is the case is not 

completely understood. This phenomenon also has been observed in genetic studies, in 

which a few recently identified genetic variants that increase adiposity also protect against 

the development of metabolic diseases.24,46 This observation suggests that genetics can 

dissociate epidemiologically correlated traits and identify mechanisms by which metabolic 

disease can be abrogated even in the obese. For example, the minor allele rs2943650 near 

the IRS1 (encoding the insulin-receptor substrate 1) gene was associated with a higher BF% 

(especially in men),46 however, paradoxically, it also was associated with a favorable lipid 

profile, and a decreased risk of type 2 diabetes and coronary heart disease.46 Gene 

expression profiles have shown that the variant was related to a higher expression of the 

IRS1 gene in adipose tissue, but not in liver, brain, or blood, suggesting that the adipose 

tissue may be the tissue in which it acts to have its effect. Furthermore, they found that the 

allele was associated with a decreased VAT/SAT ratio and higher adiponectin levels in men, 

suggesting that the protective effects for insulin resistance and dyslipidemia could be 

explained partly by increased deposition of fat in subcutaneous tissue and decreased ectopic 

fat deposition in men. These findings are in line with the adipose tissue expandability 

hypothesis, which states that when adipose tissue cannot expand by cell size or number, lipid 

will accumulate preferentially in ectopic sites such as cardiac, liver, and pancreatic β-cells. 

Ectopic fat depots are associated with the development of cardiometabolic disease.47

Interestingly, 10 additional loci increase body fat but protect from a lipodystrophy-like 

phenotype and insulin resistance, in line with what is described for IRS1.48 Furthermore, 

multiple cross-trait analyses have shown complex patterns of effects and begins to delineate 

metabolic disease subtypes that are discernable by shared genetic etiology.24,29 Genomic 

discoveries thus may enable the identification of patients at high risk of developing 

metabolic complications and help predict the complications they will develop to target early 

tailored treatment based on their individual risk rather than the population risk. Such 
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tailoring of care would increase the effectiveness of treatments and decrease the medical and 

human costs of disease.

Sex and Age Effects

Some studies have assessed the possibility of effect modification by age and sex for the 

genetic associations with adiposity. In a longitudinal study across the life course, a genetic 

risk score including 32 BMI-related SNPs was associated with a higher average lifetime 

BMI. There was a steeper increase in BMI up to 65 years of age with a higher genetic risk 

score, but not beyond 65 years of age, indicating that some genetic effects might be age-

dependent.49 Winkler et al39 from the Genetic Investigation of Anthropometric Traits 

consortium conducted a genome-wide search for loci that show distinct age- and/or sex-

specific effects for BMI and WHRadjBMI in a total of approximately 320,000 adults of 

European ancestry. Age was dichotomized at 50 years. In this study, 15 loci with age-

specific effects were identified for BMI and 44 loci for were identified for WHRadjBMI. 

Most of these loci were known from previous GWAS, which was expected because 

relatively larger effect sizes are needed to achieve significance in this type of analysis. 

Eleven of the 15 age-dependent BMI loci showed larger effects in younger vs older adults. 

The 4 loci that were more pronounced in older adults had previously been found to be 

associated with diabetes or coronary heart disease. This may have biased the results because 

such diseases may affect body weight. Of the 44 sex-specific loci, 11 showed an opposite 

effect direction in women vs men, and 28 showed a larger effect in women and smaller or no 

effect in men. Only 4 showed a larger effect in men. It is seemingly paradoxical that the 

effects generally are more apparent in women than in men given that men have more 

abdominal obesity than women, perhaps the effect is more noticeable in women who do not 

usually have this type of distribution. No 3-way interaction (gene × age × sex) was noted in 

the study, however, power was limited for this type of analysis.

Genetic Studies of Adiposity in Non-European Ancestry

Overall, genetic loci conferring susceptibility for different adiposity traits are similar across 

ethnic ancestries. The majority of early studies of adiposity genetics were performed in 

individuals of European ancestry. Smaller sample sizes and lower-powered GWAS studies in 

African and Asian ancestry individuals confirmed associations for many of the variants 

identified in the European ancestry studies, therefore suggesting a general shared transethnic 

susceptibility to adiposity that likely arose before migrations out of Africa.50–52 However, a 

few novel loci were first identified in non-European populations. For example, GWAS of 

BMI in more than 70,000 individuals of African ancestry and more than 80,000 individuals 

of East Asian Ancestry identified 2 new loci (GALNT10 and MIR148A-NFE2L3)50 and 4 

new loci (KCNQ1, ALDH2/MYL2, ITIH4, and NT5C2) among African and Asian ancestry 

groups, respectively.52 Parallel studies in approximately 50,000 East Asian individuals 

identified 4 novel loci near the EFEMP1, ADAMTSL3, CNPY2, and GNAS genes that were 

associated with waist circumference adjusted for BMI, and 2 loci near the NID2 and HLA-
DRB5 genes associated with WHRadjBMI.51 Many of these variants were found to have 

similar effects in individuals of European ancestry and likely were not identified previously 
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owing to lower allele frequencies and thus lower power in studies of individuals of European 

ancestry.

Ancestry-specific variants also have been discovered. These include a GWAS in more than 

5000 Samoans that identified a common missense variant in CREBRF with a large effect on 

BMI.53 This variant is rare in other populations. Salinas et al54 performed a GWAS in fewer 

than 2000 individuals of 4 different ancestries and found suggestive evidence of variants 

with differential effects across ancestries. Such heterogeneity may be owing to genetic or 

environmental modifiers, or more technical causes such as the casual variant not being 

located on the same haplotype as the associated variant across ancestries. Further work will 

be required to validate the proposed heterogeneity and to differentiate among these 

possibilities.

Overall, these studies show that there are both shared and unique genetic contributions to 

obesity across ancestries.

Epigenetic Studies of Adiposity

Early candidate region and hypothesis-free genome-wide scans of blood-derived DNA 

methylation in relation to BMI identified numerous differentially methylated loci; however, 

similar to early GWAS, candidate region and small sample-sized methylation studies often 

failed to show replicable results. One of the first robust associations of differential DNA 

methylation with BMI was reported in 2014 by Dick et al55 at the hypoxia-inducible factor 

3α (HIF3A) locus. The investigators conducted an epigenome-wide association study of 

BMI by examining DNA methylation at approximately 480,000 CpGs in leukocyte-derived 

DNA from 459 individuals, and replicated findings in blood samples from 1789 individuals, 

and 395 skin and 635 adipose tissue biopsy specimens. They identified a correlation with 

BMI among Europeans with differential methylation at 3 CpGs in the first intron of HIF3A 
in blood and adipose tissue, but not skin. HIF3A, a component of the hypoxia-inducible 

transcription factor, regulates the cellular and physiological response to reduced oxygen. In 

animal models, HIF3A responds to glucose and insulin, and accelerates adipocyte 

differentiation. The association of HIF3A locus methylation with BMI and adiposity-related 

conditions has been replicated further, including for childhood obesity and birth weight. 

Whether this methylation change causally influences BMI or whether it is the result of 

increased BMI is controversial. Suggestive evidence of reverse causation in which BMI 

affects HIF3A locus methylation was found by Richmond et al,56 who examined 

approximately 1000 mother–offspring pairs using longitudinal methylation data in childhood 

and bidirectional Mendelian randomization approaches. Mendelian randomization leverages 

the random distribution of genetic variants free from confounders to infer the causal relation 

between an exposure (imputed from the genetic variants) and an outcome. These statistical 

models are powerful tools for observational studies but are subject to numerous caveats and 

assumptions.

Two recent meta-analyses examining BMI in relation to methylation of blood-derived DNA 

from separate samples of approximately 8000 and 10,000 participants have expanded the 

number of replicated regions showing BMI-related differences in epigenetic signaling to 
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more than 200 independent loci.57,58 The association between BMI and DNA methylation 

was found to be largely independent of nearby genetic variants or known BMI-related SNPs 

(ie, FTO or MC4R loci), emphasizing the complementarity of genetic and epigenetic 

approaches. Differential methylation at 1 locus, intronic to sterol regulatory element binding 

transcription factor 1 (SREBF1), was found in Mendelian randomization analysis to have a 

causal relation to BMI. In addition, this analysis found evidence suggesting that methylation 

at the SREBF1 locus was associated causally with SREBF1 gene expression, and additional 

adiposity-related traits (WHRadjBMI, adiponectin, and birth weight), glycemic traits, 

obesity-related dyslipidemia, and risk of coronary artery disease. SREBF1 plays a central 

role in energy homeostasis by promoting glycolysis, lipogenesis, and adipogenesis via 

induction of the conversion of acetyl-CoA to triglycerides. At least 1 genetic study supports 

a causal relationship of triglyceride-rich lipoprotein increase and coronary disease.59 Taken 

together, the results highlight an example in which genomic regulatory mechanisms may 

promote obesity and adiposity-related disease.

The association of DNA methylation with BMI generally is stronger and of greater 

magnitude as compared with the association of BMI with genetic sequence variants. This 

likely is owing to changes in DNA methylation that occur in response to increasing 

adiposity. Indeed, further causal inference modeling has indicated that at least 20%, and 

likely more, of identified differential methylation is a consequence of differences in BMI.57 

DNA methylation findings largely were replicated across Caucasian and African American 

ancestries,60,61 indicating that shared exposures across ancestries may contribute to 

adiposity-related differences in DNA methylation. This suggests that epigenetic discoveries 

may help to identify transethnic targets to alter adiposity-related disease outcomes in the 

future.

Some of these downstream methylation changes may be useful as biomarkers for subsequent 

obesity-related disease development. The carnitine palmitoyl-transferase 1A (CPT1A) locus 

was associated with BMI and, in other studies, with metabolic syndrome, low high-density 

lipoprotein levels, and hypertriglyceridemia.62–68 CPT1A is a major rate-limiting enzyme 

for long-chain fatty acid oxidation, transporting acetyl-CoA into the mitochondria for 

reduction in the tricarboxylic acid cycle. Severe homozygous mutations in CPT1A in 

Northern populations increase susceptibility to fatal decompensation as a result of 

hypoketotic hypoglycemia. Preservation of heterozygous mutations in CPT1A in Arctic 

populations may confer an energy metabolism advantage. Thus, genetic variants may have 

been evolutionarily selected in some groups for their role in energy metabolism, and, 

independently, epigenetic mechanisms at the same loci may influence energy metabolism in 

the general population.

Methylation at the adenosine triphosphate binding cassette G1 (ABCG1) locus also was 

shown to be linked to adiposity-related disease because it was associated with triglycerides, 

high-density lipoprotein cholesterol, and predictive of incident coronary heart disease events. 

DNA methylation differences at the ABCG1 locus were found to be a consequence of 

increased BMI based on Mendelian randomization analysis. ABCG1 is a cell-membrane 

lipid transporter that has an established role in reverse-cholesterol transport, and its role in 

obesity has been supported in previous animal and human studies.69,70 Each standard 

Fall et al. Page 9

Gastroenterology. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



deviation difference in methylation in the population at the ABCG1 locus was associated 

with a 38% increased risk of future coronary heart disease events.71

Taken together, the earlier-described results highlight examples in which epigenomic 

changes may be useful not only in identifying genes causally related to the development of 

obesity, but also the development of obesity-related metabolic diseases.

Transgenerational and Lifetime Exposures on Epigenetic Modifications and 

Obesity Susceptibility

Accumulating evidence has suggested that the roots of adult obesity and cardiometabolic 

disease may begin in utero through fetal exposure to maternal health conditions. Numerous 

epidemiologic studies have shown a robust association between maternal and offspring 

obesity. Because the epigenome is thought to be more pliable during fetal development, 

studies of human fetal programming support epigenetic inheritance as a potential 

mechanism. For example, offspring born with nutritional or emotional distress during natural 

disasters, such as the Dutch Hunger Strike or a major ice storm, show marked differences in 

DNA methylation signatures. Children born before and after maternal bariatric surgery show 

differences in DNA methylation in glucoregulatory and inflammatory pathways. Women in 

rural Gambia, during periods of hunger and differing maternal methyl-donor intake, have 

offspring that show differences in DNA methylation. Transgenerational effects can be 

substantial; for example, maternal pre-pregnancy obesity was associated with 30% and 35% 

increased risk in the offspring of cardiovascular events and all-cause mortality, respectively. 

It is important to note that the transgenerational epidemiologic associations do not prove a 

causal role of epigenetic inheritance in adiposity because there may be alternate pathways or 

other factors that confound this relationship (eg, learned behaviors, inherited socioeconomic 

status, microbiome transfer). Whether epigenetic modifications can be passed on directly 

between generations is also unclear. Animal studies have provided supportive evidence, for 

example, paternal epigenetic inheritance via sperm through ribosomal DNA methylation and 

RNA-based mechanisms. Whether this also is true in human beings remains an area of active 

research and debate.

Road to Precision Medicine?

From GWAS and epigenome-wide association studies of adiposity, we have learned much 

about the biology of obesity. We also have identified many potential therapeutic drug targets. 

These studies provide the basis for Mendelian randomization studies to provide evidence to 

support future clinical trials, in which the causal determinants of adiposity can be evaluated 

for effects on a number of traits ranging from cardiovascular disease72 to multiple 

sclerosis.73 Thereby potentially avoiding an expensive clinical trial focused on an adiposity 

target that is not causal for the disease of interest in a human population.

To date, identified variants have small effect sizes and therefore by themselves are unsuitable 

for prediction of polygenic obesity compared with using family history of obesity or 

information on childhood obesity.74 The area under the receiver operating characteristic 

curve, which estimates the predictive performance of a test, is substantially higher when 
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using parental obesity as opposed to the strongest 32 BMI-related SNPs to predict an 

individual’s risk of obesity (0.75 as compared with 0.57).74 Current genetic risk scores to 

guide personalized diets or prevention regimens have shown some promise,75,76 but further 

research showing substantial benefits and cost benefits is warranted before widespread 

use.77

Despite poor predictive abilities, many non–genome-wide significant genetic loci are likely 

to be true BMI influencing variants.24,29 As we go beyond the genome-wide significant 

associations, the predictive power of using these variants (alone or in combination with other 

-omic markers) in predictive models likely will improve. Use of circulating epigenetic 

markers as liquid biopsies from blood also could replace more traditional tissue biopsies to 

diagnose tissue-specific disease and reduce patient pain and risk of complications associated 

with traditional biopsies, as have been proposed for liver fibrosis epigenetic markers. The 

US National Institute of Health has recognized the remarkable potential of these 

developments in guiding efforts to reduce obesity and improve the health of the population 

and is setting research priorities to take these new discoveries and translate them into 

effective treatments for obesity.
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Figure 1. 
Medical consequences of obesity.
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Figure 2. 
Genetic and epigenetic variation influences gene expression.
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Figure 3. 
Venn diagram for loci associated with BMI (Locke 201524), body fat percentage (Lu 

201635), waist-hip-ratio adjusted for BMI (Shungin, 201529), VAT, SAT, and their ratio 

(VAT/SAT) (Fox, 201237), and extremes of body mass index and waist-hip-ratio (Berndt, 

201332). Genes implicated in monogenic obesity are underlined. Loci are named according 

to nearby genes by the original authors, but are not necessarily proven to be the causal gene.

Fall et al. Page 18

Gastroenterology. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Tissues highlighted in genetic studies of general and central adiposity.
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