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Abstract

Stem cell-based therapies are steadily gaining traction for regenerative medicine approaches to 

treating disease and injury throughout the body. While a significant body of work has shown 

success in preclinical studies, results often fail to translate in clinical settings. One potential cause 

is the massive transplanted cell death that occurs post injection, preventing functional integration 

with host tissue. Therefore, current research is focusing on developing injectable hydrogel 

materials to protect cells during delivery and to stimulate endogenous regeneration through 

interactions of transplanted cells and host tissue. This review explores the design of targeted 

injectable hydrogel systems for improving the therapeutic potential of stem cells across a variety 

of tissue engineering applications with a focus on hydrogel materials that have progressed to the 

stage of preclinical testing.
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1. Introduction

One of the largest challenges facing stem cell-derived therapies is the survival and 

engraftment of transplanted cells into host tissue. In general, only approximately 1–20% of 

transplanted cells survive, significantly limiting their therapeutic potential [1–5]. While 

many stem cell sources (adult, embryonic, induced pluripotent) are being investigated for 

regenerative applications, all share universal challenges that occur at each stage of 

transplantation. It is useful to divide an injectable hydrogel therapy into the following 

phases: pre-injection, injection, acute post-injection, and long-term survival and function, in 
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order to identify the distinct challenges and potential solutions to maintaining cell survival 

(Table 1). While hydrogel design strategies can help mitigate the challenges of each phase of 

transplantation, no single material currently exists that addresses all of these issues 

simultaneously.

In the first section of this review, we will describe each of the transplant phases individually 

with a focus on which hydrogel design approaches can be used to promote cell viability 

during that specific phase. The relative priority ranking of the various cell survival 

challenges will be different for each clinical indication and site of transplantation. No single 

hydrogel formulation will be optimal for all stem cell transplantation therapies. In order to 

select an appropriate injectable material for a specific application, one must first carefully 

assess and prioritize the specific challenges and requirements for that particular tissue. Thus, 

in the second section of this review, we will focus on applying the hydrogel design strategies 

discussed in the first section to develop therapies for specific tissue applications, with an 

emphasis on hydrogels that have been evaluated in preclinical models.

2. General Hydrogel Design Approaches to Address Cell Viability 

Challenges at Each Stage of Transplantation

2.1. Pre-injection Phase

While most hydrogel designs have focused on cell-material interactions that occur after 

injection, recently, more studies have begun to also consider how cells interact with the 

material prior to and during the injection process. Even the choice of the hydrogel 

crosslinking mechanism, chemical or physical, can influence cell survival in the syringe pre-

injection. For chemical gels, crosslinking involves the formation of irreversible, covalent 

bonds between polymer chains using chemical crosslinking reagents. Physical hydrogels, on 

the other hand, form through temporary, reversible associations between chains, including 

hydrogen and ionic bonds [6–9]. Both crosslinking methods can be potentially detrimental to 

cell survival. For example, many chemical crosslinking reactions often have cross-reactivity 

with biomolecules presented on the cell surface or utilize reagents that have some degree of 

cytotoxicity prior to crosslinking. For physically crosslinked hydrogels, frequently an 

external trigger is used to induce gelation (e.g., changing solvent pH or ionic strength), 

which exposes cells to non-physiological conditions [10]. As long-term exposure to these 

crosslinking mechanisms can decrease cell viability, one way to overcome this concern is the 

use of dual barrel syringes to isolate cells from the potentially cytotoxic component until 

immediately before delivery [11–15]. Unfortunately, these crosslinking strategies can be 

difficult to reproducibly control in a clinical setting, as each injection site has its own local 

microenvironment that can impact crosslinking kinetics. Current focus has shifted to a new 

strategy in which cells are pre-encapsulated in injectable hydrogels that are already in the gel 

phase ex vivo. Such hydrogels contain reversible crosslinks, including the use of dynamic 

covalent bonds or supramolecular assembly, that allow them to shear thin upon application 

of shear force to enable injection of the gel through syringe needles and catheters [16–20].
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2.2. Injection Phase

Studies suggest that cells exposed to syringe needle flow experience mechanical shear and 

extensional forces that can damage the cell membrane. Interestingly, this effect is 

exacerbated when cells are injected in low viscosity solutions such as saline or cell culture 

medium [21, 22]. Recent work has demonstrated that some injectable hydrogels can protect 

cells from membrane damage; however, this effect seems to be limited to weak gels only (< 

100 Pa), although the exact rheological requirements are still unknown [20, 21, 23–28]. Data 

suggests that mechanical protection is likely due to hydrogel “plug flow”, where shear-

thinning at the walls forms a lubricating layer that enables the rest of the gel and 

encapsulated cells to slip through the needle relatively undeformed [16, 22, 27, 29, 30]. An 

alternative strategy is the encapsulation of individual cells (or small clusters of cells) into 

microbeads that are able to protect cells from the extensional forces that can damage cell 

membranes [31–35].

2.3. Acute Post-Injection Phase

Achieving cell retention at the target site, and thus therapeutic efficacy, requires rapid 

gelation of the pre-polymer solution or rapid self-healing of an injectable gel. If the gelation 

is too slow, the cells can become dispersed. The gelation kinetics must be carefully tuned, 

though, because if gelation is too rapid, it can clog the needle [4, 10, 36–38]. A variety of 

strategies have been developed for different crosslinking mechanisms. For example, for 

supramolecular gels such as MAX peptide gels, the kinetics of assembly can be tuned by 

altering the association energy of the self-assembling components [39, 40]. For ionic 

crosslinking, an interesting strategy is the controlled release of the crosslinking reagent, 

Ca2+ into alginate [41]. Finally, external triggers, such as light-activated crosslinking of 

diacrylate and methacrylate-modified hydrogels, can also be used to initiate the crosslinking 

process and maintain cell retention in the target area [42–45].

In the acute post-injection phase, transplanted cells can be confronted with a host of survival 

challenges including hypoxia, lack of nutrients, and lack of a three-dimensional supporting 

matrix. Depending on the specific clinical application, the relative importance of these 

different challenges can vary dramatically. Thus, biomaterials designed for different 

potential therapies often focus on addressing different challenges. For example, transplanted 

cells that are delivered into ischemic tissue face the acute challenges of hypoxia and lack of 

nutrient delivery. To combat hypoxia, the material can be engineered to release oxygen 

directly [46]. Alternatively, the material can deliver factors that assist cells in surviving 

hypoxia, such as HIF-1α [47–50]. A longer-term strategy is to design the material to 

promote vascularization in situ; for example, through the delivery of VEGF to induce 

angiogenesis from neighboring blood vessels [51–54]. While this serves the dual purpose of 

providing both oxygen and nutrients to the target site, the process of angiogenisis typically 

requires days to weeks. An alternative strategy to enhance the rate of vascularization is to 

deliver “pre-vascularized” biomaterials to the target site [55], although this strategy is 

usually incompatible with injectable material delivery. In the absence of an integrated 

vasculature structure, nutrient transport can still be promoted through the use of 

macroporous materials that contain interconnected channels to permit rapid diffusion [56–

58]. For example, one recently reported system used an injectable composite of two different 
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materials with very different biodegradation rates. As the rapidly degrading component (i.e. 

the sacrificial porogen) breaks down, a series of large pores are left behind. These large 

pores not only facilitate the diffusion of nutrients, but they also were found to promote the 

migration of transplanted cells [59].

Another common challenge at many transplantation sites is the lack of a healthy 

extracellular matrix. This is especially problematic for adherent cell types that undergo 

anoikis without proper matrix signaling cues. To combat this challenge, recent work has 

investigated the use of decellularized matrix, either purified or as complex mixtures, for cell 

delivery [4, 38]. Injectable materials that utilize decellularized matrix offer plenty of cell-

binding sites necessary to anchor transplanted cells and prevent apoptosis. Furthermore, 

decellularized matrix can be harvested from the donor tissue of interest providing 

appropriate, tissue-specific biochemical cues necessary for transplanted cell engraftment and 

function [4, 38, 60, 61]. Alternatively, synthetic scaffolds can be decorated with known 

matrix ligands to elicit specific interactions with cell-surface receptors [62–68].

The immune and inflammatory response after tissue injury results in a harsh environment 

that transplanted cells must overcome to survive. In order to achieve this, materials that were 

once thought to be “bioinert” can be used to modulate the immune system [69]. An exciting 

recent advance within biomaterials design is the use of elements to stimulate or suppress the 

immune system. These design elements include release of soluble cytokines [70, 71], 

delivery of immuno-engineered cells, and presentation of immunomodulatory peptide 

sequences [72, 73]. A thorough discussion of this topic is beyond the scope of this review, 

and the interested reader is pointed to several recent excellent reviews on 

immunomodulatory biomaterials [53, 69, 74–76].

2.4. Long-term Survival and Function Phase

Transplanted stem cells have different mechanisms through which they can have therapeutic 

effects. For some clinical applications, stem cells are thought to directly participate in the 

formation and function of new tissue. In other applications, the primary therapeutic function 

is thought to be indirect through the secretion of pro-regenerative factors, which act on the 

host tissue. Thus, depending on the underlying therapeutic mechanism, the biomaterial can 

be designed to enhance the cellular function. A variety of biomaterial properties are known 

to influence cell differentiation and maturation including mechanical properties such as 

stiffness and stress relaxation rate [77–80], presentation of biochemical ligands [81–83], 

delivery of soluble factors or morphogens [84, 85], and material degradation [86–89]. Each 

combination of stem cell type and tissue type will likely require different optimal 

biomaterial properties to influence differentiation, and the underlying mechanisms 

governing these interactions are only just beginning to be elucidated. Much of the work to 

date on biomaterials-guided differentiation has focused on studies of bone marrow-derived 

stem cells in an in vitro setting, and it remains to be seen if these insights hold true for other 

cell types and if they can be translated to in vivo applications. Even less work has been done 

to identify which biomaterials cues influence the stem cell secretome, although early work is 

promising [90–92]. For example, in vitro studies suggest that biomaterial mechanical 

properties can modulate the pro-angiogenic secretome of mesenchymal stem cells [92].
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Developing mechanistic causal relationships between biomaterial parameters and stem cell 

function (either differentiation or secretion) is challenging for two main reasons. First, stem 

cells are simultaneously receiving multiple input signals from the matrix where the signal 

transduction pathways that propagate and amplify these signals have many points of cross-

talk, resulting in non-linear relationships. For example, cells may have a different sensitivity 

to a range of material stiffness depending on the density of biochemical ligands that is 

presented [78]. Second, manipulating one biomaterial property often has the unintended 

consequence of also changing several other biomaterial properties. For example, a common 

technique to increase biomaterial stiffness is to increase the crosslinking density, but this is 

usually accompanied by a decrease in biodegradation rate and a decrease in the diffusion 

rate of paracrine secreted signals [86, 87, 93]. Thus, studies in the area of biomaterials-

guided differentiation and secretion require careful design to tease apart the intersecting 

mechanistic relationships. This area of research is likely to continue to expand for the next 

several decades.

Current research aims to address these issues, but there is no one hydrogel formula that is 

able solve all of the challenges stem cells face during the transplantation process. A single 

material property has the ability to impact several different challenges. For example, 

different hydrogel mechanical properties may be appropriate for different phases of the 

transplantation process (Fig. 1). While a weak hydrogel may be optimal for shielding cells 

from forces exerted during injection, the mechanics may prove insufficient for long-term cell 

retention and function. Furthermore, these properties are highly dependent on specific, 

applications and thus potential materials must be tunable in order to be optimized for a given 

therapy. In the next section, we will highlight injectable hydrogel design strategies based on 

tissue specific needs and applications. In particular, we will place an emphasis on those 

materials evaluated in preclinical models.

3. Specific Hydrogel Design Choices for Specific Tissue Applications

3.1. Cardiovascular Stem Cell Transplantation Therapies

Stem cell therapies have been studied extensively in cardiovascular applications such as 

myocardial infarction (MI) and peripheral arterial disease (PAD) [94]. Researchers have 

attempted to offset the irreversible cell death from ischemia that occurs in the myocardium 

during MI or endothelium in PAD through the introduction of stem cells into the injury site 

in hopes of replacing lost cells and/or encouraging native tissue remodeling through the 

secretion of regenerative growth factors [95–97].

The cardiac tissue environment includes several cell types including cardiomyocytes, 

pacemaking cells, fibroblasts, and endothelial cells, as well as, extracellular matrix (ECM) 

proteins such as collagen, fibronectin, hyaluronic acid, and proteoglycans [98]. Collagen, the 

most common component of cardiac ECM, forms fibrils that contribute to the mechanical 

properties of the heart with an approximate physiological stiffness of ~10–20 kPa [99]. 

While it is unclear if an optimal injectable material would have mechanical properties that 

match this physiological stiffness or would be weaker or stiffer, it is clear that cells sense 

and respond to matrix material properties. For example, functional output of embryonic and 

neonatal cardiomyocytes (CMs) or hiPSC-derived CMs in vitro depends heavily on substrate 
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mechanical stiffness, with increased electrical output and contractile beating observed on 8–

14 kPa substrates [100, 101]. Thus, any material used to improve stem cell-derived therapies 

for cardiovascular tissue must be designed with these mechanical properties taken into 

consideration.

Alginate has been used as an injectable, naturally occurring biomaterial to deliver stem cells 

for cardiac tissue regeneration [102, 103]. Alginate is a polysaccharide from seaweed that 

crosslinks when exposed to calcium ions, making it an ideal injectable material as gel 

formation will not occur until it comes into contact with physiological calcium. This would 

prevent clogging in the long catheters used in cardiac injection methods. Since alginate is a 

non-fouling and non-adhesive biomaterial, functionalization with cell-adhesive domains 

must take place to encourage cell attachment and matrix remodeling. Alginate, modified 

with the cell-binding ligand RGD found in collagen and fibronectin, has also improved 

human mesenchymal stem cell (hMSC) retention from 9% in saline controls to 60% in a 

direct injection model [104]. Further studies have shown that the concentration of alginate, 

and thus mechanical stiffness, also plays a significant role in cell retention. MSCs 

transplanted in a 2% alginate solution (~2 kPa) were found to be retained and survive 4x 

higher than that of cells transplanted with saline or even 1% alginate (~700 Pa) [105].

Whereas alginate crosslinks in the presence of Ca2+, other materials can form hydrogels at 

physiological temperatures making them potential injectable hydrogel cell carriers. The 

study by Roche et al. also examined the use of a thermosensitive, injectable chitosan/β-

glycerophosphate (β-GP) gel as the hMSC vehicle and found cell retention also significantly 

improved to 50%. Chitosan has also been used as a cell carrier for brown adipose derived 

stem cells (ASCs) in myocardial repair, with a reported 70% increase in cell retention as 

well as improved angiogenesis and preserved heart function [104]. Unfortunately, chitosan/

β-GP and other thermosensitive hydrogels may prove difficult for use in non-direct injection 

methods that make use of catheters. While catheter-delivery of transplanted cells is less 

invasive than direct injection, it requires the cell/gel mixture to travel a long distance through 

the body, which can potentially result in early gelation and failure to inject into the damaged 

tissue [106]. Gelfoam, an FDA-approved, gelatin-based gel, has also been shown to 

successfully transplant MSCs as a heat-sensitive injectable material [107]. As an alternative 

to naturally occurring biomaterials, Xia et al. designed a synthetic, injectable, 

thermosensitive copolymer composed of poly (N-isopropylacrylamide (PNIPAAM)/acrylic 

acid/2-hydroxylethyl methacrylate-poly(ε-caprolactone) and functionalized with collagen I 

to deliver hMSCs to an infarcted heart. Cell retention within the heart was 4x higher with the 

injectable hydrogel compared to cells alone and this corresponded with increased heart 

function, increased angiogenesis, and decreased fibrous scarring [108]. As with other 

injectable, thermosensitive composites, the copolymer suffers from the potential to gel in 

catheters, but may prove a more useful tool for direct myocardial injection therapies. 

Another interesting synthetic injectable material is self-assembling nanofibers, which have 

been used in mini-pig models to improve bone marrow-mononuclear cell retention 10-fold 

in treating MI and improving both diastolic and systolic functional outcomes [43].

In treating PAD, transplanted MSCs have been used to produce pro-angiogenic factors 

needed for regeneration and are more commonly delivered systemically [109]. However, 
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embryonic derived stem cell (ESC)- and induced pluripotent derived stem cell (iPSC)-

derived endothelial cells (EC) have been used to improve endothelialization and vascular 

regeneration of the occluded arteries in ischemic tissue through intramusclar injection [110–

112]. Unfortunately, cell survival after intramuscular transplantation is poor due to the 

immunoreactive, ischemic, and necrotic host environment. The Heilshorn group showed the 

use of a weak, shear-thinning, protein-based hydrogel with cell-adhesive domains improved 

iPSC-EC viability during the injection process by protecting the cells from mechanical 

forces within the needle [20]. Furthermore, incorporation of vascular endothelial growth 

factor (VEGF) into the hydrogel cell carrier improved muscle regeneration while minimizing 

inflammation and necrosis. Finally, collagen, which gels at body temperature, has been used 

to deliver BMSCs intramuscularly in a PAD model. Improved angiogenesis and hind limb 

perfusion was observed with an increase in local blood vessel density [113]. Xu et al. 

designed a synthetic, injectable hydrogel with a PNIPAAM backbone that exhibited strong 

mechanical properties (~17 kPa) when raised to body temperature. The incorporation of the 

pro-survival factor basic fibroblast growth factor (bFGF) with the hydrogel improved MSC 

survival after intramuscular injection, as well as increased blood vessel density, limb 

perfusion, and muscle diameter [114].

3.2. Cartilage Stem Cell Transplantation Therapies

Cartilage degeneration occurs through the break down of the connective tissue that covers 

bones at joints, particular in joints at the knees, elbows, and spine. This can result from 

diseases such as osteoarthritis, mechanical wear, crystal formation from gout, diabetes, and 

rheumatoid arthritis [115]. Current stem cell therapies used to treat cartilage degeneration 

include the use of MSCs and ASCs differentiated into chondrocytes, the main cellular 

component of cartilage, in order to replace lost cells [116]. Unfortunately, many of these 

cells die within this avascular environment [117].

While chondrocytes make up the main cellular component of cartilage tissue, the main 

structural component is composed of ECM proteins including collagens I and II and a 

significant fraction of proteoglycans. Cartilage tissue must have significant mechanical 

properties to withstand the high forces that occur in joints as they minimize the friction 

between connected bones [118]. Therefore, any injectable material intended for long-term 

presence in the joint must also be able to withstand these mechanical forces. In addition, the 

ideal material would provide pro-survival cues, which might include native-like protein and 

proteoglycan content, in order to encourage transplanted cell survival and integration, as 

well as promote endogenous tissue remodeling.

Photopolymerizing hydrogels have shown promise for delivery of stem cells in cartilage 

regeneration work [119]. Studies have shown advances in the use of chitosan-based 

injectable hydrogels for improving ASC and human synovial MSC survival in articular 

cartilage regeneration. This group has developed a methacrylated-chitosan-based material 

(MeCG) that allows for injection followed by photopolymerization in situ under visible blue 

light. To specify this material for cartilage applications, the group modified the hydrogel by 

conjugating transforming growth factor-βTGF-β) and incorporating collagen II and the 

proteoglycan, chondroitin sulfate (CS). This material improved chondrogenic differentiation 

Marquardt and Heilshorn Page 7

Curr Stem Cell Rep. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



as well as improved cartilage ECM deposition in a rat chondral defect model [120]. This 

material may be an improvement upon other pure mammalian-based materials such as 

collagen or CS alone, which would be rapidly degraded by the body [121]. Similar visible 

light-crosslinking hydrogels have been investigated, in which methacrylated-gelatin 

hydrogels used to inject MSCs showed strong mechanical properties (~30 kPa) at 

physiological conditions and strong integration with native cartilage compared to cells 

delivered in faster degrading agarose [43]. Finally, MSCs have been delivered via a cartilage 

specific, hydrogel carrier system composed of a UV-crosslinking, synthetic polymer base 

(poly(ethylene oxide) diacrylate) incorporating hyaluronic acid and TGF-β. This system has 

demonstrated successful in vitro differentiation of MSCs into chondrocytes and generation 

of cartilage-like tissue when injected subcutaneously and transdermally UV-crosslinked [44, 

45]. The design of this system using the proteoglycan hyaluronic acid improved the viscosity 

of the solution, preventing dispersion of the injected MSCs and improving cartilage 

formation [44].

Thermosensitive hydrogels have also been utilized for increasing stem cell efficacy in 

cartilage repair [45]. Thermoreversable chitosan/β-GP/hydroxyethyl cellulose hydrogels 

were shown to support human and mouse MSC survival and proliferation, while further 

incorporation of TGF- β3 improved chondrogenic differentiation [122]. Similarly, chitosan-

poly(vinyl alcohol) copolymer hydrogels used to deliver MSCs showed significant 

regeneration of rabbit articular cartilage defects, particularly when TGF-β was introduced 

through MSC adenoviral overexpression [45].

These studies highlight current methods in improving the regenerative potential of stem cell-

based therapies for cartilage repair with encouraging preclinical results. Many more studies 

have made strides in developing promising, novel injectable hydrogel systems for cartilage 

applications; however, these materials have not yet progressed to preclinical experiments and 

have only been shown effective in in vitro models [123–126].

3.3. Nervous System Stem Cell Transplantation Therapies

Diseases and injuries to the nervous system impact a significant portion of the population 

with devastating implications. While much of the underlying etymology behind neurological 

diseases such as Parkinson’s and Alzheimer’s is unknown, each results in irrevocable loss of 

specific neuron populations. In addition, injury and ischemia to the spinal cord (SCI) and 

brain results in significant neural cell death, leading to substantially diminished movement 

and sensation as well as impaired mental and cognitive function [84, 127–129]. Stem cell-

derived therapies are currently being investigated in numerous neurological-based clinical 

trials looking to either replace lost neuron populations or provide supporting glial cell types, 

such as oligodendrocytes and astrocytes [127, 130]. Unfortunately, despite promising pre-

clinical data, no stem cell-based therapies have been able to move to the market or clinic, 

often due to failure to show improvement in humans and limited cell characterization [131]. 

The neural microenvironment post injury can be incredibly cytotoxic due to ischemia, 

presence of inhibitory myelin debris, and release of excitotoxic molecules [130]. 

Furthermore, neural cells tend to be very sensitive to handling, thus the injection process 

itself may be decreasing cell survival.
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Therefore, in order to improve transplanted cell survival, engraftment, and integration with 

host tissue, researchers have designed injectable hydrogel systems that are specifically 

tailored to improve neural and glial cell phenotypic function within injured nervous tissue. 

The neural tissue environment has several unique characteristics that need to be taken into 

account when developing therapeutic strategies. Unlike musculoskeletal or connective 

tissues, neural tissues are mechanically very compliant, with stiffness ranging from 100–

1000 Pa [79, 132, 133]. This property of the in vivo matrix appears to translate to preferred 

in vitro substrates. For example, stem cells cultured on softer substrates tend to differentiate 

down a neural lineage compared to cells on stiffer substrates, and primary neurons respond 

to more compliant materials by producing longer neurite extensions [63, 65, 79, 134]. 

Therefore, using hydrogel carriers that are significantly stiffer than native neural tissue 

would likely limit integration of transplanted cells due to both failure of transplanted cells to 

differentiate into appropriate cell types in the stiff matrix as well as failure to promote host 

cell penetration and remodeling. ECM proteins expressed in neural tissue are primarily 

laminins, collagens, and fibronectin [135]. Laminin contains two cell binding sites, IKVAV 

and YIGSR, that neurons have an affinity for, with IKVAV promoting significant neurite 

outgrowth and YISGR promoting neural cell attachment and survival [63, 136, 137]. 

Neurons are also dependent on several soluble signaling factors for survival and regeneration 

including neurotrophin-3 (NT3), glial cell line-derived neurotrophic factor (GDNF), brain-

derived neurotrophic factor (BDNF), and platelet-derived growth factor-A (PDGF-A) [138, 

139]. Many groups have therefore attempted to incorporate these factors into injectable 

hydrogels to improve functional recovery after disease or injury to the nervous system.

In part due to their mechanically compliant properties, naturally derived biomaterials have 

been historically favored in the development of injectable hydrogel carriers for neural 

applications. For example, fibrin hydrogels have been used to deliver ESC-derived neural 

progenitors for treating SCI [138, 139]. Fibrin hydrogel properties can be easily tuned to 

mimic native environmental properties simply by altering the concentration of fibrinogen. 

Fibrin delivery also improved neural progenitor cell (NPC) survival and influenced 

differentiation into neural phenotypes when modified with a growth factor delivery system 

[138]. Sustained delivery of GDNF, NT3, PDGF-A as well as other growth factors from 

injectable fibrin scaffolds with mouse NPCs impacted astroglial scar formation and 

macrophage response and improved neuronal differentiation [139]. Matrigel, another 

naturally derived material that is rich in laminin and collagen, has also been investigated for 

cell delivery, as it can be injected due to its thermal gelation property. In vitro, Matrigel is 

used extensively to support stem cell survival, proliferation, and differentiation, especially 

into neural lineages. In an ischemic stroke model, delivery of ESC-derived NPCs with 

Matrigel significantly improved cell survival and outcomes in sensimotor and cognitive 

function [140]. Furthermore, Matrigel (growth factor reduced) improved ESC-derived NPC 

survival compared to artificial cerebrospinal fluid and increased dopaminergic neuron 

differentiation for treating Parkinson’s disease [141]. The authors suggested that use of 

Matrigel suppressed the normal immune response to grafted cells, thus increasing the 

number of dopaminergic neurons, rather than the material itself inducing differentiation. 

Unfortunately, Matrigel is derived from mouse sarcoma and cannot be used in clinical 

applications.
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Hyaluronan or hyaluronic acid (HA) is commonly found in the nervous system and therefore 

is a promising material for delivering cells to neural tissues [142]. The Shoichet group has 

designed and extensively studied hyaluronic acid-methylcellulose (HAMC) hydrogels for 

cell delivery and have found encouraging results for SCI and stroke therapies [142–144]. 

This family of hydrogels can be tuned to match native neural mechanical properties and has 

been shown to reduce scarring and inflammation in SCI [145]. In addition, these hydrogels 

modified with recombinant PDGF-A led to increased survival of transplanted adult NPCs 

and improved differentiation into oligodendrocytes after SCI. This combination therapy led 

to increased graft survival, improved host tissue sparing, and decreased SCI pathology, 

which correlated with increased behavioral recovery [146]. HAMC similarly led to increased 

oligodendrocyte differentiation of transplanted iPSC-derived oligodendrocyte progenitor 

cells, but most importantly, it attenuated teratoma formation compared to cells delivered in 

saline alone [144]. Degradable HA hydrogels modified with the cell-binding domain RGD 

have also been used to deliver iPSC-derived NPCs for treating stroke. While the hydrogels 

did not improve cell survival post cerebral injection compared to cells alone, differentiation 

of iPSC-NPCs into doublecortin positive neuroblasts was significantly increased with HA 

delivery [147, 148]. Another HA variant, modified with heparin sulfate and collagen, has 

similarly been tested as an ESC-derived NPC delivery vehicle for ischemic stroke therapy. 

The use of the support matrix increased transplanted cell survival and decreased microglia 

response. Unfortunately, while cell survival increased two-fold, it only increased from 300 to 

600 cells out of the original 100,000 cells transplanted [149]. Lastly, HA carriers modified 

with poly-L-lysine (PLL) for enhanced cell attachment were shown to improve transplanted 

BMSC survival and differentiation in a thoracic SCI model. Compared to cells transplanted 

alone, cells with HA-PLL gels led to improved hind limb locomotion, a result rarely seen 

with MSC therapies alone in SCI [150].

Other biomaterials that are naturally derived or bio-inspired have shown promise in 

enhancing the therapeutic potential of stem cells for treatment of neural injury and disease. 

For example, the self-assembling peptide K2(QL)6K2 (QL6) has previously been shown to 

reduce the associated pathology observed after SCI with decreased inflammation, glial 

scarring, and cell death [151]. Therefore, Iwasaki et al. probed the synergistic effect of QL6 

transplanted in succession with adult NPCs in a cervical compression SCI. QL6 did not 

statistically improve NPC survival in vivo (0.25% for cells only versus 0.62% for cells and 

QL6), yet the addition of the self assembling peptide led to decreased microglia activation 

and gliosis and increased motoneuron and neuron sparring resulting in improved forelimb 

function [2]. It is of note that the NPCs were not embedded within the QL6 solution, instead 

the treatments were injected separately, and thus it is uncertain whether the peptide would 

improve cell survival to greater effect if they were co-delivered. Composite scaffolds made 

of poly(lactic acid) nanofibers embedded in an injectable xyloglucan hydrogel improved the 

survival and reinnervation of dopamine progenitor cells in Parkinson’s debilitated mice, with 

significant improvement observed when the scaffolds were optimized with GDNF and 

BDNF co-delivery [152].
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3.4. Osteoinductive Stem Cell Transplantation Therapies

Due to our increasingly aging population, bone related diseases and injuries are on the rise 

with an increasing need for bone grafting technologies. An extensive amount of research is 

being undertaken to replace lost bone cells and encourage native tissue regeneration using 

stem cell-derived technologies [153, 154]. There are currently dozens of clinical trials 

probing the use of stem cells, primarily MSCs, for bone regeneration applications in a 

variety of indications including cancer, osteonecrosis, pseudo/osteoarthritis, fractures, 

periodontal disease, and spinal fusions [154, 155]. The goal of stem cell-derived therapies is 

to initiate new tissue remodeling and growth with cohesive integration of grafts and host 

tissue allowing for proper movement and function. Unfortunately, lack of nutrients from 

blood supply and poor mechanical support can lead to graft failure to integrate and potential 

morbidity [154]. In addition, while cell-seeded hydrogels have been investigated broadly for 

bone tissue engineering, a non-invasive, injectable cell carrier system is needed in order to 

deliver cells to difficult-to-reach and non-uniform injury sites.

In response, researchers are developing a variety of supporting scaffolding systems to 

facilitate engraftment of transplanted cells with host tissue and differentiation into 

osteogenic phenotypes. Key matrix properties of bone that must be considered include their 

protein and mineral composition and their structural and mechanical strength properties. 

Bone is characterized as cortical and trabecular bone, with cortical bone being dense, 

compact tissue and trabecular bone being spongey and porous. On the ultrastructural level, 

bone is composed of compacted collagen fibrils that are mineralized with hydroxyapatite 

(Ca5(PO4)3) microparticles. Cortical and trabecular bone stiffness can range between 100–

2000 MPa, with substrate stiffness in the 100 kPa range supporting enhanced osteogenic 

differentiation of MSCs in vitro [79, 156].

Many groups have investigated the use of PNIPAAM, a thermosensitive polymer, for 

injectable cell delivery in bone applications. PNIPAAM is a synthetic polymer that can be 

tuned to match the mechanical stiffness of bone once injected at body temperature [157–

159]. Watson et al. demonstrated that decorating PNIPAAM with pendant phosphate groups 

improved biodegradation and biointegration of the hydrogel with host tissue, as well as 

support enhanced mineralization, MSC differentiation, and bone formation in a rat cranial 

defect model [159]. Further work has shown promising results with MSC delivery using 

PNIPAAM hydrogels either grafted with gelatin or incorporating gelatin microspheres [157, 

158]. Gelatin, which is denatured collagen, is an excellent source of natively relevant 

bioactive adhesion sites for both transplanted and host cells. The use of gelatin microspheres 

within injectable PNIPAAM and encapsulated MSCs led to increased direct bone-to-

hydrogel contact, cell infiltration, and osteoid formation [158]. In addition, direct grafting of 

gelatin to PNIPAAM increased the rate of new bone formation with extensive graft 

integration into the host tissue [157–159].

Alginate has also been investigated as a stem cell carrier for bone regeneration applications. 

Functionalizing alginate with the RGD cell-binding domain for co-delivery of MSCs with 

bone morphogenetic protein-2 (BMP-2) led to increased mineralization in vitro and 

increased bone formation in vivo in a critically sized femoral defect model [160]. Alginate 

hydrogels have also been shown to support hMSC migration and osteodifferentiation when 
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chemically modified with osteoinductive growth peptides [161] [161]. Unfortunately, this 

work was only performed in vitro, and efficacy in vivo has yet to be evaluated. Indeed, there 

are dozens of promising new injectable hydrogel stem cell carrier technologies being 

investigated for bone regeneration, including Pluronic F127, chitosan/collagen/β-GP, 

calcium phosphate cement, and several synthetic polymers, yet they have only been tested in 
vitro or in non-bone defect, subcutaneous in vivo models [162–165].

3.5. Other Targets for Injectable Stem Cell Therapeutics

Recent advances in stem cell biology have opened new doors in developing therapies for less 

high prolife diseases and organ systems than those discussed above. Accordingly, with the 

increased attention given to stem cell-derived treatments for other applications, interesting 

new methods to improve their efficacy have arisen using injectable, combinatorial hydrogel 

strategies. For example, in treating retinal degenerative diseases, stem cell therapies 

routinely fail to survive and integrate. Recent research has shown, however, that 

encapsulation of retinal progenitor/stem cells (RPCs) in hyaluronan-methyl cellulose 

(HAMC) hydrogels supports robust survival and proliferation. Most importantly, when 

transplanting cells in vivo, the use of the HAMC hydrogel improved RPC distribution 

through the impacted area compared to saline, as well as improved grafted retinal rod 

survival and functional visual integration [142, 166]. Engineering new muscle through 

regenerative medicine strategies has also shown promise through enhanced delivery and 

survival of MSCs, muscle stem cells, and skeletal muscle satellite cells using 

thermosensitive, injectable hydrogels such as collagen/chitosan/βGP [167], composite 

synthetic polymers PNIAPPAM/acrylic acid/2-hydroxyethyl methacrylate-oligomers [168], 

small intestinal submucosa [169], and fibrin [33]. Wound healing has also been a targeted 

research area for potential stem cell-derived therapies. Delivery of hASCs for full thickness 

skin wounds using injectable gelatin microspheres was shown to significantly improve the 

wound healing rate, stem cell retention, and growth factor secretion levels compared to 

delivery of cells alone [170]. Similar functional results in wound healing have been observed 

when BMSCs were delivered using cell-protective alginate beads within injectable 

hydrophobic poly(ether urethane) hydrogels compared to implanting pre-formed scaffolds 

[171] or transplanting cells within gelatin-poly(ethylene glycol) hydrogels [172]. Lastly, 

chitosan-based polymers have been shown to improve iPSC-derived hepatocyte (iPSC-Heps) 

survival and integration for liver tissue engineering as well as ASCs for acute kidney failure. 

Carboxymethyl-hexanoyl chitosan hydrogels were shown to successfully engraft iPSC-Heps 

through direct intrahepatic delivery and to reduce necrotic tissue area and to improve liver 

function [173]. Thermosensitive chitosan chloride hydrogels were capable of supporting 

enhanced ASC survival and proliferation in an acute kidney injury model, as well as 

reducing host renal cell apoptosis and improving microvessel density and renal function 

[174]. While research in these areas is limited to only a handful of studies in each case, 

promising in vitro and in vivo data suggest combining stem cell-derived therapies with 

injectable hydrogels can significantly improve their therapeutic potential.
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4. Conclusion

Throughout these different areas of regenerative medicine application, a common theme has 

emerged indicating that stem cells hold great potential for pronounced therapeutic benefits. 

Unfortunately, harsh conditions after injury and disease, as well as the delivery process 

itself, can significantly hinder the functional impact of transplanted cells. Therefore, 

delivering cells in carefully designed, cell-protective and cell-supporting injectable 

hydrogels may significantly enhance therapeutic efficacy for several different regenerative 

medicine applications. Looking forward, these injectable materials are expected to improve 

the rate of clinical translation for stem cell-derived therapies by increasing grafted cell 

survival and functionality.
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Figure 1. Design of injectable hydrogel delivery platforms for improved stem cell-derived 
therapeutics
A) Combinatorial regenerative medicine strategies often include encapsulation of stem cell-

derived transplants within injectable hydrogels designed to provide cell appropriate 

mechanical support and biochemical cues along with co-encapsulation of bioactive factors. 

B) The design of injectable hydrogels must consider four separate phases of hydrogel use. In 

the first and second, some injectable hydrogels can protect cells during the potentially 

harmful pre-injection and injection processes, which exposes cells to a variety of 

crosslinking mechanisms and mechanical forces. Third, some injectable hydrogels can 

improve acute cell survival and functionality by providing appropriate mechanical and 

biochemical matrix cues along with soluble bioactive factors. Fourth, carefully developed 

injectable materials can promote grafted cell function within host tissue as it degrades.
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Table 1

Challenges that reduce stem cell survival during transplantation and biomaterials strategies to address these 

challenges

Transplant Phases Challenges to Stem Cell Survival Hydrogel Design Approaches References

Pre-injection

Prolonged exposure to cell encapsulation 
reagents

• Cell-compatible chemical 
crosslinking

• Dual barrel syringe
11,12,15

Prolonged exposure to non- physiological 
encapsulation conditions

• Cell-compatible physical 
crosslinking

• Dual barrel syringe

11, 12, 15, 20, 23, 
26

Injection Cell damage during injection

• Plug flow injectable hydrogels

• Microbead/capsule vehicles

16, 18, 19, 20, 22, 
23, 25, 26, 28–30, 

31–35

Acute post-injection

Cell dispersal from target area

• Rapid gelation

• Rapid self-healing 38–45

Anoikis

• Ligand presentation from 
synthetic matrices

• Decellularized matrices

4, 36–38, 60, 61, 
62–68

Hypoxia

• Oxygen delivery

• Growth factor delivery

• Gene delivery
46, 47, 50–54

Poor nutrient transport

• Macroporous hydrogels

• Adaptable hydrogels

• Hydrogel degradation

• Pro-angiogenic materials

• Pre-vascularized materials

56–59, 88, 89

Immune response • Immunomodulation 69–76

Long-term survival and 
function

Limited cell migration

• Macroporous hydrogels

• Ligand presentation

• Adaptable hydrogels

• Hydrogel degradation

58, 59, 66, 77,78, 
86, 87, 88, 89

Reduced/inappropriate cell secretome

• Mechanical properties

• Growth factor delivery

• Gene delivery
90–93

Poor cell differentiation

• Mechanical properties

• Growth factor delivery

• Gene delivery

78, 79, 86, 87, 88, 
89, 90, 93, 99
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Transplant Phases Challenges to Stem Cell Survival Hydrogel Design Approaches References

• Ligand presentation
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