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Abstract

The use of gene panel sequence for diagnostic and prognostic testing is now widespread, but there 

are so far few objective tests of methods to interpret these data. We describe the design and 

implementation of a gene panel sequencing data analysis pipeline (VarP) and its assessment in a 

CAGI4 community experiment. The method was applied to clinical gene panel sequencing data of 

106 patients, with the goal of determining which of 14 disease classes each patient has and the 

corresponding causative variant(s). The disease class was correctly identified for 36 cases, 

including 10 where the original clinical pipeline did not find causative variants. For a further seven 

cases, we found strong evidence of an alternative disease to that tested. Many of the potentially 

causative variants are missense, with no previous association with disease, and these proved the 

hardest to correctly assign pathogenicity or otherwise. Post analysis showed that three-dimensional 

structure data could have helped for up to half of these cases. Over-reliance on HGMD annotation 

led to a number of incorrect disease assignments. We used a largely ad hoc method to assign 

probabilities of pathogenicity for each variant, and there is much work still to be done in this area.
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INTRODUCTION

Genetic testing in clinical laboratories is becoming increasingly common: As of March 

2017, GeneTests.org contains entries for about 706 labs and 1,083 clinics worldwide 

performing a total of 67,187 tests on 5,926 genes for 4,963 genetic conditions. So far 

though, there has been only limited testing of method efficacy (McCarthy et al. 2014; 

Pirooznia et al. 2014; Cornish and Guda 2015; Hwang et al. 2015). Many of the genetic tests 

use targeted gene sequencing panels for identifying variants in a set of genes or gene regions 
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that are known to be associated with a disease (Kammermeier et al. 2014; Okazaki et al. 

2016). In clinical laboratories specializing in specific diseases or classes of disease, panels 

provide high coverage data for genes of interest at relatively low cost, and also reduce the 

issues in reporting incidental findings to patients. A key and challenging step in all these 

tests is the ability to accurately interpret the genetic variants and assign a likelihood of 

pathogenicity (Richards et al. 2015).

Potentially pathogenic sequence variants fall into three classes: (a) those almost certain to 

cause major loss of protein function (LoF), arising from the introduction of premature stop 

codons, frameshifts caused by small insertions or deletions, and direct hits on splice sites; 

(b) those that may or may not significantly affect gene regulation (such as regulatory 

variants at transcription factor binding sites) or protein function, particularly missense 

variants; and (c) those that are more likely benign, particularly synonymous, UTR, and deep 

intronic variants. The main challenge lies in understanding the phenotypic consequences of 

the large fraction of variants falling into the last two classes. Most clinical laboratories 

follow a semi-automated approach for variant interpretation, first making use of available 

variant annotation and prioritization tools and then checking the potential causative variants’ 

association with the disease of interest in databases and the literature. For the first step, there 

are dozens of annotation and prioritization tools (open-source or commercial) available (for 

example, Wang et al. 2010; Cingolani et al. 2012; Sifrim et al. 2013; Robinson et al. 2014; 

McLaren et al. 2016), typically providing potentially causative variants based on inheritance 

pattern, allele frequency, genomic region of interest, mutation type and in silico analysis of 

the likely impact of missense mutations. It has been demonstrated that there are substantial 

discrepancies between existing annotation tools (McCarthy et al. 2014; Pabinger et al. 2014) 

so that there is a clear need to encourage and monitor advances in this field. In most clinical 

laboratories, standard guidelines such as those from the American College of Medical 

Genetics and Genomics (ACMG) (Richards et al. 2015) are followed for variant 

interpretation and reporting. Although the guidelines accept computational predictions of 

pathogenicity for variants, these are only considered a ‘supportive’ evidence. Other evidence 

is required to classify a variant as causative. As a consequence, the overall contribution of 

computational methods for variant classification is low and this motivates the development 

and testing of more accurate methods for variant interpretation.

CAGI (Critical Assessment of Genome Interpretation) is an organization that conducts 

community experiments to objectively assess computational methods for predicting 

phenotypic impacts of genomic variation (https://genomeinterpretation.org/). The most 

recent round of experiments (CAGI4) included a challenge to determine which of 14 disease 

classes each of 106 patients has and the corresponding causal variants, given each patient’s 

gene panel sequencing data (https://genomeinterpretation.org/content/4-

Hopkins_clinical_panel). The gene panel dataset consists of exons with flanking regions and 

some complete intron sequencing data for 83 genes from each patient. Data were provided 

by the Johns Hopkins DNA Diagnostic Laboratory. The Laboratory is a CLIA and CAP 

certified, Maryland, New York, and Pennsylvania licensed clinical genetic testing laboratory 

specializing in rare, inherited disorder testing (http://www.hopkinsmedicine.org/

dnadiagnostic/tests/).
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The data were made available to registered CAGI participants, and all were required to 

deposit disease and variant assignments by a specified deadline. The anonymized 

submissions were assessed by John-Marc Chandonia (http://enigma.lbl.gov/chandonia-john-

marc/) and Shamil R. Sunyaev (http://genetics.bwh.harvard.edu/wiki/sunyaevlab/), and 

results were later discussed at the CAGI4 conference. A paper on the assessment is part of 

this CAGI special issue of Human Mutation (ref to Chandonia et al CAGI issue paper when 

available).

The identification of causal variants requires a number of carefully controlled procedures for 

assessing the quality of the data, accurate variant annotation, handling of unphased 

genotypes, and an appropriate probability model that can prioritize primary and secondary 

disease findings. With these considerations in mind, we developed a new variant 

prioritization pipeline (implemented in Python) called VarP (https://github.com/kunduk/

VarP) using a combination of open-source and in-house software tools for analyzing gene 

panel sequencing data. This pipeline was the most successful of those used in CAGI, in the 

sense that it resulted in the correct matching of the highest number of panel exomes to 

disease class. [https://genomeinterpretation.org/sites/default/files/protected_files/4-

Hopkins_clinical_panel_assessor1_AAdhikari_remixable.pptx]. Nevertheless, the results are 

far from perfect. In this paper, we describe the design and implementation of the variant 

prioritization pipeline and the results obtained.

MATERIALS AND METHODS

Capture bed files, gene panel sequencing data, and disease class

The Johns Hopkins DNA Diagnostic Laboratory panel sequencing procedure generates 

sequence for all exons plus a boundary of 50 bases up and down stream and some introns for 

83 genes (1350 exonic and 39 intronic regions), covering 14 monogenic disease classes. 73 

of these genes are known to harbor mutations for one of the 14 monogenic disease classes. 

The remaining ten genes are known to harbor mutations for two or more disease classes. 

Sequences had been captured using one of the two custom probe sets (Agilent SureSelectXT 

Target Enrichment Kit) and sequenced using Illumina MiSeq to generate paired-end reads 

(2×100 nt reads). Two capture bed files (v01, v02) describing the two probe sets were 

provided as part of the challenge. The Hopkins group called sequence variants and produced 

two VCF files for each patient, one a gVCF for single nucleotide variants (SNVs; using 

GATK UnifiedGenotyper, v2.7-4) and the other a VCF for insertion-deletion variants 

(Indels, GATK HaplotypeCaller, v2.7-4). For the challenge, all VCF files from 106 patients 

had been combined into two files, one each for SNVs and Indels.

Building the gene list for disease classes

All the genes annotated in the two capture bed files (v01 and v02) were extracted to compile 

a list of genes to examine. The description of 14 disease classes was provided on the 

challenge webpage (https://genomeinterpretation.org/sites/default/files/protected_files/4-

Hopkins_clinical_panel_disorders.pdf). We made extensive use of the Hopkin’s DNA 

Diagnostic Laboratory website to map genes to disease class (http://

www.hopkinsmedicine.org/dnadiagnostic/). The website lists a number of gene panel tests 
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and also gives a detailed description of the genes associated with each disease as well as 

their inheritance pattern. Using this resource we were able to group 53 of the 83 genes to 12 

disease classes and obtain the inheritance pattern. We used literature and the Genetic Home 

Reference Database (http://ghr.nlm.nih.gov/) to group another 24 genes to some of the 

disease classes and obtain the inheritance pattern. In total 77 out of 83 genes were grouped 

among the 14 disease classes as shown in Table 1. The remaining 6 genes (DHODH, 
TRIM37, EFTUD2, AMACR, AGXT and CAT) are associated with diseases that are not 

related to any of the 14 disease classes and therefore were excluded from any downstream 

analysis.

Gene Panel Sequencing data analysis pipeline

The method developed for this challenge (VarP – Variant Prioritization) uses open-source 

and in-house software tools to analyze gene panel sequencing data with respect to rare 

genetic disorders in an automated manner. The method has four modules – Variant 

annotation, QC (quality control) analysis, Variant Prioritization, and estimation of the 

probability of each variant being causative for the disease. The four modules were executed 

in a sequential manner (Fig. 1). The inputs were the two VCF files and a gene configuration 

file that contained the genes associated with each disease class and their inheritance pattern 

(autosomal dominant/recessive, compound heterozygous, pseudoautosomal dominant/

recessive, X-linked dominant/recessive).

Variant Annotation—The two VCF files (one for SNVs and another for Indels) were 

annotated using Varant (http://compbio.berkeley.edu/proj/varant, doi:10.5060/D2F47M2C). 

Details on Varant are provided in the supplementary material. Varant annotated each variant 

in the VCF files with region of occurrence (intron, exon, splice site or intergenic), observed 

minor allele frequencies (MAF) from ExAC (Lek et al. 2016) and 1000 Genomes Phase-3 

(Auton et al. 2015), mutation type (missense, nonsense, silent, frameshift and non-frameshift 

indels), predicted impact on protein function, and previously associated phenotypes reported 

in ClinVar (Landrum et al. 2016). Varant used dbNSFP (v2.9) (Jian et al. 2014) database to 

fetch the mutation impact predictions from PolyPhen-2 (v2.2.2) (Adzhubei et al. 2013), 

SIFT (release Jan, 2015) (Kumar et al. 2009) and CADD (v1.2) (Kircher et al. 2014). The 

RefGene (Pruitt et al. 2014) gene definition file was used for gene and transcript 

annotations. The principal isoforms of each gene were taken from the APPRIS database 

(Rodriguez et al. 2013). In addition, the VCF files were annotated with SNPs3D (May, 

2015) (Yue et al. 2006) mutation impact predictions, HGMD (version June 2014) (Stenson et 

al. 2003) disease-related variants and with dbscSNV (Jian et al. 2014) variants that 

potentially alter splicing.

Quality control Analysis—Three types of QC analysis were run on the Hopkin’s dataset. 

The first QC analysis is a comparison of Transition vs. Transversion ratio (Ts/Tv), 

Heterozygous vs. Homozygous variants (Het/Hom), no call sites vs. low quality sites and 

common vs. rare vs. novel variant counts across all 106 samples and with those in a control 

variant set from 2,504 samples in 1000 Genomes Phase-3 (Auton et al. 2015). No call sites 

(sites where neither reference nor alternate allele was called) and low-quality sites (sites not 

marked PASS and/or genotype quality less than or equal to 30) per sample were computed 
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from the challenge gVCF file. A variant is considered novel if it was not present in the 1000 

Genomes and ExAC (Lek et al. 2016) dataset and considered rare if present with an MAF of 

less than 5% in both of these datasets. Other 1000 Genomes or ExAC variants were 

considered common. Only SNVs flagged as PASS in the VCF file and with a genotype 

quality (GQ) greater than 30 were included in the analysis. Scatter plots were generated to 

represent the results. The QC module also estimated which samples are of African ethnicity, 

to aid in interpretation of variant count differences. The ethnicity analysis used the 

population-specific allele frequency (AF) from the 1000 Genomes Phases-3 dataset to 

identify population enriched variants (i.e. variants that are common (AF > 0.05) in a 

population but rare (AF <= 0.05) in other populations). Samples whose African population 

enriched variant count was highest in number compared to other populations in 1000 

Genomes (Admix American, South Asian, East Asian and European) were assigned African 

ethnicity. The second QC analysis is a comparison of the average read depth for 83 genes 

across 106 samples, using the read depth provided in the gVCF file. The module produced a 

heat-map of these data, allowing convenient visual inspection for anomalies. The third QC 

analysis identifies capture regions (exon or intron) with anomalous read depth with respect 

to other captured regions in the same gene, where the anomaly is found in at least 85% of 

the samples. Anomalous coverage was identified by first computing the average read depth 

across the gene (μ) and its standard deviation (σ), and then checking each region for 

significantly low (< μ − 2σ) or high (> μ + 2σ) coverage. The anomalous coverage regions 

were then visually inspected using gene coverage plots.

Identification of potentially causative variants—Only rare or novel variants rated 

high quality (marked PASS and with a GQ > 30 in the VCF files) were considered in the 

search for causal variants. At this stage, a rare variant was defined as one reported in ExAC 

(Lek et al. 2016) with a minor allele frequency (MAF) less than or equal to 0.01 and a novel 

variant was defined as one not found in ExAC. Indels in low complexity regions (LCR) were 

excluded from the analysis, based on the LCR dataset computed for the human genome by 

Heng Li (Li 2014). For each sample, each QC qualified variant in each of the 83 genes was 

assigned to one of four categories, ranked by the likelihood that the variant is causative.

Category 1: Variants reported in HGMD with either DM (disease-causing mutation) or DP 

(disease-associated polymorphism) status, and/or reported in ClinVar with pathogenic or 

likely pathogenic clinical significance.

Category 2: Variants annotated as nonsense mutations, direct splicing mutations disrupting 

either a splice donor or acceptor site, frameshift or non-frameshift causing Indels, splice 

altering variants predicted in the dbscSNV database, and missense mutations predicted as 

damaging by one or more of SNPs3D, SIFT, PolyPhen-2 and CADD.

Category 3: Variants annotated as missense but not predicted to be damaging by any of the 

above methods, and UTR and intronic variants.

Category 4: All other variants (including synonymous and all with MAF > 0.1). These were 

not considered as potentially causative.
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Each variant was also grouped by frequency based on its ExAC MAF: group 1 – novel, 2 – 

very rare (MAF <= 0.005), or 3 – rare (0.005 < MAF <= 0.01).

For each sample, the variant assigned to the lowest category was taken as the potentially 

causative variant. If there were two or more variants with the same category, the one in the 

lowest frequency group was selected. When there were two or more variants with the same 

category and frequency group, all were selected. Once a selection had been made, no other 

variants in that sample were considered. Category 1 variants were assumed to be of highest 

confidence, followed by category 2 and 3 variants and so selection was made in that order: If 

a suitable variant or variants were found in Category 1, no category 2 ones were considered, 

and similarly, if suitable variants were found in Category 2, no Category 3 ones were 

considered. No phase information was available for these data, so for non-homozygous 

variants where the inheritance model of the gene containing the selected variant required a 

second allele as part of a compound heterozygous pair, the next ranked variant in that gene 

was selected.

Thus, for each of the 106 samples, the output from the module was usually one (for 

dominant or homozygous recessive situations) or two (for compound heterozygous 

situations) potentially causative variants in a particular gene. Since each gene is associated 

with one or more of the 14 disease classes (shown in Table 1), identification of a gene 

implied one or in some cases two possible disease classes. For some samples, no potentially 

causative variants were found, or for compound heterozygous situations, only a single 

variant met selection criteria, and so no disease was identified.

Estimating probability for the disease—Table 2 lists the probability of pathogenicity 

assigned for each category of potentially causative variant. Category 1 variants (based on 

HGMD or ClinVar entries) were assigned a probability of 1.0, except for some missense 

variants where prediction methods suggested low impact. Category 2 missense variants were 

assigned a probability based on the extent of consensus among the four missense impact 

analysis methods used (SNPs3D, SIFT, PolyPhen-2, and CADD), utilizing a calibration 

from HGMD data and a control set of inter-species variants. That calibration shows a strong 

and approximately linear dependence of pathogenic probability on agreement between 

methods (Supp. Figure S1). Other variant types were subjectively assigned probabilities as 

shown in Table 2. For autosomal recessive situations, the combined probability of 

pathogenicity was taken as the product of probabilities for the two contributing variants. 

Those values were incremented by 0.2 for homozygous cases, as an ad hoc correction for 

increased confidence, and by 0.1 in compound heterozygous situations. Based on this 

scoring scheme, a probability of pathogenicity for a disease class was generated for all the 

samples in which one or more potentially causative variants were identified. For the cases in 

which a gene was associated with more than one disease class, equal probability was 

assigned for all the disease classes.

Post-Challenge Analysis

We performed many post challenge analyses on the results in order to gain insight into the 

performance, strengths, and weaknesses of the method, and in doing so, made a number of 
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observations. We assessed performance based on the official answer key provided by the 

Johns Hopkins DNA Diagnostic Laboratory group. For each patient, the key specified the 

disease class, the possibly causative variants (if any) found in the subset of the 83 genes 

examined, and a classification of each of these variants (pathogenic, likely pathogenic, VUS 

(variant of uncertain significance), likely benign and benign). The Hopkins classifications 

were based on the ACMG evidence rules (Richards et al. 2015).

RESULTS

QC Analysis Summary

Supp. Figures S2 and S3 and Supp. Table S1 together with accompanying text provide 

details of the QC analysis. Overall, transition/transversion ratios and heterozygosity/

homozygosity ratios are consistent with those found in 1000 genome data, with the 

exception of one sample (P8) with excess homozygosity. There are a maximum of 2000 low 

quality and 940 no-call calls per sample in the v01 capture data and lower numbers in v02. 

We expect that any causative variants at these positions would be missed. Common, rare, 

and novel variant (SNV and Indel) counts for all the samples are consistent with 1000 

genome data, except for two outlier samples identified as of African ethnicity which have 

larger rare Indel counts. The average read depth per gene per sample is high (greater than 

100X) with the exception of two capture regions (Exon-53 and Exon-60 of HYDIN gene in 

Supp. Figure S4) where anomalous coverage could potentially result in causative variants 

being missed or in false positives.

Missense mutations are amplified in the potentially causative variant set

The VCF files provided for the challenge have a total 2311 unique variants across the 106 

patients. This variant set consists of 40% intronic variants, 26% missense variants, 20% 

synonymous variants, and 14% of variants that are assigned as LoF (frameshift Indels, non-

frameshift Indels, and nonsense), UTR, or splicing (Fig. 2A). After applying the PASS 

(PASS in VCF file), genotype (GQ > 30) and frequency filters (MAF <= 1% in ExAC), the 

total number of variants was reduced by almost 50% to 1291, with 233 variants filtered 

because of low quality and 787 further variants filtered because of high MAF. Figure 2B 

shows that the frameshift and non-frameshift indels decreased the most (by 40% and 27%) 

on applying the PASS filter and NonSyn, Syn, UTR, CodingIntronic and ‘Close to splice 

site’ variants decreased the most (by 37 to 42%) on applying the frequency filter. After all 

filtering, 138 out of the 1291 variants were assigned as potentially causative by the 

prioritization procedure. In this set, the fraction of LoF variant is 16% and the fraction of 

missense variants is doubled to more than half (56%), while intronic variants drop to 8% and 

synonymous to 1%. The high fraction of potentially causative missense variants emphasizes 

the importance of correctly interpreting this class of mutation.

Matching individuals to disease class

Application of the categorization procedure described in Methods resulted in a non-zero 

probability for a specific disease class being assigned to 87 of the 106 patients. A further 17 

patients were assigned a non-zero probability for two disease classes, as a consequence of a 

single gene being associated with two of the 14 disease classes. Two patients (P59 and P86) 

Kundu et al. Page 7

Hum Mutat. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were not assigned to any disease class. P59 had the lowest average read depth for 50 genes 

out of 83 and next to lowest for the other 33 genes compared to other samples, suggesting 

that causative variants may have been missed.

Correct disease assignments also made by Hopkins

Overall, the assessors determined that we made correct disease assignments for 36 of 106 

cases (Fig. 3A), in the sense that the highest probability was assigned to the disease class 

specified in the Hopkins answer key. The Hopkins group reported “pathogenic”, “likely 

pathogenic, or “variant of uncertain significance” (VUS), based on ACMG variant 

classification, for 43 cases (Fig. 3B). The VarP pipeline assigned the maximum probability 

to the same disease class for 26 of these 43 cases, with the same variants assigned as 

causative. There are two primary reasons for our non-identification of the other 17 cases 

(row 6 and row 10 in Fig. 3A). First, for 10 of these patients, the Hopkins group found only 

one heterozygous variant in genes known to be associated with disease in a recessive 

inheritance pattern. Our method considered this insufficient evidence. Second, for the 

remaining seven patients we found an alternative disease that ranked higher in the variant 

categorization scheme. As noted in Methods, the selection scheme only considered the 

disease identified by the highest-ranked variants, and rejected all others. Had we considered 

diseases identified by lower confidence categorizations, five of these seven cases the 

Hopkins reported disease would have received 2nd ranking; one 3rd ranking; and one 4th 

ranking.

Additional correct disease assignments

Out of the 63 patients for which the Hopkins analysis found no causative variants in the 

genes ordered as part of the clinical test, our method made 10 correct assignments of disease 

class and assigned potentially causative variants (row 7 in Fig. 3A). Seven of these patients 

were found to carry autosomal dominant or homozygous recessive variants and remaining 

three patients carried compound heterozygous variants. For nine of these 10 cases, the gene 

hosting the potentially causative variant was not analyzed by the Hopkins group, presumably 

because coverage was not selected by the requesting physician. For the remaining case, the 

Hopkins group did not report the potentially causative variant even though they analyzed the 

relevant gene. For the other 53 patients (row 8 and row 11 in Fig. 3A), neither our method 

nor the Hopkins group found any causative variants for the expected disease class. However, 

we found potentially causative variants for a different disease in four of these patients, 

suggesting alternative diagnoses (see the Alternative Diagnosis section).

Assignment of probability

In order to estimate the accuracy of our probability model, we checked how well the 

probability of pathogenicity scores correlated with incorrect disease class assignment. The 

dependence of incorrect disease assignment on assigned probability follows the correct 

trend, with a high fraction at low probability and a lower fraction at high probability (Fig. 4). 

However, there are 25 patients with incorrect disease class assignments and a probability 

greater than 0.8. We found following reasons for this: 1. High confidence given to DM status 

HGMD variants – 11 of the 25 anomalies are of this type. These are discussed below in the 

Selection section and listed in Table 4. 2. In five cases, there were pairs of Indels (frameshift 
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or non-frameshift) close together (less than 10 bp apart, Supp. Table S2) in the CCDC40 

gene and classified by us as causative compound heterozygous variants. Very likely, these 

are false Indels arising from alignment errors or errors near perfect repeat regions (Fang et 

al. 2014). 3. In two cases there are two heterozygous variants predicted damaging by three 

methods in genes associated with recessive disease. It is possible that these are the same 

copy of the gene (no phasing information was available). 4. In the remaining seven cases, we 

found possible alternative diagnoses. These are discussed in detail below.

Variant assignment accuracy for each Selection Category

As described in Methods, we used a work flow to assign variants to one of three categories, 

ranked by likelihood of pathogenicity. Table 3 shows the percent of correct disease 

assignments for variants in each category. The highest fraction of cases (42%, 11 out of 26) 

agreeing with the Hopkins disease class were based on Category 1 variants. The 

corresponding fractions for Category 2 and Category 3 variants are 38% and 23% 

respectively. This trend is expected, since assignment confidence decreases with increasing 

category number.

As noted earlier, Category 1 variants are those annotated in HGMD and/or ClinVar as 

disease-causing. Further inspection showed that 11 of the 15 discordant assignments cases 

had conflicting database annotations and sometimes weak or no supporting evidence (Table 

4). In seven cases, the corresponding variant is annotated ’DM’ (disease mutation) in 

HGMD but is annotated ‘benign’ or ‘likely benign’ in ClinVar. Consistent with the ClinVar 

annotation, a check of the supporting literature for these showed either no experimental 

support or no evidence favoring pathogenicity. For the other four cases, ClinVar had no 

relevant entry and there was no literature support. Seven of these 11 cases involved missense 

variants, and none of those were rated high confidence pathogenic by our consensus method. 

With the wisdom of hindsight, we should have factored these considerations into the 

categorization and probability procedures, and placed less faith in HGMD. The remaining 

four discordant assignments have either functional validation of the variant as damaging or 

are annotated as pathogenic in ClinVar as well. As discussed later, these four patients may 

really have a different disease.

Category 2 variants are those selected because of being a LoF variant, the computational 

method assigning pathogenicity for missense variants, a direct hit on a splice site, or a 

prediction of an impact on splicing (Jian et al. 2014). The 18 correct assignment cases 

include seven compound heterozygous and 11 autosomal dominant or recessive cases. Seven 

out of these 11 cases carry a LoF (nonsense, frameshift or non-frameshift Indel) or direct 

splicing variant, and the remaining four carry missense variants (two predicted damaging by 

two methods and two predicted damaging by one method). The 29 cases with discordant 

disease class with respect to the Hopkins information in this category include 11 compound 

heterozygous cases and 18 autosomal dominant or recessive cases. For the 11 discordant 

compound heterozygous cases, the assumption that the two variants are appropriately phased 

is a likely cause of misassignment. The 18 other cases include one frameshift Indel and 17 

missense variants. Of the 17 missense, only one was high confidence, predicted damaging 

by all four methods. Four were damaging by three methods (expected accuracy 0.8), 10 were 
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damaging by two methods (expected accuracy 0.5), and two were damaging by only one 

method (expected accuracy 0.25).

Category 3 variants are missense mutations predicted benign by all four computational 

methods and those which are intronic or in a UTR. All were assigned low causative 

probability, ranging from 0.05 to 0.29. There are only seven out of 30 with correct disease 

class assignments that were assigned based on Category 3 potentially causative variants. Six 

of these seven cases carried intronic insertions or deletions close to a splice site (within 5 to 

30 bases), suggesting proper treatment of this mechanism is important. The remaining case 

carries a missense mutation predicted benign by the four mutation impact prediction 

methods.

There is a marked dependence of level of agreement with the Hopkins disease class and the 

frequency of the potentially causative variants (Table 3): 49% of disease assignments made 

for novel variants agree with the Hopkins answer key, compared to 27–30% for the other, 

non-novel variants with less than 1% MAF.

Alternative Diagnoses

There is an important difference between the Hopkins lab procedures and the CAGI 

challenge. In the lab, in accordance with clinical guidelines, for each patient, variant analysis 

was performed only on the subset of genes identified by the physician requesting the test, 

usually those for a single disease, and sometimes only a subset of genes for a single disease. 

On the other hand, the challenge required analysis of all genes for each patient. That led to a 

number of findings suggesting that in some cases, causative variants are overlooked in the 

clinic. Of the 70 cases where our disease assignments and the disease tested by the Hopkins 

pipeline differ, seven have strong evidence supporting assignment to a different disease 

(Table 5). In four of these cases, no variants supportive of the tested disease were found by 

ourselves or by Hopkins. In two further cases, the Hopkins pipeline reported only one 

variant in a recessive gene and for the remaining case (patient P8 in Table 5), there is 

evidence that the patient may have two diseases. These seven cases fall into three groups:

1. Three cases where the patient carried variants likely causative of a disease 

phenotype that has overlapping symptoms with the disease tested at Hopkins. 

One of these is a patient (P36) carrying a very rare (AF=0.0047 in ExAC) 

autosomal dominant missense mutation (rs5738:G>A, NM_001039.3:c.589G>A, 

p.(E197K)) in exon-3 of the SCNN1G gene. This mutation is reported in HGMD 

and ClinVar to be causative for Bronchiectasis with pathogenic clinical 

significance (Fajac et al. 2008). The patient was tested for Diffuse Lung disease 

and no variants with the required inheritance pattern was found in the relevant 

genes. Bronchiectasis has been previously shown to be associated with Idiopathic 

Pulmonary Fibrosis, one of the diseases in the Diffuse Lung disease class. 

(International Consensus Statement of the American Thoracic Society and the 

European Respiratory Society. 2000; Bourke 2006).

2. One case where a patient (P8) carried a variant reported in HGMD and ClinVar 

to have pathogenic clinical significance for a disease other than that tested for, 

and where the tested and apparent diseases cannot be easily confused. P8 carries 
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a very rare (AF=0.0051 in ExAC) homozygous recessive mutation 

(rs1800098:G>C, NM_000492.3:c.1727G>C, p.(G576A)) in the CFTR gene, 

consistent with the disease class ‘Cystic Fibrosis and CF-related disorders’. A 

functional study found the mutation causes an increased amount of skipping of 

exon-12 during splicing (Pagani et al. 2003). This patient was originally tested 

for Peroxisomal Beta-Oxidation Defects and a homozygous recessive frameshift 

mutation was found in the relevant gene. We did not report that variant because 

of finding the CFTR variant which we categorize as higher confidence of 

pathogenicity. The data are consistent with the patient having both diseases.

3. Three cases where the patient carried variant(s) predicted damaging by all 

reporting computational methods or a LoF variant. For example, one of these is a 

patient (P46) to whom we assigned ‘Treacher Collins and Related Syndromes’ 

based on a very rare (MAF = 0.0002 in ExAC) missense mutation 

(rs538401137:C>T, NM_001135243.1:c.3029C>T, p.(T1010I)) in the TCOF1 
gene and assigned as damaging by all four computational methods. This patient 

was tested for the Diffuse Lung disease class in the Hopkins pipeline, and no 

variants consistent with that phenotype were found by them or us.

Protein structure coverage for potentially causative variants

In principle, information from three-dimensional structure and on the detailed functional 

roles of residues, motifs, and domains should be of considerable value in evaluating the 

impact of missense variants. In practice, it is often ignored, and indeed we did not use it in 

this challenge. What difference might it have made? To investigate this, we considered only 

potentially causative missense variants that are not included in HGMD or ClinVar. Current 

ACMG guidelines (Richards et al. 2015) would place a low weight on computational 

analysis of these, and thus they would likely be reported as VUSs. There are 47 such 

missense variants distributed over 41 patients. ~50% (23/47) of these are either included in 

an experimental structure or can be included in a homology model based on 22% or higher 

sequence identity to an experimental structure (Fig. 5A). Three of these mutations are in 

proteins with experimental structure (X-Ray structure). We use these three cases to illustrate 

how protein structure could be used to: (a) supplement the sequence analysis methods to 

increase confidence in a pathogenic or benign assignment and (b) understand the 

pathogenicity mechanism at the protein level. Two of these mutations have correctly 

assigned disease classes and causative variants in our submission. One of those is of a novel 

mutation (NM_000901.4:c.1807T>A, p.(C603S)) at a highly conserved position in the 

Mineralocorticoid receptor. This protein is associated with Pseudohypoaldosteronism Type 

1. Although we correctly identified this mutation from sequence information, only two of 

the four (SNPs3D, SIFT, PolyPhen2, CADD) methods assigned it as pathogenic, and the 

other two did not. Thus additional evidence would have improved confidence in the 

assignment. Inspection of the structure (PDBID: 4TNT) showed that the wild-type amino 

acid (CYS-603) is a zinc ligand in a zinc finger domain (Fig. 5B). Many other zinc ligand 

mutations in these domains cause loss of function of the corresponding proteins (Kambouris 

et al. 2014; Vincent et al. 2014), providing additional evidence of pathogenicity. The second 

case with correct disease assignment is of another novel mutation (NM_000492.3:c.

Kundu et al. Page 11

Hum Mutat. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3849G>C, p.(R1283S)) at a highly conserved position in the second nucleotide binding 

domain of the CFTR protein. Mutations in CFTR cause Cystic Fibrosis, one of the disease 

classes in the Hopkins dataset. This mutation is predicted damaging by three out of four 

(SNPs3D, SIFT, PolyPhen2, CADD) sequence methods. Inspection of the protein structure 

(PDBID: 3GD7) hosting this mutation shows the wild type side chain (R1283) makes two 

charge-dipole interactions with main chain carbonyl groups of L1258 and R1259, providing 

a helix cap (Hol et al. 1981), consistent with significant destabilization of the structure (Fig. 

5C). Loss of protein stability has been shown to be the most common cause of monogenic 

disease (Wang and Moult 2001; Yue et al. 2005). A different mutation at this position 

(rs77902683, NM_000492.3:c.3848G>T, p.(R1283M)) has previously been found in CF 

patients (Cheadle et al. 1992) and has been reported as pathogenic in ClinVar and HGMD.

The third mutation with experimental structure coverage is one where we made an incorrect 

disease assignment on the basis of just one of the four missense analysis methods predicting 

deleterious. Although that was already a low confidence prediction, further evidence would 

be useful. This is a very rare (MAF=0.0005 in ExAC) variant (rs147398624:G>A, 

NM_000901.4: c.2578G>A, p.(V860I)) in the Mineralocorticoid receptor, with an autosomal 

dominant pattern disease inheritance pattern. The mutation is located on the protein surface 

(PDBID: 2AA5) and is not part of any known interface, providing further evidence the 

mutation is benign.

DISCUSSION

The CAGI4 challenge based on panel sequencing data provided by the Johns Hopkins DNA 

diagnostic laboratory has allowed a blind test of current methods for identifying causative 

variants in clinical rare disease sequence data. Participants were asked to match each of 106 

patients to one of 14 classes of disease. To address this challenge, we developed an analysis 

pipeline, VarP, designed to identify potentially causative variants. Using this pipeline, we 

were able to correctly match 36 patients to the reported disease class. The analysis provided 

a number of insights into issues related to gene panel testing, including the relationship 

between data quality and success in finding causative variants, variant prioritization 

procedure limitations, inconsistencies in databases, and cases of possible alternate diagnosis.

Undiagnosed cases

Even with full knowledge of the reported disease class, the Hopkins pipeline could only find 

potential causative variants for 43 cases, leaving 63 with no causative variants. As discussed 

below, we were able to find variants correctly matching a further 10, but that still leaves half 

(53) of the cases where neither we nor Hopkins could find variants. There are three major 

factors that may contribute to the high fraction of undiagnosed cases. First, a limitation in all 

studies of this type is data quality. Our QC analysis suggests the Hopkins data are generally 

of high quality. Read depth per gene per sample is high (between 107X to 983X) and each 

sample has only about 2000 positions with no call or a low-quality variant call. But there are 

some particular sample level properties in the data that may affect analysis. For example, 

sample P8 (tested for an autosomal recessive disease, Peroxisomal Beta-Oxidation defect) 

has an abnormally high fraction of homozygous variant calls compared with heterozygous 
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ones, increasing the chances of finding an apparently causative homozygous variant. Our 

pipeline identified a potentially causative homozygous missense variant in CFTR, consistent 

with cystic fibrosis, and annotated as pathogenic in both HGMD and ClinVar, whereas the 

Hopkins pipeline found a homozygous frameshift variant in HSD17B4, consistent with the 

tested disease. There are also some areas of low coverage, for instance 78 samples have zero 

coverage of Exon-60 in HYDIN. Variants in this gene may cause Primary ciliary dyskinesia. 

Overall though, sequencing data quality does not appear to make a large contribution to 

missing diagnostic variants.

A second factor contributing to non-identification of causative variants is that there may be 

other, unknown, genes where variants cause the disease phenotype. Many new monogenic 

disease genes are still being discovered (more than 67 genes in a two-year period, Beaulieu 

et al. 2014). Thirdly, the causative variants may have been not covered in the panel, which 

consists of mostly exon sequence. Missing variants may include those affecting the 

expression of a relevant gene, CNVs, and larger scale structural genomic changes. In some 

rare disease analyses using whole genome sequence (WGS), such as in the SickKids 

Genome Clinic (http://www.sickkids.ca/CGM/genome-clinic/index.html), the latter type of 

variant has been found to make a significant contribution (Stavropoulos et al. 2016). 

However, those patients mostly exhibit major developmental disease phenotypes, and may 

not be typical of rare disease patients in general.

Correct diagnosis for cases where the Hopkins pipeline did not find causative variants

For 10 cases we were able to identify the reported disease class even though Hopkins 

reported no potentially causative variants. In nine out of these ten cases, the Hopkins 

pipeline did not include analysis of the gene carrying the diagnostic variant(s). Apparently 

this is because the requested test did not include the gene, a choice made by the referring 

physician. As noted earlier, Hopkins is only permitted to analyze the requested gene set. For 

the 10th (a compound heterozygous case where one of the variants is missense predicted 

damaging by four methods and other is an intronic variant close to a splice acceptor), 

Hopkins did not report the potentially causative variants even though they analyzed the 

relevant gene.

Missed diagnoses

There are 17 cases where we did not identify the correct disease class, but the Hopkins 

analysis did find potentially causative variants. For 10 of these, the Hopkins variants are in 

genes expected to have a recessive inheritance pattern, and only one heterozygous variant 

was present – not sufficient for our evidence rule. Had we used such a weak criterion for 

inheritance model filtering many more false positives would have been generated. Thus 

these should not be regarded as failure of the VarP approach but rather an appropriate 

filtering strategy used in VarP. In the other seven cases where Hopkins found variants, VarP 

found stronger evidence for a different disease class. For two of these, as discussed below, 

we consider the evidence that the patients have the VarP identified disease very strong, and if 

so, these also are not errors. For the other five, we made two sorts of errors. One was placing 

too much trust in HGMD that affected three cases – in each of these cases the HGMD 

annotations were incorrect and contradicted or not supported by ClinVar or experimental 
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data. The other source of error was for two compound heterozygous cases where one of the 

partner variants was a low impact missense (predicted benign by 1/4 methods) or an intronic 

variant and so provided very weak evidence. In retrospect, the procedure of taking just the 

most likely causative variant(s) and ignoring all other variants in a patient was sub-optimal. 

A better procedure would probably be to use all variants in each gene to assign a probability 

of pathogenicity and to use those probabilities to infer disease class.

Incorrect diagnoses

For 25 patients VarP made high confidence (probability score > 0.8) incorrect disease class 

assignments. A primary factor was again over-reliance on HGMD annotation, accounting of 

11 of the 25 cases. A further five cases involved pairs of Indels very close to each other (less 

than 10 base pairs apart), and consistent with a compound heterozygous cause for a 

recessive disease. In fact, these Indel pairs are probably coupled alignment errors. There are 

two cases where the assumption that a pair of recessive variants are on different copies of the 

gene may be incorrect (there was no phasing data available). In seven of the remaining cases, 

we found high confidence pathogenic variants in genes associated with a different disease 

from that in the Hopkins answer key. As discussed later, the evidence for some of these is 

sufficiently strong that they may not be errors.

Distinct potentially causative variants that led to disease classification

VarP identified 105 potentially causative variants each of which occurs once in a total of 78 

patients. A further 14 potentially causative variants were seen in two or more of the other 28 

patients (Supp. Table S3). We also considered accuracy in terms of the fraction of these 119 

distinct variants which led to correct and incorrect disease assignments. By this measure, 

correct disease identification increases from 34% (36/106) to 36% (33/91). The 

improvement occurs because the majority of repeat variants are present in cases where an 

incorrect disease was assigned, and we speculate that some of these may reflect sequencing 

artifacts.

Reliability of probability for disease assignments

In the clinic, perhaps more important than having an accurate method of determining 

pathogenicity is having an accurate method for assigning a probability of correctness to a 

pathogenic assignment. The CAGI challenge required participants to also provide these 

probabilities, and so it was possible to evaluate how effective our approach was. We used a 

largely ad hoc probability scale in this analysis. Although there is a reasonable overall 

correlation between these quantities (Fig. 4), there were a substantial number of variants 

assigned a high probability that were not in fact pathogenic. There were two primary reasons 

for that – first, as noted earlier, we misjudged the reliability of HGMD assignments of 

disease mutations. Had we used a model that included disagreements between HGMD and 

ClinVar, these cases would have had more appropriate probabilities. Second, as discussed 

below, in a number of cases we consider the evidence strong that these patients had a 

different disease.
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Reliability of missense probability estimates

As described in the Results, overall, the estimated probabilities of pathogenicity shows 

qualitative though not quantitatively correct properties. The majority of potentially causative 

variants are missense, so improved confidence in assigning a probability of pathogenicity to 

these are of particular importance. As described earlier, we assigned a probability based on 

the fraction of four different missense analysis methods reporting deleterious. The method 

was calibrated [Yin el al] using a set of HGMD mutations (all assumed pathogenic) and a set 

of interspecies variants (assumed benign). There are a number of limitations to this dataset, 

and so we were interested to see to what extent the estimated probabilities were useful. 

Interpretation of the results is complicated by the alternative diagnosis cases and by 

compound heterozygous cases, involving two different variants. Supp. Figure S5 shows the 

relationship between estimated probabilities and correct disease class assignment, omitting 

those cases. Counts here are too small to draw firm conclusions. A high proportion of 

mutations assigned with a probability of less than or equal to 0.5 are incorrect, consistent 

with expectations. However, more than half of the mutations with probabilities higher than 

0.7 are also incorrect, not as expected. Further analysis Yin et al. (ref to Yin et al. CAGI 

issue paper when available) suggests that a probability method based on more than four 

missense impact prediction methods would have yielded better results. But clearly a more 

extensive blind test is needed to evaluate this approach.

Apparent cases of alternative diagnoses

Using quite stringent criteria we identified seven cases where the data are consistent with 

patients having a different disease class than that provided in the Hopkins answer key. Four 

of these patients carry variants for the alternative disease class that are reported in HGMD 

and ClinVar as pathogenic. The remaining cases carry missense variants predicted damaging 

by all reporting methods, frameshift or non-frameshift indels, or variants directly affecting 

splicing. In three cases, symptoms of the answer key disease and the alternative overlap, so it 

is possible that there was a misdiagnosis in the referring clinic. The other cases are more 

puzzling. Since we have no information as to why a particular test was ordered (and in many 

cases the Hopkins group may not either), it is difficult to comment further. But it is 

concerning that in a number of cases there could be confusion of some sort as to what 

disease patients have. In these seven cases, the Hopkins pipeline did not report any variant 

for four cases, reported only one variant in a recessive gene for two cases and reported a 

homozygous frameshift mutation in the remaining case. The pipeline was prevented from 

discovering the possible alternatives by the current guidelines, which require that only 

requested genes for a specific disease test be examined. On the basis of these limited data, it 

is not clear whether on balance this practice is in the patients’ best interest.

VarP performance improves when the patients’ clinical indications are known

Clinical laboratories typically have information on each patient’s disease phenotype, and 

variants are evaluated with that knowledge. In that aspect, the CAGI Hopkins challenge 

creates an artificially harder problem, since disease class is not known to participants. If the 

disease classes were known, would VarP identify the variant(s) reported by Hopkins 

pipeline? We tested this scenario by searching for potentially causative variant(s) only in 
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genes associated with each patient’s diagnosed disease class, using the VarP pipeline. On 

this basis, VarP identifies potentially causative variants for 61 patients, 18 more cases than 

the Hopkins pipeline. However, there are still nine cases where Hopkins identified 

potentially causative variants and VarP does not. As discussed earlier, these patients each 

carry only one heterozygous variant in a recessive gene, which we considered insufficient 

evidence.

Better results would have been obtained not using HGMD

As noted earlier, 11 of the 25 incorrect disease class assignment cases with a probability of 

pathogenicity higher than 0.8 are a result of accepting HGMD annotations of pathogenicity. 

Such a high error rate from a single cause suggests that it might be better to ignore HGMD 

altogether and just use ClinVar for pathogenicity information. We tested this by running the 

VarP pipeline again, omitting HGMD. The success rate (correct match to disease class) 

increases from 36 to 40 (Supp. Table S4).

Lessons learned

Going forward, how would we now improve performance of the VarP analysis pipeline? As 

noted earlier, a suboptimal feature of the procedure was terminating the variant search once 

a suitable candidate had been found, rather than finding all possible causative variants and 

assigning each a probability. As also noted earlier, over-reliance on HGMD was a cause of 

errors and this can be corrected by considering ClinVar and HGMD annotations together, 

and, where appropriate, include missense impact analysis in assigning a probability to these 

Category 1 variants. Structure also has the potential for contributing to the discovery of 

causative variants and providing mechanistic insight. However, full automation of that 

analysis will require the development of new methods. In general, much more work must be 

done to provide a reliable probability of pathogenicity, not only for missense but for all types 

of variants.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The Variant Prioritization (VarP) Method. Circles represent the four modules. Modules are 

executed sequentially starting from Variant Annotation and ending with Probability Scoring. 

The ‘Varant’ tool in step 1 annotates variants with genomic region of occurrence, mutation 

type, minor allele frequency and prediction of pathogenicity for variants. Ts/Tv=Transition/

Transversion, Het/Hom=Heterozygous/Homozygous AD=Autosomal Dominant, 

AR=Autosomal Recessive, CH=Compound Heterozygous, XD=X-linked dominant, XR=X-

linked recessive, PAD=Pseudo Autosomal Dominant, and PAR=Pseudo Autosomal 

Recessive.
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Figure 2. 
Distribution of variant types for the gene panel sequencing data for 83 genes from 106 

patients. Figure 2A: Distribution of variant types. The outer circle shows the distribution for 

all variants present in the VCF files provided as part of the challenge. The middle circle 

shows the distribution of high-quality rare variants after applying PASS, GQ and frequency 

filters using data in the VCF file. The inner circle shows the distribution of potentially 

causative high quality rare and novel variants in 104 patients after applying the variant 

selection algorithm. Missense and loss of function variants are substantially enhanced in the 

latter set. Figure 2B: Changes in the variant type distribution during the filtering process, 

from total VCF variants, to those annotated as PASS, to those with low frequency, and 

finally those selected as potentially causative. The heat map indicates the percent decrease in 

variants on applying each filter (in the direction indicated by the arrows): the larger the 

decrease, the more orange; the smaller the decrease, the more green. The frameshift and 

non-frameshift Indel count decreased the most (by 40% and 27%) on applying the PASS 

filter and NonSyn, Syn, UTR, CodingIntronic, Close to splice site variants decreased the 

most (by 37 to 42%) on applying the frequency filter.
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Figure 3. 
Disease assignment statistics for the 36 patients with correctly identified disease class. 

Figure 3A: Distribution of the number of patients across prediction performance. The 

highlighted numbers represent the patients with correct disease class assignment. The 

reasons for incorrect disease assignment are described in the text. Figure 3B: Distribution of 

Positive cases (orange) are those found by Hopkins to be carrying pathogenic or likely 

pathogenic variants, the VUS cases based on ACMG guidelines (yellow) are those carrying 

variants of uncertain significance and Negative cases (grey) are those in which no causative 

variant was found by Hopkins. * indicates the number of cases with correct disease class 

assignment. The VarP pipeline assigned the correct disease class for 26 of the Positive and 

VUS cases and also correctly assigned disease class (with potentially causative variants) in 

10 of the Hopkins Negative cases.
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Figure 4. 
Distribution of patients with incorrectly assigned disease class versus estimated probability 

of pathogenicity. The dotted line shows the expected value in each bin (e.g. in the 0.8 to 1.0 

bin, 10% of disease assignments are expected to be incorrect). Bars show the % of patients 

in each bin that actually have incorrect assignments. Bar colors show the number of patients 

with assignments made in each category (Category 1, most confidence). The error bar for 

each bin is the standard deviation of the number of patients in that bin. As should be the case 

for a good probability algorithm, patients with a high probability of a correct disease 

assignment do have a lower rate of incorrect disease classes. However, the plot also shows 

that there are 25 patients with high probability scores (> 0.8) but incorrect disease class. 15 

of these patients carry variant(s) reported as pathogenic (tagged as DM) in the HGMD 

database. Reasons for this are discussed in the text.
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Figure 5. 
Structural coverage of prioritized missense mutations. Figure 5A: Missense variant 

distribution: 1) Known (variant reported in HGMD or ClinVar) versus VUS variants, 2) 

Structural coverage for VUS variants, 3) Number of mutations in different sequence identity 

ranges between the protein hosting the mutation and the closest available homologous 

protein in the PDB. Figure 5B and 5C show two examples of structure assisting mutation 

interpretation. Figure 5B: Part of a zinc finger domain of the Mineralocorticoid receptor 

protein (PDB: 4TNT) including the mutation C603S found in a Hopkins patient, showing 

that C603 is one of the Zn ligands. Analogy to other zinc coordinating mutations in zinc 

fingers provides strong evidence structure and hence function will be disrupted. Figure 5C: 

Mutation R1283S, found in one of the Hopkins patients, is predicted deleterious by the three 

out of four computational methods. Inspection of the structure shows disruption of two 

charge-dipole interactions forming a helix cap, expected to significantly destabilize the 

structure.
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Table 1

The 14 disease classes and genes identified as relevant to each class. Genes associated with more than one 

disease class are indicated by an asterisk.

Disease Class Gene List

Cystic Fibrosis and CF-related disorders CA12, CFTR, *SCNN1A, *SCNN1B, *SCNN1G

Diffuse Lung Disease ABCA3, AP3B1, CSF2RA, CSF2RB, *DKC1, FOXF1, HPS1, HPS4, NKX2-1, 
SFTPA2, SFTPB, SFTPC, SLC7A7, *TERC, *TERT, *TINF2

Primary Ciliary Dyskinesia CCDC103, CCDC39, CCDC40, DNAAF1, DNAAF2, DNAAF3, HEATR2, DNAH11, 
DNAH5, DNAI1, DNAI2, DNAL1, HYDIN, LRRC6, NME8, RSPH4A, RSPH9

Peroxisomal Beta-Oxidation Defects ACOX1, HSD17B4, SCP2

Rhizomelic Chondrodysplasia Punctata AGPS, GNPAT, PEX7, PHYH

Zellweger Spectrum Disorders DNM1L, PEX1, PEX2, PEX3, PEX5, PEX6, PEX10, PEX12, PEX13, PEX14, PEX16, 
PEX19, PEX26

Loeys-Dietz Syndrome *TGFBR1, *TGFBR2, TGFB2

Marfan Syndrome *FBN1, *TGFBR2

Thoracic Aortic Aneurysm and Dissection (TAAD) *FBN1, ACTA2, MYH11, MYLK, SMAD3, *TGFBR1, *TGFBR2, COL3A1

Ataxia Telangiectasia ATM

Liddle Syndrome *SCNN1B, *SCNN1G

Pseudohypoaldosteronium Type 1 NR3C2, *SCNN1A, *SCNN1B, *SCNN1G

Telomere Shortening Disorders CTC1, NHP2, NOP10, *TERC, *TERT, *TINF2, WRAP53, *DKC1

Treacher Collins and Related Syndrome POLR1D, TCOF1, POLR1C, SF3B4
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Table 2

Pathogenicity probability estimates for each variant type.

Variant Type Probability Score

Reported in HGMD or ClinVar as pathogenic 1

Missense – Reported in HGMD or ClinVar as pathogenic and predicted damaging by only 2, 1 or 0 out of 4 methods 0.9

Missense – Predicted damaging by 4/4 methods 1

Missense – Predicted damaging by 3/4 methods 0.8

Missense – Predicted damaging by 2/4 methods 0.5

Missense – Predicted damaging by 1/4 methods 0.25

Missense – Not predicted damaging by any methods 0.15

Nonsense 1

Frameshift/Non-Frameshift Indel 1

Variant predicted to affect splicing 0.8

Variant close to Splice Donor site 0.2

Variant close to Splice Acceptor site 0.2

UTR Variant 0.05

Intronic Variant 0.05

All other variants 0
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