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Abstract

With the rapid expansion of internet, the complex networks has become high-dimensional,

sparse and redundant. Besides, the problem of link prediction in such networks has also

obatined increasingly attention from different types of domains like information science,

anthropology, sociology and computer sciences. It makes requirements for effective link

prediction techniques to extract the most essential and relevant information for online users

in internet. Therefore, this paper attempts to put forward a link prediction algorithm based on

non-negative matrix factorization. In the algorithm, we reconstruct the correlation between

different types of matrix through the projection of high-dimensional vector space to a low-

dimensional one, and then use the similarity between the column vectors of the weight

matrix as the scoring matrix. The experiment results demonstrate that the algorithm not only

reduces data storage space but also effectively makes the improvements of the prediction

performance during the process of sustaining a low time complexity.

Introduction

With the unprecedentedly rapid development of technology, the world has become increas-

ingly complicated with frequent networking. In the real world, a number of information, bio-

logical, and social systems, ranging from interpersonal relationships to the colony structure,

from transportation to the online world, from the ecosystem to the nervous system, can be

considered as a network, in which vertices stand for the interactions between vertices or links

and entities denote relations. Undoubtedly, there will be some potential links which are unde-

tected and meanwhile there will be redundant links or some errors during the process of com-

plicated network due to the limitations of space or time as well as the experimental conditions.

Besides, based on the known network information, we are required to forecast the potential

and missing links. This is the objectivity of the forecast challenge linked with the network, due

to the dynamic development of the links of complicated network [1, 2].

In fact, the link prediction method can be utilized as an auxiliary means to investigate the

structure of social network. Actually, it is essential to forecast the potential link of people or

the future. There is an extensive scope of practical application values in varieties of areas in the
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link prediction problem. For example, users’ potential friends can be shown by the prediction

of link, and even introduced to others in networks online [3]. Besides, the potential links

between people can be found based on the analysis on the social relations [4–6]. Furthermore,

the prediction of link could be utilized in the academic network to forecast the cooperators as

well as the kind of an article [7]. The link between the nodes shows an interactive relation in

the biological networks, such as disease-gene and metabolic networks as well as protein-

protein interaction networks [8]. In addition, the research on link prediction has significant

theoretical importance and an extensive scope of practical value [9–12]. For instance, it can

offer a unified and convenient platform which can compare the mechanisms of network devel-

opment more fairly and help comprehend the mechanism of the development of complicated

networking theoretically, in order to develop the theoretical study on the model of complicated

network evolution.

In recent decades, one of the link prediction problems of increasing interest revolves

around the expansion of network size, the scoring matrix sparsely and the noise of the data.

Due to high-dimensionality of user-rating matrix, the time and space complexity of personal-

ized link prediction are increasing, which will cause a great impact on the performance of the

prediction system. To deal with this problem, numerous new methods have been reported to

improve the efficiency of link prediction. For example, Liu and Lv [13]used the local random

walk instead of the global random walk to solve the link prediction problem, which can achieve

good result. In [14], G.Rossetti et al defined the concept the multidimensional link prediction

problem and proposed the several predictors based on node correlation. H. H. Song et al. [15]

considered that the new edges would be linked in the near future and proposed the incremen-

tal update algorithm to deal with the large-scale networks.

In addition, with the consideration of the importance of network organization principle,

Pan [16] proposed a predefined structural Hamiltonian algorithm which can be used to calcu-

late the probability of non-observed links. Liu et al [17] proposed a local naive Bayes model

based on the fact that various neighbors might have various functions, thus resulting in various

outcomes. Hu [18] put forward a new model that examines the performances of the algorithms

of state-of-the-art recommendation in the constantly developing network. Besides, it was also

found that with the passage of time, the accuracy of recommendation gradually reduces if the

online network evolution completely depends on the recommendation. In order to optimize

the weights applied in a linear combination of node similarity indices and sixteen neighbor-

hood, a method is provided by Bliss to predict the links in the future with the application of

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [19]. Barzel B [20] used global

silencing of indirect correlations to make the prediction of missing links. A global algorithm of

optimization is presented by Zhu which can infer the potential space effectively. Two alterna-

tive algorithms of optimization with incremental and local updates are also put forward to

make the model scale to the bigger network without compromising the accuracy of forecast

[2]. A nonparametric method has been proposed to link prediction in large-scale dynamic net-

works by Sarkar [21]. They considered that the characteristics of pairs of nodes based on graph

and those of the local neighborhoods are utilized through using the model to forecast whether

the nodes can be linked at every step of time. Richard [22] proposed a vector autoregressive

(VAR) model based on the node degree to enhance the forecast accuracy. Zhang et al [23]pro-

posed a link prediction algorithm based on an integrated diffusion on user-item-tag tripartite

graphs and found that the usage of tag information can significantly improve novelty of link

prediction. Recently, some swarm intelligence methods are also involved in link prediction.

For example, Sherkat [24] proposed a new unsupervised structural ant colony approach algo-

rithm which has the best outcome in some networks. Despite that those methods are designed
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especially for the large scale networks, the accuracy of the results cannot be guaranteed due to

the limit of computation time [25].

Nowadays, matrix decomposition technology has been widely applied, because it is rela-

tively simple and able to obtain high prediction accuracy [26]. There are numerous well-

known matrix decomposition methods, such as: singular value decomposition (SVD) [27],

principal component analysis (PCA) [28, 29], independent component analysis (ICA) [30–32].

In SVD, it requires complementing scoring matrix in order to solve the sparsity of the net-

work, but the operation would seriously increase the data storage space, therefore and it is not

practical in the link prediction systems. Furthermore, due to the high time complexity of SVD,

it is not applicable for large-scale network. With the aim to improve the performance of the

SVD based method, SimonFunk [33] proposed LFM models. However, in the actual scoring

system, the user ratings for goods do not have a uniform standard, which are of large arbitrari-

ness due to the personalized habits on selecting goods. LFM model does not take the impact of

the users’ history buying into consideration. To overcome such shortcomings of LFM model,

Koren [34] proposed a SVD++ model based on the LFM joined with the user’s history scoring.

However, the existing matrix factorization models do not consider the situation that nega-

tive elements exist in the matrix. In real world applications, the a negative score by a user for

an object does not necessarily mean that this object will never be selected by the user As time

goes on, maybe this user will become interested in this object. Therefore, Lee and Seung [35,

36] proposed a method based on non-negative matrix factorization (NMF). It is a collection of

algorithms which depends on linear algebra and multivariate analysis where two matrices

without any negative elements consist in the original matrix. It is because of this non-negativ-

ity that makes it easier to analysis the final matrices. Therefore, NMF technology has been

widely used in data mining [37, 38], image analysis [39–41], medical imaging [42] and voice

processing [43], etc. However, in the link prediction, it has not attracted broad attentions. In

this paper, we will apply NMF technology in link prediction and propose the NMF-LP model.

Materials and methods

Problem formulation and evaluation methods

Using an undirected and simple network which has node attitudes G(U, V, E), in which E
means the series of links, U refers to the series of nodes, and V is the series of node attitudes

can represent a network. G does not allow various self-connections and links. LetM = |V| be

the amount of node attitudes and N = |U| be the amount of nodes in G.U is considered to rep-

resent the universal set which all the possible links of N(N − 1)/2 are consisted in. Link predic-

tion aims to identify the links which will occur in the future or the missing links in the series of

nonexistent links U − E.

Assigning S(x, y) as a score which stands for the similarities between the two nodes to every

pair of the nodes (x, y) 2 U is our method. In a pair of nodes, (x, y) in U\E, larger S(x, y) tends

to lead to higher possibility in a link between the nodes.

To test the accuracy of the results by our algorithm, the observed links in E are randomly

divided into two parts: the training set, ET, which is treated as known information, while the

probe set (i.e., validation subset), EP, which is used for testing and no information in this set is

used for prediction. ET [ EP = E and ET \ EP = ;. In principle, a link prediction algorithm

provides an ordered list of all non-observed links (i.e., U − ET) or equivalently gives each non-

observed link, say (x, y) 2 U − ET, a score Sxy to quantify its existence likelihood. To evaluate

the accuracy of prediction algorithms, there are two standard metrics: AUC and Precision.

(1) AUC
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The value of AUC is the area under the curve of ROC(receiver operating characteristic). we

randomly choose a missing link and nonexistent link. After doing n times’ independent evalu-

ations, there should have n00 times’ missing link which shows a similar score and a higher

score. Under this situation, the value of AUC is as below:

AUC ¼
n0 þ 0:5n@

n
ð1Þ

Generally, a bigger value of AUC shows better performance; thus, the AUC result through a

randomly selected predictor is 0.5 while the AUC value of the perfect result is 1.0.

(2) Precision
Given the ranking of the non-observed links, the Precision is defined as the ratio of relevant

objects selected to the total number of objects selected. That is to say, if we take the Top-L
links as the predicted ones, among whichm links are right, then the Precision can be expressed

as:

Precision ¼
m
L

ð2Þ

Clearly, higher precision means higher prediction accuracy.

Non-negative matrix factorization and link prediction

For the reader’s reference, Table 1 summarizes frequently used notations.

Here A 2 Rn�n
þ

and B 2 Rn�m
þ

, wherem is the number of attributes. The values of B can be

defined within the range [0,1] by normalizing its row vectors. We assume the adjacency matrix

A as a non-negative characteristic matrix where each column represents the characteristic

vector of a vertex and the goal of NMF is to obtain two non-negative matrices U 2 Pn�k and

V 2 Pk�n so that their product is very close to matrix A:

A ¼ UV ð3Þ

Here, k is the dimension of the latent space (k< n). U consists of the bases of the latent space,

and is called the base matrix. V represents the combination coefficients of the bases for recon-

structing the matrix A, and is called the coefficient matrix. Generally, this decomposition

Table 1. Notations and their meanings.

Notation Meaning

A adjacent matrix of the network

B attribute similarity matrix of the network

U U consists of the bases of the latent space, and is called the base matrix of A

V V represents the combination coefficients of the bases for reconstructing the matrix A, and is

called the coefficient matrix.

U(B) U(B) consists of the bases of the latent space, and is called the base matrix of B

V(B) V(B) represents the combination coefficients of the bases for reconstructing the matrix B, and is

called the coefficient matrix.

Q, Q(B) Q, Q(B) are auxiliary diagonal matrixes

F, G Q, F 2 Rn�m
þ

and G 2 Rk�k
þ

are auxiliary diagonal matrixes

ε error between the original matrix and the product of the base matrix and weight matrix

https://doi.org/10.1371/journal.pone.0182968.t001
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problem can be modeled as the following Frobenius norm optimization problem:

min
u;v
k A � UV k2

F s:t:U � 0;V � 0 ð4Þ

Here, k�kF is the Frobenius norm, constrain U� 0 and V� 0 requires that all the elements

in matrixes U and V are nonnegative. The similarity between nodes i and j in the latent space

can be represented by the similarity between the ith and jth row vectors in matrix V. Similarly,

NMF form of the attribute matrix B is as follows:

B ¼ U ðBÞV ðBÞ ð5Þ

Therefore, we need to solve the optimization problem as follows:

min
uðBÞ ;vðBÞ

k B � U ðBÞV ðBÞ k2

F s:t:U ðBÞ � 0;V ðBÞ � 0 ð6Þ

Here, U(B)� 0 and V(B)� 0 are respectively n � k and k � m non-negative matrixes.

In order to integrate the topology matrix A and the attribute matrix B, we map them into a

latent space by a same projection. Such mapping can be implemented by non-negative matrix

factorizings on A and B. However, when we factorize A and B at the same time, we cannot

ensure that the projection matrixes V and V(B) are identical. Therefore, we use matrix V� to

make V and V(B) has the minimal distance between V and V(B), namely, we need to minimize

the formula as follows:

l k V � V� k2
F þm k V ðBÞ � V� k2

F s:t:U ðBÞ � 0;VB � 0: ð7Þ

Therefore, our goal is to solve the following the optimization problem:

min
u;uðBÞ;v;vðBÞ

k A � UV k2

F þ k B � U
ðBÞV ðBÞ k2

F þl k V � V� k2

F þm k V ðBÞ � V� k2

F

s:t:k U k1 ¼ 1; k UB k1 ¼ 1;U � 0;V � 0;U ðBÞ � 0;V ðBÞ � 0:

ð8Þ

In order to remove the constrains kUk1 = 1 and kU(B)k1 = 1 in Eq (8), we define auxiliary

diagonal matrixes Q and Q(B) as follows:

Q ¼ diagðSiui1;Siui2; . . . ;SiuikÞ ð9Þ

QðBÞ ¼ diagðSiu
ðBÞ
i1 ;Siu

ðBÞ
i2 ; . . . ;Siu

ðBÞ
ik Þ ð10Þ

The matrixes U and U(B) can be normalized into UQ−1 and U ðBÞQðBÞ� 1

. Since UV = (UQ−1)

(QV) and U ðBÞV ðBÞ ¼ ðU ðBÞQðBÞ� 1

ÞðQðBÞV ðBÞÞ, the matrixes V and V(B) can be normalized into

VQ and V(B)Q(B) respectively. Therefore the optimal problem (8) is equivalent to the one as fol-

lows:

min
u;uB ;v;vB

Jðu; uðBÞ; v; vðBÞ; v�Þ s:t:U � 0;V � 0;UB � 0;VB � 0: ð11Þ

Here,

Jðu; uðBÞ; v; vðBÞ; v�Þ ¼k A � UV k2
F þ k B � U

ðBÞV ðBÞ k2
F

þl k QV � V� k2
F þm k QðBÞV ðBÞ � V� k2

F

Therefore, our goal is to find the optimal resolution of the formula (11).
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Iterative update rule of non-negative matrix

To solve the optimization problem in Eq (11), we present an iterative method. Since U, V,U(B),

V(B) and V� are variables in Eq (11), we fix four of the variables at each time in the iteration,

and obtain the best value the fifth variable to minimize the objective function J. After setting

proper initial values for matrices U, V,U(B), V(B) and V�, each iteration consists of five steps: a.

Fix the matrices V,U(B), V(B) and V�, update U to minimize J; b. Fix the matrices U,U(B), V(B)

and V�, update V to minimize J; c. Fix the matrices U, V, V(B) and V�, update U(B) to minimize

J; d. Fix the matrices U, V,U(B) and V�, update V(B) to minimize J; e. Fix the matrices U, V,U(B)

and V(B), update V� to minimize J.
The updating steps above are repeated until convergence.

Updating U. Fixing the matrices V,U(B), V(B) and V�, minimizing J by updating U is

equivalent to minimize the objective function:

FðUÞ ¼k A � UV k2
F þl k QV � V� k2

F ð12Þ

Derivation 1 To optimize the objective function (12), the following updating rule can be

used:

Ulm ¼ Ulm

P

j
AijVmj þ l

P

j
V�mjVmj

l
P

j
V2
mj

P

h
Vhm þ

P

j
Vmj
P

k
UlkVkj

ð13Þ

Proof:

According to the definition of Frobenius norm definition, we can get:

FðUÞ ¼
X

i

X

j

Aij �
X

k

UikVkj
2 þ l

X

i

X

j

X

k

QikVkj � V
�

ij
2

¼
X

i

X

j

½A2

ij � 2A2

ij

X

k

UikVkj þ ð
X

k

UikVkjÞ
2
�

þl
X

i

X

j

½ð
X

k

QikVkjÞ
2
� 2V�ij

X

k

QikVkj þ ðV
�

ijÞ
2
�

We take the derivative of F(U) on Ulm:

@FðUÞ
@Ulm

¼ � 2
X
ðAijVmjÞ þ 2

X
jVmj

X

k

UlkVkj þ 2l
X

jV2

mj

X

h

Uhm � 2l
X

j

V�mjVmj

By Karush-Kuhn-Tucker (KKT) condition we know that
@FðUÞ
@Ulm
¼ 0, and can get:

� 2
X

j

ðAijVmjÞ þ 2
X

j

Vmj
X

k

UlkVkj þ 2l
X

j

V2

mj

X

h

Uhm � 2l
X

j

V�mjVmj ¼ 0

Namely:

X

j

ðAijVmjÞ þ l
X

j

V�mjVmj ¼
X

j

Vmj
X

k

UlkVkj þ l
X

j

V2

mj

X

h

Uhm

So, the update rule of U is as follows:

Ulm ¼ Ulm

P

j
AijVmj þ l

P

j
V�mjVmj

l
P

j
V2
mj

P

h
Vhm þ

P

j
Vmj
P

k
UlkVkj
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Updating U(B). Derivation 2 we construct the function as follows:

FðU ðBÞÞ ¼k A � U ðBÞV ðBÞ k2
F þm k QV ðBÞ � V� k2

F ð14Þ

the update rules for F(U(B)) can be written as:

U ðBÞlm ¼ U
ðBÞ
lm

P

j
BijV

ðBÞ
mj þ m

P

j
V�mjV

ðBÞ
mj

m
P

j
ðV ðBÞmj Þ

2P

h
U ðBÞhm þ

P

j
U ðBÞmj

P

k
UlkVkj

ð15Þ

Derivation 2 can be proved in a similar way as Derivation 1.

Updating V. Derivation 3 we construct the function as follows:

GðVÞ ¼k A � UV k2
F þl k V � V� k2

F ð16Þ

the update rules for G(V) can be written as:

Vlm ¼ Vlm

P

i
AimUil þ l

P

j
V�lm

l
P

i
Uil
P

k
UikVkm þ lVlm

ð17Þ

Proof:

According to the definition of Frobenius norm definition, we can get:

GðVÞ ¼
X

i

X

j

Aij �
X

k

UikVkj
2 þ l

X

i

X

j

Vij � V
�

ij
2

¼
X

i

X

j

½A2

ij � 2A2

ij

X

k

UikVkj þ ð
X

k

UikVkjÞ
2
�

þl
X

i

X

j

Vij � V
�

ijÞ
2

We take the derivative of G(V) on Vlm:

@GðVÞ
@Vlm

¼ � 2
X

i

ðAimVilÞ þ 2
X

iUil
X

k

UikVkm þ 2lðVlm � V
�

lmÞ

By Karush-Kuhn-Tucker (KKT) condition we know that
@GðVÞ
@Vlm
¼ 0, and can get:

� 2
X

i

ðAimVilÞ þ 2
X

iUil
X

k

UikVkm þ 2lðVlm � V
�

lmÞ ¼ 0 ð18Þ

Namely:

X

i

ðAimUilÞ þ lV�lm ¼
X

i

Uil
X

k

UikVkm þ lVlm

So, the update rule of Vlm is as follows:

Vlm ¼ Vlm

P

i
AimUil þ lV�lm

P

i
Uil
P

k
UikVkm þ lVlm

Updating V(B). Derivation 4 we construct the function as follows:

GðVðBÞÞ ¼k A � U ðBÞV ðBÞ k2
F þm k V ðBÞ � V� k2

F ð19Þ
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the update rules for G(V(B)) can be written as:

V ðBÞlm ¼ V
ðBÞ
lm

P

i
BimU

ðBÞ
il þ mV�lm

P

i
U ðBÞil

P

k
U ðBÞik V

ðBÞ
km þ mV ðBÞlm

ð20Þ

Derivation 4 can be proved in a similar way as Derivation 3.

Updating V�. Derivation 5 we construct the function as follows:

HðV�Þ ¼k QV � V� k2
F þ k Q

ðBÞV ðBÞ � V� k2
F ð21Þ

the update rules forH(V�) can be written as:

V�lm ¼
1

2
ðQllVlm þ Q

ðBÞ
ll V

ðBÞ
lm Þ ð22Þ

Proof:

According to the definition of Frobenius norm definition, we can get:

HðV�Þ ¼
X

i

X

j

ð
X

k

VikQkj � V
�

lmÞ
2
�
X

i

X

j

ð
X

k

V ðBÞik Q
ðBÞ
kj � V

�

ij Þ
2

We take the derivative ofH(V�) on V�lm:

@V�

@V�lm
¼ � 2ðQllVlm � V

�

lmÞ � 2ðQðBÞll V
ðBÞ
lm � V

�

lmÞ

By Karush-Kuhn-Tucker (KKT) condition we know that
@HðV�Þ
@V�lm
¼ 0, and can get:

QllVlm þ Q
ðBÞ
ll V

ðBÞ
lm ¼ 2V�lm

So, we can get the update rule of V�lm as follows:

V�lm ¼
1

2
ðQllVlm þ Q

ðBÞ
ll V

ðBÞ
lm Þ

Framework of the NMF-LP algorithm for link prediction

Based on the iterative method for NMF computing, we present an algorithm named NMF-LP

for link prediction based on non-negative matrix factorization. The framework of our algo-

rithm NMF-LP is as follows.

Algorithm: NMF-LP (Non-negative Matrix Factorization based Link Prediction)
Input:A: Adjacencymatrixof network;
B: Attitudematrixof network;
Output:S: Scoringmatrixbetweenthe nodes;
Begin:
1. MatrixA, B regularization
2. Parameterinitialization:
3. Set the initialvaluesof U, U(B), V, V(B), V�;
4. Repeat
5. UpdateU accordingto formula(13);
6. Calculatethe the main diagonalelementsof Q accordingto U;
7. UpdateU(B) accordingto formula(15);
8. UpdateV accordingto formula(17);
9. UpdateV(B) accordingto formula(20);
10. UpdateV� accordingto formula(22);
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11. Until k A � UV k2
F � ε

12. Calculatethe similaritybetweenthe columnvectorsof V�;
13. Outputthe ScoringmatrixS betweenthe nodes;
End

Line 12 of the algorithm calculates the similarity between the column vectors of weight

matrix V�, and store the similarities in the the scoring matrix S, which is output on line 13 as

the final result of link prediction.

Time complexity analysis

In each iteration, steps 5 to 10 require O(n2k) time. Since each row in matrix V� is a k-dimen-

sional vector, which takes O(k) time to compute the similarity between such vectors. There-

fore, step 12 requires O(n2k) time for compute the similarities for all pairs of the row vectors in

V�. Since k and t can be treated as constants, complexity of the algorithm is O(n2). In the simi-

larity based link prediction methods, n2 similarity scores between the node pairs must be com-

puted. Therefore, O(n2) is the lower bound the time complexity of the similarity based link

prediction methods.

Convergence analysis of the algorithm NMF-LP

In this section, we will prove the convergence and correctness of U, V,U(B), V(B) and V� in

their iterative process. In order to prove convergence of the algorithm, we will make use of an

auxiliary function based on the following lemma:

Lemma 1 Let F 2 Rn�n
þ

, G 2 Rk�k
þ

be two symmetric matrixes, S 2 Rn�k
þ

and S0 2 Rn�k
þ

be two

n × kmatrixes. Then we can get:

Xn

i¼1

Xk

j¼1

ðFS0GÞijS
2
ij

S0ij
� Tr ½SFTSG� ð23Þ

Proof:

We set Sij ¼ S
0

ijpij, then the difference value between the two sides of the formula (22) is:

D ¼
Xn

i;x¼1

Xk

j;y¼1

FixS
0

xyGyjS
0

ijðp
2

ij � pijpxyÞ

Noticing that F, G are symmetric matrixes, we get:

D ¼
Xn

i;x¼1

Xk

j;y¼1

FixS
0

xyGyjS
0

ijð
p2
ij þ p

2
xy

2
� pijpxyÞ

¼
1

2

Xn

i;x¼1

Xk

j;y¼1

FixS
0

xyGyjS
0

ijðpij þ pxyÞ
2

� 0

Namely:

Xn

i¼1

Xk

j¼1

ðFS0GÞijS
2
ij

s0ij
� Tr ½SFTSG�

Theorem 1 is an auxiliary function for L(H) if the conditions

ZðH; ~HÞ � LðHÞ;ZðH;HÞ ¼ LðHÞ ð24Þ

are satisfied.
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Lemma 2 If Z is an auxiliary function, then L is nonincreasing under the update rule:

Hðtþ 1Þ ¼ argmin
H
ZðH;HðtÞÞ ð25Þ

Based on the above thoughts of constructing auxiliary functions, we give the following lemma

to prove the convergence of the algorithm NMF-LP.

Lemma 3 Fixing any four matrices in U, V,U(B), V(B) and V�, and using the updating rules

(13), (15), (17), (20) and (22) in each iteration of algorithm NMF-LP the value of objective

function J is non-increasing.

Proof:

Firstly, we fix the value of U,U(B), V(B) and V� to update V, we can translate formula (12)

into the following optimization problem:

JðVÞ ¼k A � UV k2
F þl k V � V� k2

F ð26Þ

We can get the following equation according to the definition of Frobenius norm:

JðVÞ ¼ trð� 2AUV þ VTUTUVÞ þ trðlVVT � 2lV�VÞ

¼ trðVTUTUV þ lVVTÞ � trð2AUV þ 2lV�VÞ
ð27Þ

We construct the following function:

FðV 0 ;VÞ ¼
X

jk

ðUTUV þ lVÞjkðV
0

jkÞ
2

Vjk
�
X

jk

2ðAU þ lV�ÞjkVjk 1þ log
V 0jk
Vjk

 !

ð28Þ

Then we prove F(V0, V) is an auxiliary function of J(V). First, when V0 = V, it is obvious F

(V, V) = J(V). If V0 6¼ V, and 9
V
0

ik
Vik
> 0, we get:

X

jk

ðUTUV þ lVÞjkðV
0

jkÞ
2

Vjk
> trðVTUTUV þ lVVTÞ

because of
V
0

ik
Vik
� 1þ log V

0

ik
Vik

� �

, 8
V
0

ik
Vik
> 0, we know:

X

jk

2ðAU þ lV�ÞjkVjk 1þ log
V 0jk
Vjk

 !

< trð2AUVT þ 2lV�VÞ

Therefore, we get the following inequality:

FðV 0 ;VÞ � JðV 0 Þ

Therefore F(V0, V) is an auxiliary function of J(V0).
Based on the definition of auxiliary function and Lemma 2, we know that if we find the V0

value to reach the local minimum of auxiliary function F(V0, V|t|), then the value of J(V) is

non-increasing over t. Therefore, we find the V0 value to minimize F(V0, V|t|) through fixing

V|t|.

In order to obtain the minimum value of function F(V0, V|t|), according to KKT conditions,

we can obatin:

@FðV 0 ;VÞ
@V 0jk

¼

(
2ðUTUV þ lVÞjkV

0

jk

Vjk
� 2ðAU þ lV�jkÞ

Vjk
V 0jk

)

¼ 0 ð29Þ
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So, we can get the update following formula:

V 0jk ¼ Vjk
ðAU Þjk þ lV�jk
ðUTUVÞjk þ lVjk

ð30Þ

Therefore, J(V|t|) is non increasing according to update rule (17) and we can get the update

formula about Vjk by replacing V 0jk and Vjk by Vtþ1
jk and V ðtÞjk , respectability. Therefore, using

Eq (17) at each iteration of algorithm NMF-LP, the value of objective function J is non-

increasing.

In a similar way, we can prove that using the rules (13), (15) and (20) at each iteration of

algorithm NMF-LP, for updating U,U(B), V(B) and V�, respectively, the value of objective func-

tion J is also non-increasing.

Although it is not guaranteed that the process in Algorithm NMF-LP will converge to a

global minimum, the end condition of iterations k A � UV k2
F � ε can ensure that the result

matrixes UV is an acceptable factorization of A and will meet our requirements in solving the

problem of link prediction.

Based on Eq (25), we know that the value of V by Eq (30) is also non-increasing. Since

V> 0, it converges. The correctness of the converged solution is assured by the fact that at

convergence, from Eq (30), the solution will satisfy

� 2
X

i

ðAimVilÞ þ 2
X

iUil
X

k

UikVkm þ 2lðVlm � V
�

lmÞ ¼ 0

It is the same as the fixed point condition of Eq (18). In a similar way, the convergence and

correctness of formula for updating U,U(B), V(B) and V� can be proved.

Results

Test on networks without node attributes

In this section, we testified the reliability of our algorithm NMF-LP on six benchmark data sets

which served networks without node attributes: US airport network(USAir), US political blogs

(PB) network, coauthor-ships network between scientists(NS), protein-protein interaction

network (PPI), electrical resource grid of the western US(Grid) and Internet(INT). For each

non-connected network, we figured out the largest connected component. Table1 listed the

topological characteristics of these largest ones from these applied networks, where N,M
respectively mean the amount of nodes and links. NUMC indicates the number of the compo-

nents connected within network as well as the size of the largest component. For instance,

1222/2 can be explained as: for this network, there are 2 connected components, while the larg-

est consists of 1222 nodes. In this table, e represents the network’s performance, C and r are

clustering and assortative coefficients. K represents the degree of average of network.

To estimate the reliability of outputs, a 10-fold cross-validation, which was randomly pro-

duced, was applied. For this applied cross-validation, the original nodes were randomly

divided into 10 subsets. Among these 10, one subset served as the criterion data for testifying

the reliability of our algorithm, while the other 9 subsets served as data for training. The pro-

cess of cross-validation was then repeated for 10 times. The average of the 10 outcomes

obtained from the folds can be taken as a single estimation.

In the first step of the non-negative matrix factorization, we need to set the column number

of base matrix. We assume that the original adjacency matrix of N rowsM columns, and then

the column number (λ) of base vectors are required to satisfy: (N +M)λ< NM. SinceM = N in

the network without node attitudes, we can get λ< N/2. In our experiments, we set λ = N/2i,
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where i = [1, 2, . . ., 6]. In the six data sets tested, the changes of the AUC scores with different

i values of NMF-LP algorithm are shown in Fig 1.

From Fig 1, it can be seen that the AUC of NMF-LP algorithm shows a decrease trend when

the i value increases. However it always keeps a high value in six data sets, indicating that

NMF-LP algorithm not only can obtain a relatively higher AUC value on real networks than

other algorithms, but also reduce data storage space.

And we also made comparison between the results produced by NMF-LP and the results of

other algorithms such as CN, Jaccard, Sorensen, PA, Salton, HDI, LHN_I and HPI, the crite-

rion applied was AUC score. Table 2 listed the averaged AUC scores of these tests via NMF-LP

and other algorithms. In this table, ‘bold-face’ was applied to mark the highest AUC score for

each data set through the 9 algorithms.

As can be seen from Table 3, for the 9 algorithms applied in this study, NMF-LP gained the

highest AUC scores of most of these data sets. Even according to the data set INT, which was

considered as the most difficult one, NMF-LP also performed very well, and the score gained

was the highest: 0.961. This helped prove the high reliability of the algorithm NMF-LP.

Fig 1. The AUC scores of NMF-LP algorithm with different values of i.

https://doi.org/10.1371/journal.pone.0182968.g001

Table 2. The topological features of the giant components of the six networks tested.

Networks N M NUMc e C r K

USAir 332 2126 332/1 0.440 0.749 -0.228 12.807

PB 1224 19090 1222/2 0.397 0.361 -0.079 31.193

NS 1461 2742 379/268 0.016 0.878 0.462 3.754

PPI 2617 11855 2375/92 0.180 0.387 0.454 9.060

Grid 4941 6594 4941/1 0.056 0.107 0.004 2.669

INT 5022 6258 5022/1 0.167 0.033 -0.138 2.492

https://doi.org/10.1371/journal.pone.0182968.t002
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Test on networks with node attributes

We also testified the reliability of our algorithm NMF-LP on networks with node attributes.

We tested 8 sets of data, which can serve as networks. And all of these networks were selected

from the website: Digital Bibliography Library Project (DBLP, http://www.informatik.uni-

trier.de/ley/db/), a library website for computer science created by University Trier, Germany.

It was built in 1980s, and had provided over 2.3 million articles involving computer science.

Every significant journal of computer science can be tracked through this website. And also,

proceeding papers of important conferences were also recorded by this website. It incorpo-

rated lots of collections of publications for CS research. According to our experiment, six data-

sets were applied, they are: CS Conference (ACM), Complex, Intelligent and Software

Intensive Systems (CISIS), International World Wide Web Conferences(WWW), Interna-

tional Conference on Machine Learning (ICML), Applications of Natural Language to Data

Bases (NLDB), International Conference on Information and Communication Security

(ICICS). We chose some authors from each database. For example, in database ACM, the

authors we chose are the people who had been a membership of the ACM conference from

1986 to 1996. We also set a network for every database in which each node was a specific

author. And co-authorship between two authors were recorded by the link between the corre-

sponding nodes. And for each author, we could master his overall publications. Key words in

the paper titles could represent the attributes of the author. Because networks of some data-

bases were not connected, our tests were only conducted on the largest ones. Table 4 listed the

topological characteristics of these largest ones from these applied networks, where N,M
respectively mean the amount of nodes and links. NUMC indicates the number of the compo-

nents connected within network as well as the size of the largest component. And e represents

the network’s performance, C and r are clustering and assortative coefficients. K represents the

degree of average of network.

Table 3. Comparison of algorithms’ accuracy quantified by AUC.

USAir PB NS PPI Grid INT

CN 0.939 0.926 0.987 0.916 0.638 0.650

Salton 0.926 0.878 0.975 0.923 0.612 0.647

Jaccard 0.899 0.865 0.980 0.920 0.622 0.657

Sorensen 0.917 0.885 0.985 0.917 0.633 0.642

HPI 0.840 0.861 0.983 0.910 0.635 0.651

HDI 0.890 0.876 0.980 0.921 0.632 0.652

LHN_I 0.727 0.754 0.972 0.910 0.626 0.650

PA 0.896 0.908 0.671 0.854 0.577 0.959

NMF-LP 0.955 0.958 0.922 0.956 0.641 0.961

https://doi.org/10.1371/journal.pone.0182968.t003

Table 4. The topological features of the giant components of the eight networks tested.

Networks N M NUMc e C r K

ACM 1465 1960 3392/11 0.0014 0.3621 0.5570 3.3010

CISIS 2122 2385 4496/4 0.0078 0.7811 0.1491 7.7766

ICICS 888 1066 1944/3 0.0139 0.7484 0.2726 6.2973

ICML 2640 2213 4843/3 0.0719 0.6470 0.0132 7.2402

NLDB 847 1041 1863/6 0.0072 0.7130 0.2112 5.7190

WWW 5400 3421 1995/897 0.0182 0.7592 0.3724 7.8859

https://doi.org/10.1371/journal.pone.0182968.t004
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In the process of the non-negative matrix factorization, we set λ = (N +M)/2i+1,

i = [1, 2, . . ., 6], where N andM are the number of users and attributes. In the eight data sets

tested, the changes of the AUC scores with different i values of NMF-LP algorithm are shown

in Fig 2.

Simialr to the test reults on networks without node attitudes, Fig 2 shows that the AUC of

NMF-LP algorithm presents a decrease trend when the i value increases. But it always keeps a

high value as i increases in eight data sets. It also indicates that NMF-LP algorithm not only

can decompose the scale of the original matrix and reduce dimension of the matrix, but also

maintain a relatively higher AUC value with reducing the dimension of base vectors.

Apart from that, the AUC scores of the results have also been evaluated and compared by

NMF-LP and other algorithms such as Salton, Sorensen, HPI, HDI, LHN_I, PA and CN.

10-fold CV tests which use NMF-LP and other algorithms can test the average AUC value, as is

shown in Table 4. In the table, what is highlighted in bold-face is the highest AUC scores for

each data which is set by the 9 algorithms.

In Table 5, we can see that NMF-LP has the highest AUC scores on all of the data sets in 9

algorithms. For instance, other algorithms get AUC scores less than 0.8635, yet algorithm

NMF-LP obtains the highest AUC score 0.9980 in dataset ACM, which shows that the algo-

rithm NMF-LP can obtain high quality results that have strong robustness.

Test on the time requirement of the algorithm

In the process of the non-negative matrix factorization, we calculate the error between the

original matrix A and the product of the base matrix U and weight matrix V. Error formula is

error ¼k A � UVj2F , we plot the relation between the error and the number of iterations in

non-negative matrix factorization on different datasets. The results of tests on networks with-

out node attributes are as shown in Fig 3, and Fig 4 shows the results of tests on networks with

node attributes.

Fig 2. The AUC scores of NMF-LP algorithm with different values of i.

https://doi.org/10.1371/journal.pone.0182968.g002
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Based on Figs 3 and 4, we can see that in the process of non-negative matrix factorization,

the tendency of error decreases sharply and it quickly arrives at the condition of convergence.

The experiment results demonstrate that the algorithm not only reduces data storage space but

also effectively improves the prediction performance while keeping a low time complexity.

Conclusion

With the expansion of network size, a large amount of redundant information causing by

high-dimensionality and sparsely of actual network reduces the performance of the link pre-

diction. In this paper, a new link prediction algorithm was proposed on the basis of non-

negative matrix factorization. In the algorithm, the original adjacent and attribute matrixes of

the network are effectively decomposed into the base matrix and the weight matrix which are

non-negative. Thereafter, we use the similarity of the weight matrix as the scoring matrix

Table 5. Comparison of algorithms’ accuracy quantified by AUC.

ACM CISIS ICICS ICML NLDB WWW

CN 0.8635 0.9618 0.9598 0.9236 0.9214 0.9505

Salton 0.7932 0.9620 0.9603 0.9238 0.9217 0.9417

Jaccard 0.4223 0.4475 0.3401 0.5223 0.3352 0.4426

Sorensen 0.8552 0.9620 0.9573 0.9236 0.9217 0.9525

HPI 0.8222 0.9621 0.9503 0.9238 0.9216 0.9305

HDI 0.8263 0.9619 0.9602 0.9235 0.9216 0.9505

LHN_I 0.8552 0.9618 0.9342 0.9234 0.9214 0.9504

PA 0.5541 0.5842 0.5335 0.5767 0.5154 0.5846

NMF-LP 0.9980 0.9770 0.9850 0.9600 0.9800 0.9600

https://doi.org/10.1371/journal.pone.0182968.t005

Fig 3. Error changes with the iteration number of NMF on networks without node attitudes.

https://doi.org/10.1371/journal.pone.0182968.g003
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between the nodes. The experimental results show that one thing it can gain is higher quality

results on real networks comparing with other algorithms, another thing is that it reduces data

storage space while maintaining low time complexity.
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