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Observable patterns of cultural variation are consistently inter-
twined with demic movements, cultural diffusion, and adaptation
to different ecological contexts [Cavalli-Sforza and Feldman (1981)
Cultural Transmission and Evolution: A Quantitative Approach;
Boyd and Richerson (1985) Culture and the Evolutionary Process].
The quantitative study of gene–culture coevolution has focused in
particular on the mechanisms responsible for change in frequency
and attributes of cultural traits, the spread of cultural informa-
tion through demic and cultural diffusion, and detecting rela-
tionships between genetic and cultural lineages. Here, we make
use of worldwide whole-genome sequences [Pagani et al. (2016)
Nature 538:238–242] to assess the impact of processes involv-
ing population movement and replacement on cultural diversity,
focusing on the variability observed in folktale traditions (n = 596)
[Uther (2004) The Types of International Folktales: A Classifica-
tion and Bibliography. Based on the System of Antti Aarne and
Stith Thompson] in Eurasia. We find that a model of cultural dif-
fusion predicted by isolation-by-distance alone is not sufficient to
explain the observed patterns, especially at small spatial scales
(up to ∼4,000 km). We also provide an empirical approach to
infer presence and impact of ethnolinguistic barriers preventing
the unbiased transmission of both genetic and cultural informa-
tion. After correcting for the effect of ethnolinguistic boundaries,
we show that, of the alternative models that we propose, the one
entailing cultural diffusion biased by linguistic differences is the
most plausible. Additionally, we identify 15 tales that are more
likely to be predominantly transmitted through population move-
ment and replacement and locate putative focal areas for a set of
tales that are spread worldwide.

cultural diffusion | demic diffusion | whole-genome sequences | folktales |
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Advances in DNA sequencing have opened new ways for
exploring the demographic histories of human populations

and the relationship between patterns of genetic and cultural
diversity around the world. Newly available genome-wide evi-
dence enables us to go beyond the use of linguistic relationship as
a measure of common ancestry (1–3) and offers unprecedented
support for studying the mechanisms underlying the transmis-
sion of cultural information over space and time (4–11) as well
as the coevolution of genetic and cultural traits (12–18) across
populations.

A key question for research in this area concerns the extent to
which patterns of cultural diversity documented in the archaeo-
logical and ethnographic records have been generated by demic
processes (i.e., the movement of people carrying their own cul-
tural traditions with them) or cultural diffusion (i.e., the trans-
fer of information without or with limited population move-
ment/replacement) (6, 19, 20). Before tackling this question,
however, it is critical to note that demic processes and cultural

diffusion are not mutually exclusive conditions but rather, are
opposite extremes of a continuous gradient, with intermediate
and composite positions that more accurately represent empiri-
cal reality.

A broadly adopted null model of cultural diffusion draws on
the expectation that selectively neutral variants would form geo-
graphic clines produced over time by isolation-by-distance (IBD)
processes (21). Under an IBD model, individuals or groups that
are spatially closer to each other are expected to be more sim-
ilar than individuals or groups that are located farther apart.
A positive correlation between cultural dissimilarity and geo-
graphic distance between samples is, therefore, used to infer pro-
cesses of cultural transmission of nonadaptive information with-
out population replacement (8, 17). However, observed genetic
distance is the composite result of serial founder events, long-
term IBD, and subsequent migratory events, which imply recent
movement and resettling of people (22). A higher correlation
between genetic distance and cultural dissimilarity than between
culture and geography has, therefore, been proposed as a way to
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single out the relative effect of demic processes on the distribu-
tion of cultural variants (8).

In a recent study, Creanza et al. (17) investigated the process
responsible for the observed global distribution of (phonetic) lin-
guistic variability by comparing it with genetic and geographic
distances. The authors found high correlation between genetic
and geographic distances at a worldwide scale, whereas linguis-
tic distances were spatially autocorrelated only within a range of
∼10,000 km. The lack of residual correlation between genetic
and linguistic distances up to this spatial scale did not allow the
authors to reject their null model and was interpreted as a signal
of cultural diffusion being the main driver of the distribution of
phonetic variants in human populations.

The use of genetic variability as a plausible proxy to reject
cultural diffusion as the sole responsible for the distribution of
cultural traits depends on being able to disentangle genetic sig-
nals from geography. The high correlation between genetic and
geographic distances at a global scale (22) lowers the inferen-
tial power of this model. However, this relationship is not con-
stant across different geographic scales. We noted that the cor-
relation obtained between pairwise genetic distances is stronger
when measured across all possible population pairs at larger geo-
graphic scales, whereas it is considerably lower at smaller geo-
graphic distances (below ∼6,000 km for this dataset), possibly
because of more recent and short-range population movements
(Fig. 1A, yellow line). It is worth remembering that global trends
have been forming over the past ∼40,000 y, whereas most cul-
tural traditions are likely to have evolved more recently. This
claim is supported by previous studies (17) and suggests that the
effect of population movements independent from IBD can be
identified only within limited geographic scales. At this spatial
resolution, events shaping the distributions of genetic and cul-
tural divergence are more likely to occur at the same temporal
scale and hence, be more probably causally related.

Fig. 1. (A) Plot of product–moment correlation
values between pairwise genetic distance (both
whole genome and biased for linguistic barriers)
and pairwise geographic distance over cumulative
geographic distance. (B) Map showing the spatial
distribution of 33 populations in dataset MAIN.
Surface colors represent interpolated richness val-
ues (i.e., the number of folktales exhibited by
each population). Purple indicates higher values,
whereas yellow indicates lower numbers. (C) Exam-
ple of a map with SpaceMix results for genetic and
folktale distance both projected on standard geo-
graphic coordinates. It is evident how, overall, folk-
tale distribution (F) tends to cluster closer to geo-
graphic coordinates (dots), whereas the inferred
source and direction of possible genetic admix-
ture (G) are mismatched. For example, Burmese
and Yakut exhibit quite segregated folktale assem-
blages, whereas their putative source of genetic
admixture is closer in space. The case of Hun-
garian is emblematic for its folkloric assemblage
rooted in Europe, whereas its putative genetic (and
linguistic) source of admixture is located in the
Ural region.

An additional confounder is the potential effect of linguistic
barriers, which might cause departures from a pure IBD model
by constraining the exchange of genetic and/or cultural infor-
mation between demes belonging to different ethnolinguistic
groups. Given the relevance that spoken language has on the
transmission of folktales and the light but measurable impact
that they have for variants of individual tales in Europe (23),
ethnolinguistic barriers should also be considered as key com-
ponents of plausible alternative models to IBD.

Diffusion of Folktales: Investigating Mechanisms of Cultural
Transmission in the Genomic Era
Here, we capitalize on the short-range decoupling of genetic
and geographic distance to further infer mechanisms of genetic
and cultural coevolution by using newly available genomic evi-
dence (24) as an unbiased proxy of population relatedness. To
do so, we analyzed the observed distribution of a set of indi-
vidual folktales in Eurasia, looking for deviations from the null
model of cultural diffusion predicted by geographic distance
alone. Folktales are a ubiquitous and rigorously typed form of
human cultural expression and hence, particularly well-suited for
investigating cultural processes at wider cross-continental scale.
Researchers since the Brothers Grimm (25) have long theorized
about possible links between the spread of traditional narratives
and population dispersals and structure but found mixed levels
of support for this hypothesis when using indirect evidence for
demic processes, such as linguistic relationships among cultures.
One recent study suggested that, within the same linguistic fam-
ily (Indo-European), the distributions of a substantial number
of fairy tales were more consistent with linguistic relationships
than with their geographical proximity, suggesting that they were
inherited from common ancestral populations (3). This finding is
confirmed by the relevance that ethnolinguistic boundaries may
have for the transmission of variants of individual folktales in
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Europe. Ross et al. (23) have shown that, at population level,
geographic distribution explains more variability than ethnolin-
guistic grouping. At this scale, when controlling for the effect of
geography, linguistic boundaries do not show any residual signif-
icant relationship with folktale variant distribution, suggesting a
possible temporal mismatch between folktale and linguistic tra-
ditions. However, when individual folktales are considered, eth-
nolinguistic identity is a significant predictor. This fact suggests
that demes belonging to different ethnolinguistic affiliations may
undergo higher costs for the transmission of individual folktales,
even when they are closer in space. The simultaneous effect of
shared linguistic ancestry and spatial proximity was also docu-
mented on the distributions of folktales recorded among Arctic
hunter-gatherers (26).

Overview of This Study
In this study, we focus on 596 folktales comprising “animal tales”
and “tales of magic” (27) typed as present (one) or absent (zero)
in 33 populations (dataset MAIN), for which whole-genome
sequences are available and exhibiting presence of at least five
folktales (Fig. 1B, SI Appendix, and Dataset S1 Tables S1-2.1, S1-
2.2, S1-2.3, and S1-2.4). Following previous examples (8), we test
for deviations from a null model of pure cultural diffusion with-
out population replacement (IBD), in which geographic distance
alone is the best predictor of the decreasing number of shared
folktales between pairs of populations. We measure and com-
pare the fit of a number of alternative models comprising (i) a
clinal model, in which populations belonging to different ethno-
linguistic groups are less likely to share folktales as predicted by
IBD (cultural diffusion with linguistic barriers); (ii) population
movement and admixture between demes (demic process) as a
substantial additional driver of folktale transmission; and (iii) a
demic process constrained by linguistic barriers.

We test our hypothesis first by visualizing possible mismatches
between actual geographic location of each population and
the location inferred by applying explicit models accounting
for genetic and cultural admixture (population movement with
replacement) (28). We quantify the impact of linguistic barriers
on both genetic and folktale variability using analysis of molecu-
lar variance (AMOVA) (29). We further investigate this by look-
ing for the set of linguistic barrier parameters (intensity and geo-
graphic buffer) that maximizes the fit between genetic distance
and geographic distance on the one hand and folktale distance
and geographic distance on the other hand. We use this parame-
ter combination to generate alternative models, with fitness that
is formally assessed at both a global scale and over cumula-
tive geographic distance. Following the assumptions of previous
works (8), we develop a method to identify those folktales that—
in the whole corpus—may be more likely to have been transmit-
ted through population movement and replacement, supporting
the idea that individual tales may have undergone different pro-
cesses. To provide a starting point for this additional analysis on
the diffusion of individual or smaller packages of tales, we infer
potential focal areas—intended as a putative proxy for center of
origin—of the most popular tales in the dataset.

Results
Effects of Ethnolinguistic Boundaries. We use AMOVA (29) to for-
mally assess the impact of ethnolinguistic boundaries on both
genetic and folktale variability, focusing only on Eurasian pop-
ulations (dataset Eurasia; n = 30) to control for the effect of the
Out of Africa expansion on genetic distance (SI Appendix and
Dataset S1, Tables S1-3.1, S1-3.2, S1-3.3, and S1-3.4). We assign
each population to an ethnolinguistic group (Materials and Meth-
ods, SI Appendix, and Dataset S1, Tables S1-4.1 and S1-4.2). Our
analysis yielded ΦST = 0.036 (P < 0.001) for genetic distance
matrix, whereas ΦST = 0.1 (P < 0.001) for distances based on
folktale distributions. These results confirm the expected differ-

ential impact of intergroup boundaries between genetic and cul-
tural variability and are consistent with previous results obtained
for population structure on the transmission of cultural traits
(23, 30).

We use this evidence to further investigate the separate effects
of linguistic barriers on the flow of genetic and cultural infor-
mation by focusing on two parameters (i.e., intensity and geo-
graphic buffer of the cultural barrier) (details are in Materials
and Methods). We find that the parameter combinations that
resulted in the highest correlation between genetic–geographic
distances (intensity = 0.1; radius = 1,500 km) and between
folktale–geographic distances (intensity = 0.3; radius = 3,000
km) imply that linguistic barriers have a differential impact of
these two kinds of information, and we use this parameter setting
to generate two corrected distance matrices for genetics
(geneticL) (Dataset S1, Table S1-5.1) and folktales (folktaleL)
(Dataset S1, Table S1-5.2), respectively. By using raw and
corrected distance matrices, we define alternative models as
(i) biased cultural diffusion (folktaleL∼ geographic), (ii) demic
diffusion (folktale∼ genetic), and (iii) biased demic diffusion
(folktaleL∼ geneticL).

Assessing Models of Folktale Transmission. We set out to test for
deviations from the null model of cultural diffusion caused by
IBD. We explore the relationship between our genetic, folk-
tale, and geographic distance matrices using SpaceMix (28) (SI
Appendix). We note that, when transformed into pseudospa-
tial coordinates, folktale distances tend to match actual geo-
graphic coordinates better than genetic distances (Fig. 1C and SI
Appendix, Fig. S1-3.1). The role of geography and ethnolinguis-
tic barriers is also confirmed by a NeighborNet (31) based on
folktale distances, showing a broad spatial clustering and prox-
imity/reticulation between demes belonging to the same ethno-
linguistic group (SI Appendix).

We then assess the goodness of fit of all of the alternative mod-
els at a global scale by comparing Pearson’s product–moment
correlation (32), bias-corrected distance correlation (33), and
partial distance correlation (34, 35) (Tables 1 and 2; details are in
Materials and Methods and SI Appendix). It is evident how, after
Bonferroni correction, all alternative models accounting for eth-
nolinguistic boundaries perform better than the models that do
not consider them. With both product–moment correlation coef-
ficient and bias-corrected distance correlation, the best model
is the one representing cultural diffusion with linguistic barri-
ers followed by demic processes constrained by linguistic barri-
ers. With distance correlation, however, the difference between
the two models is smaller than with standard correlation coeffi-
cient. When the dependence between variables is assessed con-
trolling for a third variable through partial distance correlation,
linguistic-biased cultural diffusion remains as good a predictor
of folktale variability as IBD. This phenomenon could be due

Table 1. Variable association at a global level

Model cor P bcdCor P

Folktale ∼ genetic 0.20 <0.001 0.20 <0.001
Folktale ∼ geographic 0.19 <0.001 0.31 <0.001
Genetic ∼ geographic 0.71 <0.001 0.84 <0.001
FolktaleL ∼ geneticL 0.55 <0.001 0.55 <0.001
FolktaleL ∼ geographic 0.64 <0.001 0.57 <0.001
GeneticL ∼ geographic 0.76 <0.001 0.83 <0.001

Comparison between null model of cultural diffusion predicted by IBD
(folktale ∼ geographic) and alternative models [i.e., demic diffusion (folk-
tale ∼ genetic), cultural diffusion biased by linguistic barriers (folktaleL ∼
geographic), and demic diffusion biased by linguistic barriers (folktaleL ∼
geneticL)]. Values refer to Pearson’s product–moment correlation (cor) and
bias-corrected distance correlation (bcdCor) after Bonferroni correction.
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Table 2. Partial distance correlation at a global scale

Model pdCor P

Folktale ∼ genetic, geographic −0.11 1.00
Folktale ∼ geographic, genetic 0.26 <0.001
FolktaleL ∼ geneticL, geographic 0.17 <0.001
FolktaleL ∼ geographic, geneticL 0.25 <0.001

Results of partial distance correlation for null (folktale ∼ geographic,
genetic) and alternative models [i.e., demic diffusion (folktale ∼ genetic,
geographic), cultural diffusion biased by linguistic barriers (folktaleL ∼
geographic, geneticL), and demic diffusion biased by linguistic barriers
(folktaleL∼ geneticL, geographic)] after Bonferroni correction.

to the fact that, at a global scale, correlation between language-
corrected genetic distance and geographic distance is higher (Fig.
1) and lowers the residual signal.

Significant deviations from the null model of cultural diffu-
sion predicted by IBD are further investigated over cumulative
geographic distance by comparing Pearson’s correlation coeffi-
cients (Fig. 2 and SI Appendix, Table S1-7.1). Above 4,000 km,
language-biased cultural diffusion presents with the highest fit
at all bins followed by language-biased demic diffusion. Under
4,000 km, folktale distance exhibits stronger dependence from
genetic distance than from geographic distance. This relation-
ship is particularly visible under 2,000 km, where the effect of
linguistic barriers is the same for genetic and cultural variability.

All results allow us to reject the null model of plain cul-
tural diffusion predicted by IBD and suggest instead that, of
all alternative models, the one involving cultural diffusion mit-
igated by linguistic barriers could be the most plausible one. In
addition, as previously pointed out (Fig. 1), results consistently
confirm that small geographic scale offers a more efficient dis-
entanglement between possible uncoupled effects of genetic and
geographic distances over cultural variables—even after correct-
ing for potential ethnolinguistic barriers.

Uniform Body of Knowledge or Individual Units? Our results show
that, when considering the folktales contained in our dataset
as a uniform corpus, the null model dictated by IBD could
be rejected. Previous results (23), however, have shown that
individual tales or smaller groups of tales may be transmitted
across populations as partially independent evolutionary units.
If a given cultural trait is not transmitted through population
movement and replacement, populations that share it should not
exhibit significantly lower genetic distance than populations that
do not exhibit it (8). To single out folktales that markedly contra-
dict such null hypothesis, we compare the distribution of pairwise
genetic distances corrected for ethnolinguistic boundaries among
populations sharing a given tale against distances of the remain-
ing pairs of populations using the Mann–Whitney–Wilcoxon test.
We focus on 308 folktales that are present in at least five popula-
tions and run two separate tests, the first considering all pairs
of populations (Dataset S1, Table S1-6.1) and a second con-
sidering only those within a conservative geographic range of
6,000 km (Fig. 1A and Dataset S1, Table S1-6.2). After Bonfer-
roni correction, 15 of 308 analyzed folktales (4.9%) (Dataset S1,
Tables S1-7.1 and S1-7.2) present with significantly lower than
expected pairwise genetic distance, hence allowing us to reject
our null hypothesis and suggesting that these tales may indeed
have spread during events of demic diffusion biased by ethnolin-
guistic barriers.

Folktale Dispersal and Focal Areas. For a subset of the analyzed
folktales, we identify focal areas, representing potential areas
of origin and defined as locations that maximize the decay of
a given folktale abundance over geographic distance measured
with Pearson’s correlation coefficient (Dataset S1, Table S1-8.1).

Focal areas were generated for the 19 most widespread folktales,
which follow four main trends (SI Appendix). Some of these tales
possibly started to be diffused mostly via cultural transmission
from Eastern Europe, with subsequent radial diffusion across
Eurasia and Africa [such as Aarne Thompson Uther catalog 155
(ATU155): “The Ungrateful Snake Returned to Captivity” in SI
Appendix, Fig. S1-8-I 1 or ATU313: “The Magic Flight” in Fig.
3], whereas others probably started their journey from Cauca-
sus (SI Appendix, Fig. S1-8-I 6–8). Examples of the latter are
ATU400: “The Man on a Quest for His Lost Wife,” ATU480:
“The Kind and Unkind Girls,” ATU531: “The Clever Horse,”
and ATU560: “The Magic Ring.” Some narrative plots might
have originated in northern Asia—such as the famous “Thum-
bling” (Tom Thumb) (SI Appendix, Fig. S1-8-I 18)—whereas a
last group could have spread from Africa (SI Appendix, Fig. S1-
8-I 17), such as in the case of ATU670: “The Man Who Under-
stands Animal Language.”

Discussion
Using Genetic Evidence to Infer Processes of Cultural Transmission.
Our results resonate with broader questions in cultural evolu-
tionary studies, particularly those concerning the mechanisms of
cultural transmission over time and space. They show that the
use of newly generated, whole-genome sequences offers a unique
opportunity for an unbiased assessment of patterns of cultural
variation in the ethnographic and archaeological records. Genetic
variability has been already interpreted in the past as a direct
proxy of the movement of human groups over time and space, and
as such, it has been used as a potential marker of demic mecha-
nisms (8, 17).

We show the effect of ethnolinguistic barriers on both genetic
and cultural population structure. By introducing an empiri-
cal approach, we find that ethnolinguistic identity has a poten-
tially independent and differential impact on genetic and cultural
information. More specifically, our results suggest that linguistic
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Fig. 2. Comparison of the null model of cultural diffusion dictated
by IBD (folktale∼geographic; light blue) against all alternative models:
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uct–moment correlation coefficients are calculated at each geographic bin
(size = 2,000 km), with original distance matrices up to 12,000 km.
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Fig. 3. Possible focal area and dispersion pattern for tale ATU313 “The
Magic Flight,” one the most popular folktales in this dataset, which may
have been additionally spread through population movement and replace-
ment. It is interesting to note how this tale reached locations that are far
from its putative origin (such as Japan and southeastern Africa), whereas it
was not retained by many populations located in between (gray dots).

barriers may be twice as effective on the diffusion of cultural
traits than on population movement and that the decay over
geographic distance of such effect is almost two times slower
for culture than for genetic information. Nevertheless, this work
very explicitly generates a cautionary tale concerning the use
of genomic evidence for investigating such events at a cross-
continental or global scale, where geographic clines in genetic
variability are the result of different processes that can hardly be
disentangled and that may present with considerable temporal
mismatch with more recent cultural processes.

Cultural Evolutionary Mechanisms of Folktale Transmission. Folk-
tales are a prime example of a universal form of cultural expres-
sion linked to various vectors of propagation over generations and
across geographic and ethnolinguistic barriers that allows us to
address questions of cultural evolutionary processes at a cross-
cultural and -continental scale. Our results provide insights on the
processes driving the spread of folkloric narratives that go beyond
previous studies that were limited to a single language family (3).

By correcting for the presence of ethnolinguistic barriers, we
find that the null model of cultural diffusion predicted by IBD
alone cannot explain the observed distribution of folktales across
Eurasia. Instead, beyond ∼ 4,000 km, cultural diffusion biased
by linguistic barriers exhibits the highest correlation at all geo-
graphic bins. At small geographic bins (< 4,000 km), popula-
tion movements and linguistic barriers may be more relevant
than geographic proximity, pointing once again at the possi-
ble importance of small-scale processes of cultural transmis-
sion for testing more specific hypotheses when using genetic
evidence. In addition, processes other than simple cultural diffu-
sion may be more relevant for a smaller group of tales shared by
pairs of populations that are genetically closer than populations
not exhibiting those tales. Looking for smaller packages of tales
or individual tales and their variants can be useful to shed light
on the formation process of this vast body of popular knowledge.
The long-range patterns detected by our analyses may comple-

ment this picture by suggesting a more ancient origin of some of
these folktales (SI Appendix) (36–39). On a broader level, these
results can be used in the future to infer directional trends of cul-
tural dispersal as well as to test for the emergence of systematic
social biases [such as prestige bias, conformism/anticonformism,
heterophily, and content-dependent biases (5, 23, 30)] or cultural
barriers different from linguistic ones, which have a chronology
that may be independently ascertained.

Materials and Methods
Dataset Description. Folktale data were sourced from the ATU (27). This
dataset comprises animal tales (ATU1–299) and tales of magic (ATU300–
749). Of 198 societies in which the tales were recorded, 73 matched avail-
able genetic data (Dataset S1, Table S1-1). Of these groups, 33 populations
exhibiting at least five folktales were selected (Fig. 1B and Dataset S1, Table
S1-2.2). Each population is described by a string listing the presence (one) or
absence (zero) of any of the included 596 folktales.

Genetic, Folktale, and Geographic Distances. Genetic distances were esti-
mated by the average pairwise distances between two genomes, one from
each population, including both coding and noncoding regions to avoid
ascertainment biases. Genetic distance for (i, j) pairs of populations repre-
sented by more than one genome was calculated as the average of all pos-
sible (i, j) pairs of genomes. As a consequence, the diagonal of the genetic
distance matrix was not constrained to be zero (Dataset S1, Table S1-3.2).
Folktale distance between population pairs was calculated as asymmetric
Jaccard distance (40) (Dataset S1, Table S1-3.3). Geographic distance was cal-
culated as pairwise great circle distance with a waypoint located in the Sinai
Peninsula to constrain movement of African demes [through the package
gdistance in R (41)]. Coordinates (longitude and latitude in decimal degrees)
(Dataset S1, Tables S1-9.1 and S1-9.2) identify the assumed center of the area
occupied by a given folkloric tradition as defined by the ATU index.

Transformation of Dissimilarities into Euclidean Distances. To perform bias-
corrected and partial distance correlation, folktale, genetic, and geographic
distances were transformed into their exact Euclidean representations (33,
42). The original folktale and genetic distance matrices were scaled through
classic multidimensional scaling using the function cmdscale in R and follow-
ing the procedure for exact representation (34). Euclidean distances were
computed from the obtained number of descriptors (n – 2) using the func-
tion dist in R (Dataset S1, Tables S1-10.1 and S1-10.2). Euclidean representa-
tion of geographic distance (Dataset S1, Table S1-10.3) was instead obtained
by reprojecting the original set of coordinates on a plane using two-point
equidistant projection through the functions tpeqd in the package map-
misc (43) and spTransform in the package sp in R (44, 45). Euclidean distance
between the new set of coordinates was computed using the function rdist
in the package fields in R (46).

AMOVA. To implement AMOVA (29) in our analysis, each population
was assigned to an ethnolinguistic group derived from Ethnologue
(https://www.ethnologue.com; Dataset S1, Table S1-4.1), and we used the
function amova in the package pegas (47) in R. Significance values are
obtained through permutation (1,000 iterations).

Variable and Model Comparison. The relationship between original and
biased folktale, genetic, and geographic pairwise distance matrices was
quantitatively assessed at global scale and cumulative geographic scales.
Measures were obtained through (i) Pearson’s product–moment correlation
coefficient using the function cor.test in R, (ii) bias-corrected distance corre-
lation (33) using the function dcor.ttest in the package energy in R (48), and
(iii) partial distance correlation using the function pdcor.test in the package
energy in R. In parallel, SpaceMix (28) was used to compute folktale and
genetic pseudocoordinates, which were compared with actual geographic
coordinates to explore inferred processes of admixture.

Estimating the Effect of Ethnolinguistic Barriers on Genetic and Folktale Dis-
tance. We assumed that, if existent, a linguistic barrier would act on pairs
of populations that belong to different linguistic families and live within
a d geographic distance and artificially increase the actual genetic (Dgen)
or folktale (Dfolk) distance by an intensity factor f . We also assumed that
parameters d and f may be different when looking at genetic (dG, fG) and
folktale (dF , fF ) distances. We assessed the correlation between geographic
and genetic or folktale distances at increasing spatial bins before and after
correcting for putative linguistic barriers. Particularly, we chose as best pairs
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of (dG, fG) and (dF , fF ) those that maximized the above-mentioned correla-
tions. Notably, fG = 0 or fF = 0 (i.e., absence of linguistic barriers) had an
equal chance of being picked up as the best values for our parameters. We
instead reported (1,500, 0.1) and (3,000, 0.3) as best pairs of genetic and
folktale parameters, respectively. To obtain unbiased genetic (Dgen′) and
folktale (Dfolk′) distances, we, therefore, corrected for the effect of lin-
guistic barriers, so that, for populations (i, j), Dgen′ ij = Dgenij × (1 − fG)
if dij 6 dG and Dfolk′ij = Dfolkij

∗(1− fF ) if dij 6 dF .

Data Availability and Codes. R scripts and related commands used to gener-
ate all of the results described in the paper are available at doi.org/10.5281/

zenodo.821360. Folktale and geographic data as well as genetic distances
are also available in Dataset S1. Genetic data used to run SpaceMix are taken
from ref. 24 (www.ebc.ee/free data).
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