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Zika virus (ZIKV) exhibits unique transmission dynamics in that it
is concurrently spread by a mosquito vector and through sexual
contact. Due to the highly asymmetric durations of infectiousness
between males and females—it is estimated that males are infec-
tious for periods up to 10 times longer than females—we show
that this sexual component of ZIKV transmission behaves akin
to an asymmetric percolation process on the network of sexual
contacts. We exactly solve the properties of this asymmetric per-
colation on random sexual contact networks and show that this
process exhibits two epidemic transitions corresponding to a
core–periphery structure. This structure is not present in the
underlying contact networks, which are not distinguishable from
random networks, and emerges because of the asymmetric perco-
lation. We provide an exact analytical description of this double
transition and discuss the implications of our results in the context
of ZIKV epidemics. Most importantly, our study suggests a bias in
our current ZIKV surveillance, because the community most at risk
is also one of the least likely to get tested.

phase transition | Zika virus | percolation | complex networks |
mathematical epidemiology

Abstract modeling of epidemics on networks remains an
active field, because some of the most basic features of epi-

demics are still misunderstood. The classic model is quite sim-
ple (1): disease spreads stochastically with a fixed transmission
probability, T , through contacts around a given patient zero. The
outbreak dies quickly if T is too small but spreads to a macro-
scopic fraction S of the entire population if T is larger than
a threshold Tc. At Tc, most of the typical insights from phase
transition theory are valuable. For instance, the sizes of micro-
scopic outbreaks follow a power law distribution, such that the
expected size of microscopic outbreaks, 〈s〉, indicates the posi-
tion of a phase transition. Indeed, as T increases, 〈s〉 monoton-
ically increases, diverges exactly at Tc, and then monotonically
goes down; meanwhile, the expected macroscopic epidemic size,
S , starts increasing monotonically at Tc.

However, simple modifications to this model can dramatically
alter its phenomenology. The epidemic threshold can vanish in
networks with a scale-free degree distribution (2) or in growing
networks (3). The phase transition can be discontinuous in the
case of complex contagions with threshold exposition or rein-
forcement (4), interacting epidemics (5, 6), or adaptive networks
(7–9). Recently, a unique phenomenon of double-phase transi-
tions has also been observed numerically when networks have a
very heterogeneous and clustered structure (10, 11).

The current Zika virus (ZIKV) epidemic exhibits two unique
properties. First, while the main transmission pathway for ZIKV
is through a mosquito vector [predominantly Aedes aegypti or
Aedes albopictus (13, 14)], a feature which has its own type
of well-studied model and behavior (14–16), it can also spread
through sexual contacts (17, 18). Second, the probability of
sexual transmission is highly asymmetric between males and
females. Although this is also true for other sexually transmitted
infections, such as HIV (19), it reaches an extreme level of asym-

metry in the case of ZIKV. Indeed, males can be infectious for
over 180 days (20), while females are infectious for less than
20 days (21). Assuming a symmetric risk of transmission per con-
tact, males would be 10 times more likely to transmit to a partner
than females. This is, however, a rather conservative estimate,
since male-to-female transmissions tend to be more likely than
the opposite (19, 22).

The dynamics of the ZIKV epidemic is well-understood in
countries where the vector-borne pathway dominates (23). How-
ever, with travelers moving to and from endemic regions, the
potential of ZIKV as an emerging sexually transmitted infection
(STI) in regions without the mosquito vector remains to be fully
assessed. Indeed, with only few reported cases of sexual trans-
mission of ZIKV—including male to male, male to female, and
female to male (18)—the scientific community still struggles to
reach a consensus on the impact of sexual transmission of ZIKV
(24, 25). It is, therefore, imperative to investigate the extent to
which canonical knowledge about emerging infectious diseases
applies to the threat assessment of ZIKV as an STI.

We model the ZIKV sexual transmission through asymmet-
ric percolation on random sexual contact networks and solve
it exactly using a multitype (multivariate) generating function
formalism (26). We then show how the asymmetric percola-
tion leads to a double transition. Interestingly, the formulation
of our model allows us to provide a first analytic framework
for the aforementioned numerical results on double transitions.
More importantly, this allows us to identify two different thresh-
olds for ZIKV to be endemic as an STI in regions where the
mosquito vector is absent but where travelers to/from endemic
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regions can spark a sexual epidemic when they return/visit. We
also find that, in the large interval of parameter space between
those two thresholds, the asymmetric percolation creates a core–
periphery structure in a system where there was none. Finally,
we discuss the implications of this core–periphery structure for
the surveillance and control of the ZIKV epidemic and provide
policy guidelines.

Results
Inspired by the sexual transmission of ZIKV, we investigate
the effect of asymmetry on bond percolation on networks and
show that it yields outcomes akin to the double-phase transi-
tions observed numerically in other contexts (10, 11). To isolate
the effect of asymmetry alone and thus, provide a clear proof
of concept, we consider a very simple model, in which nodes
belong to one of six types based on their sex and sexual orienta-
tion (i.e., female/male and homo-/bi-/heterosexual). Each node
is assigned a number of contacts, k , independent of its type (i.e.,
all nodes have the same degree distribution {pk}k≥0), and links
are created randomly via a simple stub-matching scheme con-
strained by the sexual orientations (12, 26). For instance, bisex-
ual males choose their partners randomly in the pools of het-
erosexual females, bisexual males and females, and homosexual
males. This implies that there is no correlation between the type
of a node and its number of contacts and consequently, no core–
periphery structure. In fact, this model generates well-mixed
contact networks that are indistinguishable from networks gen-
erated with the configuration model and the same degree distri-
bution (SI Appendix).

Although these networks are originally undirected, asymmet-
ric percolation implies that links can be more likely to exist
(i.e., transmit) in one direction than in the other, thus induc-
ing an effective semidirected structure to the networks (27). In
other words, Tij 6=Tji in general, with Tij being the probabil-
ity of transmission from a node of type i to a node of type j
(hereafter, we denote N as the set of the six possible types of
nodes). In particular, we set Tij =T for every i , j ∈N except

Fig. 1. Emergence of the second transition as asymmetry increases. The solid lines show the expected fraction of the population in the extensive component
(S; left axis). The dashed lines show the average size of small nonextensive components (〈s〉; right axis). The divergence of the average size of small
components marks the phase transition after which the extensive components grow with the transmission probability T . The vertical dotted black line shows
the thresholds. (Left) With a small asymmetry between transmission values {Tij} as a function of node types, we recover the classic epidemic transition.
(Right) With a larger asymmetry, a second peak in the average size of small components appears. The first, T (1)

c , corresponds to the global epidemic threshold
of the population. The second, T (2)

c , corresponds to the invasion of the large heterosexual subpopulation. The threshold T (1)
c corresponds to the value of

T , such that the largest eigenvalue of the Jacobian matrix of Eq. 1 equals one. The second threshold T (2)
c is obtained similarly but with the probability of

transmission between homosexual males set to zero. The homo-/bi-/heterosexual subpopulations represent 5, 3, and 92%, respectively and are equally split
between males and females. The degrees are distributed according to a Poisson distribution, pk = e−〈k〉〈k〉k/k!, with an average degree, 〈k〉, equal to five.
Additional details are in SI Appendix.

when i corresponds to a female, in which case we set Tij =T/a
to enforce asymmetric probabilities of transmission (i.e., females
are a times less likely to transmit ZIKV than males).

We adapt the formalism presented in ref. 26 to compute the
epidemic threshold and the expected final size of outbreaks
in the limit of large networks. It is worth pointing out that,
since asymmetric percolation (i.e., whenever a 6=1) induces an
effective semidirected structure to the networks, the proba-
bility for the existence of an extensive connected component
(i.e., an epidemic) does not equal to its relative size as for
symmetric, traditional bond percolation (i.e., a =1). Here, we
focus on the relative size for the sake of conciseness; we refer
to SI Appendix for full details of the analysis and numerical
validation.

To obtain the relative size of the extensive component, we
define vi as the probability that a neighbor of type i is not in the
extensive component, which we solve by a self-consistent argu-
ment. If the neighbor of a node is not in the extensive compo-
nent, then none of its other neighbors should be in it either. With
the probability that the neighbor has a degree equal to k being
kpk/〈k〉, with 〈k〉=

∑
k kpk , this self-consistent argument can be

written as

vi =
∑
k

kpk
〈k〉

[∑
j∈N

αj |i(1− Tji + Tjivj )

]k−1

, [1]

where αj |i is the probability that a neighbor of a node of type i
is of type j (i.e.,

∑
j αj |i =1 for any i). Solving this equation for

every i ∈ N , the probability that a node of type i is part of the
extensive component, Si , corresponds to the probability that at
least one of its neighbors is in it as well:

Si = 1−
∑
k

pk

[∑
j∈N

αj |i(1− Tji + Tjivj )

]k
. [2]

The relative size of the extensive component is then S =∑
i∈N wiSi , where wi is the fraction of the nodes that are of
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Fig. 2. Separation of thresholds with increasing asymmetry. We show the
two thresholds (critical points) T (1)

c and T (2)
c discussed in the text (solid lines)

as well as the thresholds for different subpopulations (dotted lines), which
can be easily calculated and further support our interpretation of the phe-
nomenology. The first threshold, T (1)

c , corresponds to the epidemic threshold
for the full population. The second threshold, T (2)

c , is computed by setting
the transmission between MSM to zero. The MSM unipartite and Hetero.
bipartite lines show the epidemic thresholds should the network be only
populated with MSM or heterosexuals, respectively. They are defined as

〈k〉eT (3)
c = 1 and [〈k〉eT (4)

c ]
2
/a = 1, respectively, where 〈k〉e = 〈k(k − 1)〉/〈k〉

is the average excess degree of the nodes (12). The last two thresholds corre-
spond to the contributions to T (1)

c and T (2)
c that involve exclusively the homo-

sexual male or heterosexual subpopulations, respectively. They are the solu-

tions of α0|0〈k〉eT (5)
c = 1 and α4|5α5|4[〈k〉eT (6)

c ]
2
/a = 1, respectively, where

nodes of type zero, four, and five correspond to homosexual males, hetero-
sexual males, and heterosexual females, respectively. These results, there-
fore, support the interpretation that the first threshold corresponds to the
invasion of the MSM subpopulation [with T (3)

c and T (5)
c acting as lower and

upper bounds, respectively] and that the second threshold is caused by the
invasion of the remaining population [with T (4)

c and T (6)
c acting as lower and

upper bounds, respectively]. Inset shows the growing separation of the two
main thresholds as asymmetry increases to values close to what we expect
for ZIKV. The same parameters as in Fig. 1 were used.

type i . Below the epidemic or percolation threshold, every vi is
equal to one, since there is no extensive component. The percola-
tion threshold corresponds to the point where the largest eigen-
value of the Jacobian matrix of Eq. 1 equals one.

The distribution of the composition of the small, nonextensive
components can be computed in a similar fashion (full details are
in SI Appendix). Let us define the probability-generating function
(pgf) Hi(x), with coefficients that correspond to the probability
that a neighbor of type i leads to a small component of a given
composition (i.e., the number of nodes of type j is given by the
exponent of xj ). Invoking the same self-consistency argument as
above, the pgfs are the solution of

Hi(x) = xi
∑
k

kpk
〈k〉

[∑
j∈N

αj |i [1− Tij + TijHj (x)]

]k−1

, [3]

where the extra xi has been added to account for the neighbor of
type i itself. Similarly, the small component that can be reached
from a node of type i is, therefore, given by

Ki(x) = xi
∑
k

pk

[∑
j∈N

αj |i [1− Tij + TijHj (x)]

]k
. [4]

The distribution of the composition of the small components is
K (x)=

∑
i∈N wiKi(x). It is worth noting that, whenever S > 0,

the distribution generated by K (x) is no longer normalized,

K (1)< 1, such that the average number of nodes of type i in
the small components is

〈si〉 =
1

K (1)
dK (x)
dxi

∣∣∣∣
x=1

. [5]

An example of the general phenomenology is shown in Fig.
1. Unlike the classic epidemic transition picture, where 〈s〉
diverges at the epidemic threshold where the macroscopic epi-
demic emerges, we now find two peaks in 〈s〉. This double transi-
tion is similar to numerical results from ref. 10 but here observed
without the need for either strong clustering or heterogeneity
in degree distribution. In fact, we used the homogeneous Pois-
son degree to ensure that the asymmetry in the transmission is
the only salient feature of the model. Interestingly, as shown
in Fig. 2, T (1)

c and T
(2)
c are virtually equal for small values of

the asymmetry. As asymmetry increases, the peak separates, thus
yielding a double transition corresponding to an effective core–
periphery organization in the network of infections. The core
then corresponds to the men having sex with men (MSM) popu-
lation, where infections are more frequent than in the remaining
population. Fig. 3 shows the network of who infected whom for
two values of T . For T (1)

c <T <T
(2)
c , the extensive component

is mostly composed of one type of nodes, and any spillover in
the other types quickly dies out. However, at T =T

(2)
c , these

spillovers now cause cascades into other types with truncated
power law-distributed sizes (Fig. 4). For T >T

(2)
c , the exten-

sive component recovers the well-mixed structure of the original
underlying network.

Altogether, the second peak in the average size of outbreaks,
〈s〉, corresponds to a transition between subcritical and super-
critical spillover in a less susceptible subpopulation but not to
a second phase transition in the classic sense. Indeed, the ana-
lytical nature of our results allows us to confirm the null critical
exponent observed in ref. 10 for the scaling of the height of the
second susceptibility peak with regards to system size. Even in
the infinite system considered by our calculations, the peak sat-
urates, which is the only possible outcome for a system with an
order parameter that is already nonzero. Interestingly, a critical
power law-like behavior is nonetheless observed in the hetero-
sexual population at both thresholds. Moreover, our results sug-
gest that the asymmetry in transmission probability is reflected
in the asymmetric prevalence within the male and female het-
erosexual populations, which is reminiscent of recent empirical
results (28).

Based on our results, we can summarize the phase diagram
of the ZIKV epidemic in three possible outcomes. First, with
T <T

(1)
c , all outbreaks are microscopic, quickly die out, and

mostly infect MSM. Second, with T
(1)
c <T <T

(2)
c , we now see

a macroscopic epidemic within the network of homosexual con-
tacts between males, with microscopic spillover into the rest of
the population via bisexual males. Third, with T >T

(2)
c , we now

find a more classic epidemic scenario in the sense that it is of
macroscopic scale in most of the population. It is also worth
mentioning that this phenomenology is robust to the presence
of multiple infectious seeds sparking outbreaks (SI Appendix).
Our results are thus valid beyond ZIKV for any infections with
asymmetry in probabilities of direct transmission, regardless of
whether there is also vector transmission.

Discussion
We developed a network model of ZIKV transmission highlight-
ing the importance of asymmetric sexual transmission between
males and females. We find a double transition generated by a
core group of MSM that could maintain ZIKV transmission with-
out the presence of a viable mosquito vector, such as in regions
where people may have brought back ZIKV with them after a
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Fig. 3. Composition of the components as the transmissibility increases. Nodes corresponding to males and females are shown in blue and orange, respec-
tively, and arrows indicate who infected whom. The same parameters as for Fig. 1 have been used with asymmetry a = 10. (Left) At T (1)

c < T = 0.45< T (2)
c ,

the infection mostly follows the MSM subpopulation, with minimal and subcritical spillovers in the remaining population. (Right) At T = T (2)
c ' 0.632, the

spillover causes cascades of power law-distributed sizes into the heterosexual population.

trip to endemic regions. These results are unique, because pre-
vious models showing double transitions relied on the need for
strong clustering and heterogeneity in degree distribution.

Our study carries important consequences for the ongoing
ZIKV epidemic and stresses the large knowledge gap in the
sexual transmission of ZIKV (25). The aim of our work is to
present the epidemiological consequences of possible sustained
sexual transmission. While there are many unknowns, recent
work shows (i) multiple anecdotal cases of sexual transmission of
ZIKV in humans (25, 29–31), (ii) multiple separate animal mod-
els showing sexual transmission (32–34), (iii) strong asymmetries
between durations of ZIKV shedding in semen and vaginal secre-
tions (20, 21), and (iv) differential risk between sexes for ZIKV
infection in sexually active populations. Indeed, recent work
has identified 90% more ZIKV infections in women between

Fig. 4. Distribution of the size and composition of small components. (Left) We find power law scaling of small outbreak sizes with scaling exponent
−3/2, as expected from classic phase transition theory (12), at both T (1)

c and T (2)
c . However, unlike classic phase transitions, only the tail of the distribution

follows a power law at T (1)
c , while at T (2)

c , we find a robust power law over many orders of magnitude before the distribution falls with the expected
exponential cutoff. This cutoff goes to infinity when the size of the MSM community goes to zero, in which case T (2)

c now becomes the prominent critical
point. Notice that the size of the components goes back to a homogeneous distribution in between the two epidemic thresholds. (Upper Right) At T (1)

c , the
power law tail in the component size distribution is mainly caused by the critical core of homosexual males, while the exponential behavior is mainly caused
by heterosexuals. The power law tail in the distributions of heterosexuals is caused by spillovers from the critical core. (Lower Right) At T (2)

c , the power law
portion of the distribution is caused by heterosexuals now forming a critical core, while homosexual males, being already almost exclusively in the extensive
component, do not contribute. All curves were obtained by solving Eq. 4 with asymmetry a = 3 and the parameters given in the caption of Fig. 1.

15 and 65 years old than in men of the same age in Rio de
Janeiro (28) adjusted for gender-related health-seeking behavior
and pregnancy status. Importantly, this risk difference was not
seen in women <15 or >65 years of age, indicating the poten-
tially large impact of sexual transmission of ZIKV in a coun-
try with known ongoing vectored transmission of ZIKV. A sim-
ilar situation has also been observed in Colombia (35) and the
Dominican Republic (36). Although more research on the epi-
demiological impacts and basic biology of sexual ZIKV trans-
mission is needed, there is compelling need to be prepared with
epidemiological studies examining transmission on a popula-
tion scale.

We showed that potential ZIKV persistence in MSM, even if
barely critical within that subpopulation, could cause subcritical
but dramatic spillover into the heterosexual community. ZIKV
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infections in adults are largely asymptomatic (37), and therefore,
most testing occurs in the roughly 20% of cases that are symp-
tomatic or individuals seeking to have children (38). The vast
majority of these individuals will be outside of the MSM com-
munity (38). This means that the community most at risk is also
one of the least likely to get tested. To avoid underestimating the
spread of ZIKV, it is, therefore, important for health officials and
policymakers to keep its unique behavior and phenomenology
in mind.

Given the extent of foreign travel to locations endemic with
ZIKV, public health practitioners should be aware of the poten-
tial for infectious introduction into local MSM communities.
Travel history as well as sexual history should be used when
evaluating an occult fever. Cities which have a viable vector

for ZIKV should be doubly aware of the potential transmis-
sion routes of ZIKV. As it stands, current estimates of the basic
reproductive number, R0, of ZIKV may be too low, because
they fail to account for sustained sexual transmission (17, 18, 39,
40). Important future work will be to accurately estimate R0 of
ZIKV across various settings with differing sexual practices and
mosquito fauna.
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