Skip to main content
. 2017 Aug 30;3(8):e1701293. doi: 10.1126/sciadv.1701293

Fig. 1. Characterization of bulk materials and theory calculations.

Fig. 1

(A) Unit cell and crystal structure of {en}FASnI3 perovskite absorber. (B) pXRD patterns, (C) 1H NMR, (D) TGA data, (E) optical absorption, and (F) photoluminescence (PL) spectra of the {en}FASnI3 perovskite crystals with various molar ratios of FA and en. a.u., arbitrary unit. (G) A 2 × 2 × 2 supercell of (FA)2Sn2I6 depicting a model of the hollow perovskite with two SnI2 vacancies [(FA)16Sn14I44]. The calculated band structures of the supercell for the full [(FA)16Sn16I48] and hollow [(FA)16Sn14I44] perovskites are shown in (H) and (I), respectively. (I) Inset: Plot of the increase in the bandgap and decrease of the bandwidth as a function of SnI2 vacancies in FASnI3.