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ITGA1 is a pre-malignant biomarker 
that promotes therapy resistance 
and metastatic potential in 
pancreatic cancer
Armen Gharibi, Sa La Kim, Justin Molnar, Daniel Brambilla, Yvess Adamian, Malachia Hoover, 
Julie Hong, Joy Lin, Laurelin Wolfenden & Jonathan A. Kelber

Pancreatic ductal adenocarcinoma (PDAC) has single-digit 5-year survival rates at <7%. There is 
a dire need to improve pre-malignant detection methods and identify new therapeutic targets for 
abrogating PDAC progression. To this end, we mined our previously published pseudopodium-enriched 
(PDE) protein/phosphoprotein datasets to identify novel PDAC-specific biomarkers and/or therapeutic 
targets. We discovered that integrin alpha 1 (ITGA1) is frequently upregulated in pancreatic cancers 
and associated precursor lesions. Expression of ITGA1-specific collagens within the pancreatic cancer 
microenvironment significantly correlates with indicators of poor patient prognosis, and depleting 
ITGA1 from PDAC cells revealed that it is required for collagen-induced tumorigenic potential. Notably, 
collagen/ITGA1 signaling promotes the survival of ALDH1-positive stem-like cells and cooperates with 
TGFβ to drive gemcitabine resistance. Finally, we report that ITGA1 is required for TGFβ/collagen-
induced EMT and metastasis. Our data suggest that ITGA1 is a new diagnostic biomarker and target 
that can be leveraged to improve patient outcomes.

While pancreatic cancer (pancreatic ductal adenocarcinoma or PDAC) research efforts and the tools with which 
to study this malignancy have increased drastically over the past few decades, the 5-year survival rate remains at 
only 7% and the median survival from the time of diagnosis is less than 12 months1–3. This high mortality among 
patients is partially due to limited diagnostic methods for identifying non-invasive/-metastatic forms of this 
disease. In this regard, distant metastases have been reported as being observed late in relation to the predicted 
genetic evolution of pancreatic cancer4, suggesting that at least a 10-year window exists during which diagnoses 
may be made to improve outcomes. Still, early diagnosis of pancreatic cancer prior to systemic metastasis only 
increases patient survival to approximately 20%, further pointing to a critical need for diagnostic tools targeting 
pre-malignant pancreatic tissue (e.g., pancreatic intraepithelial neosplasms or PanINs). Recent work has under-
scored this need, showing that epithelial to mesenchymal transition (EMT) and systemic dissemination of pan-
creatic tumor cells occurs well before primary tumors are detectable within the pancreas5, 6.

An additional complicating factor that contributes to the dismal patient prognosis in PDAC is its therapy 
refractory nature. This is due primarily to the heterogeneity of the highly desmoplastic tumor microenviron-
ment7. To combat this cellular and molecular complexity, and improve therapy responses at both primary and 
metastatic tumor sites, it has become apparent that future therapeutic approaches will need to target the interac-
tion between rare stem-like cancer cells and their tumor-protective environment8–10.

In this regard, we mined our previously published peudopodium proteomic data for proteins frequently 
upregulated in PDAC and that regulate cell-extracellular interactions. Integrins are the primary transmembrane 
receptors that transmit intracellular signals when they bind to their respective extracellular matrix (ECM) pro-
teins. Integrins function as heterodimers, in which the active integrin complex consists of alpha and beta sub-
units11. We subsequently identified integrin alpha 1 (ITGA1) as a pseudopodium-enriched protein frequently 
upregulated in PDAC. Therefore, we hypothesized that its subcellular localization to the cell surface membrane 
of pseudopodia may make it an ideal target for diagnostic and therapeutic interventions in this malignancy. 
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Notably, we discovered that ITGA1-binding collagens are most frequently upregulated in PDAC and statistically 
associate with indicators of poor patient prognosis. We also report that ITGA1 is upregulated in PanIN tissue in 
the human pancreas. Our in vitro studies provide compelling evidence that ITGA1 is necessary for survival of 
stem-like PDAC cells and gemcitabine resistance in these cell populations; migration, attachment and spreading 
of PDAC cells; and TGFβ/collagen-induced EMT. In vivo, we also demonstrate a requirement for ITGA1 during 
PDAC metastasis to lung, brain and liver tissues. This work provides rationale for using ITGA1 as a diagnostic 
biomarker and therapeutic target to improve patient survival.

Results
Pseudopodium-enriched proteins are viable cancer biomarkers.  Previous work has established 
methods to isolate protruding pseudopodia from migrating cells for downstream proteomic and phosphopro-
teomic analyses12–14. Importantly, we previously utilized these methods for the purpose of identifying the novel 
non-receptor cytoskeleton-associated tyrosine kinase PEAK1 (pseudopodium-enriched atypical kinase one)15. 
More recent work from our group has demonstrated a clear role for PEAK1 in the initiation and progression of 
both breast and pancreatic malignancies16–19. Since pseudopodia are comprised of proteins known to regulate 
cancer cell interactions with their microenvironment and overall disease progression20, 21, we further reasoned 
that pseudopodia-enriched (PDE) proteins may generally be good candidate biomarkers of cancer initiation, 
progression or therapy response. We first sought to identify novel biomarkers within pancreatic ductal adenocar-
cinoma (PDAC) as this cancer diagnosis has a very poor prognosis. We cross-referenced the top 100 PDE proteins 
(Supplemental Table 1) from our previously published dataset15 against 29 gene expression studies of pancreatic 
cancer patient tissue using Oncomine. The oncomine thresholds were set to identify genes significantly upregu-
lated by more than 1.5 fold in the tumor tissue with a statistical significance of p < 0.05 (Supplemental Fig. 1A). 
Using these parameters, we report here that 37 percent of the top PDE proteins are upregulated at the transcript 
level in pancreatic cancer (Supplemental Fig. 1B). To evaluate the significance of these findings we performed 
hierarchical clustering of the overexpression frequency for these proteins across multiple malignancy types 
(Supplemental Fig. 1B), demonstrating that a significant proportion of these genes are also frequently upregulated 
in other cancers and may be functionally related to each other in these other tumor types. Interestingly, while 
integrin alpha one (ITGA1) is frequently upregulated in PDAC, we also note that there are malignancies in which 
ITGA1 is more frequently overexpressed (e.g., Melanoma, Prostate, Bladder, Liver and Myeloma). Thus, it may 
be relevant to characterize ITGA1 function further in these other cancer types. Notably, ITGA1 has recently been 
associated with an invasive/metastatic phenotype in hepatocellular and prostate cancers22–24.

Using Cytoscape, we evaluated the interconnectedness of this 37 gene set list (Supplemental Fig. 1C) using 
the Agilent Literature Search plugin and a subnetwork of this larger interactome focusing on the sole extracel-
lular matrix protein receptor or integrin, ITGA1, that was in our 37 gene set list (Supplemental Fig. 1C and D). 
Finally, we analyzed the gene ontologies of these 37 PDE proteins that are upregulated in PDAC to evaluate the 
enrichment of associated biological processes – the top 12 are shown in Supplemental Fig. 1E. Of note, many of 
the integrin- and small GTPase-mediated signaling pathway components are known to have roles in these other 
biological processes.

ITGA1 is upregulated in PanIN and PDAC tissues and associates with indicators of poor progno-
sis.  As discussed above, ITGA1 is one of the 37 top PDE proteins significantly upregulated in PDAC (Fig. 1A). 
We further analyzed ITGA1 expression at the protein level in the normal pancreas and PDAC tissue using data 
available in the Human Protein Atlas repository25. Notably, normal pancreatic ductal epithelial and acinar cells 
stain negative for ITGA1, while tumor tissue is highly positive across multiple patients, predominantly in the 
epithelial compartment (Fig. 1B) – high ITGA1 expression is detected in approximately 42% of patient samples. 
In an effort to develop novel methods to detect PDAC early and improve patient prognosis, researchers have 
characterized novel proteins that are found to circulate within the blood of PDAC patients and which asso-
ciate with the presence of pancreatic intraepithelial neoplasms (PanINs)26. Together with recent reports that 
epithelial-mesenchymal transition (EMT) and dissemination of cells from pre-malignant pancreatic tissue can 
precede tumor formation5, a clear rational exists for identifying novel cell surface biomarkers that are upregulated 
in PanIN tissue. We performed immunohistochemistry (IHC) for ITGA1 on an array of patient pancreatic tissue, 
observing prominent staining in PanIN 1 A/B and PanIN 2 lesions across all 10 patient samples (Fig. 1C).

A hallmark of pancreatic cancer is desmoplasia (i.e., stromal cell/tissue infiltration into and around the other-
wise predominantly epithelial tumor cells)3, 27. Collagens are a primary component of the PDAC stromal microen-
vironment, and ITGB1 (the key beta integrin subunit for collagen binding) has been previously characterized to 
play an important role during PDAC progression28, 29. While ITGA2 and ITGA11 are also upregulated in pancre-
atic cancer (data available via Oncomine) and can mediate cell-surface binding of various collagen types, neither 
of these alternate alpha integrins were PDE proteins suggesting that they may play a more context-dependent role 
in pancreatic cancer15. To further establish rationale for investigating ITGA1 function in PDAC, we analyzed the 
protein levels of collagens that utilize ITGA1 (type 4 collagens) and ITGA2 (type 1 collagens) in PDAC patient 
samples by IHC25. As shown in Fig. 1D, 53% of all PDAC tumors available in the Human Protein Atlas that were 
stained for type 1 collagens were positive for type 1 collagens (N = 19), while 81% of banked PDAC samples 
that were stained for type 4 collagens were positive for type 4 collagens (N = 31). Furthermore, of the 10 patient 
samples that were stained for both type 1 and type 4 collagens, 80% of them stained positively for collagens that 
bind to ITGA1 (Fig. 1E). Finally, we evaluated a broader panel of collagen types in their predictive power of 
tumor grade, p53 mutation status and erlotinib response status using Oncomine30–32. Grutzman and colleagues 
microdissected normal and malignant pancreatic tissue from patients on which they conducted microarray anal-
ysis. Figure 1F shows a panel of collagen genes detected in their study in relation to PDAC grade – notably, 
ITGA1-specific collagens (types 4 and 6) are significantly upregulated in high grade PDAC lesions. In a similar 
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fashion, studies by Garnet et al. and Jimeno et al. report microarray gene expression data for either tumor cell 
lines or PDAC patient-derived xenografts, respectively. Figures 1G and 1H demonstrate that ITGA1-specific 
collagens (types 4 and 6) significantly associate with p53 mutation status and erlotinib resistance, respectively. 
Together these data suggest a primary role for ITGA1 in mediating pathogenesis in PDAC and that ITGA1 may 
serve as an early diagnostic biomarker.

ITGA1 is required for PDAC cell survival and migration.  We next examined a panel of PDAC cell 
lines for their expression of ITGA1, finding that the epithelial FG and PANC1 lines expressed the highest lev-
els of ITGA1 among the KRas mutant lines that were tested (Fig. 2A). Using both transient siRNA and stable 
shRNA expression, we demonstrate successful silencing of ITGA1 in both these lines relative to the appropriate 
control RNAi constructs (Fig. 2B and Supplemental Figs 2A and C). Importantly, shRNA-mediated knockdown 
of ITGA1 resulted in loss of protein expression at the cell surface as determined by flow cytometry (Fig. 2C 
and Supplemental Fig. 2D). ITGA1 loss-of-function studies revealed a critical role for collagen-ITGA1 bind-
ing in mediating cell motility (Fig. 2D and Supplemental Videos 1–3). Analysis of cell viability in response 
to ITGA1 knockdown on plastic and collagen substrates demonstrated that, while ITGA1 is required for cell 
viability under these conditions, this effect was not substrate specific (Fig. 2E and Supplemental Fig. 2B). To 

Figure 1.  ITGA1 is upregulated in PanIN and PDAC tissues and associates with indicators of poor prognosis. 
(A) ITGA1 expression in normal and malignant pancreatic tissue sampled from 38 patients using Oncomine. 
(B) Immunohistochemistry (IHC) staining for ITGA1 in normal and tumor pancreatic tissue from a Human 
Protein Atlas Portal. (C) IHC staining for ITGA1 in pre-malignant PanIN lesions in human patient samples. (D) 
Immunohistochemistry staining for COL1 and COL4 in tumor pancreatic tissue from a Human Protein Atlas. 
(E) Quantified data from a Human Protein Atlas indicating the percentages of PDAC patients with elevated 
COL1 and/or COL4 levels. (F–H) Patient data from Oncomine associating expression of collagen types with 
tumor grade (F), p53 mutation status (G) and erlotinib resistance (H).
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evaluate whether this decrease in cell viability in response to ITGA1 knockdown was due to a shift in the cell cycle 
profiles, we performed flow cytometry on propidium iodide labeled cells. These data show that the decrease in 
ITGA1-mediated cell viability correlates with an increase in cell populations containing less than 2n DNA content 
– those likely undergoing cell death (Fig. 2F,G and Supplemental Fig. 2F). Together, these data support a role for 
ITGA1 in the metastatic progression of PDAC since ITGA1-mediated cell migration is collagen dependent while 
ITGA1-mediated cell survival is independent of the extracellular environment.

ITGA1 is necessary for collagen-induced PDAC cell attachment and spreading.  Since mesenchy-
mal cell morphology and gene expression signatures are commonly associated with the metastatic potential of 
pancreatic cancer cells, we evaluated whether collagen could affect the morphology, spreading and attachment 
of PDAC cells in an ITGA1-dependent manner. As shown in Fig. 3A, collagen induces cell spreading and a shift 
toward a more mesenchymal morphology in both FG and PANC1 cells. Importantly, ITGA1 silencing markedly 
reduces the ability of PDAC cells to spread on collagen (Fig. 3B,C). Finally, since cell spreading depends upon 
initial cell attachment, and cell attachment of PDAC cells to the collagen-rich fibrotic microenvironment is an 
established prerequisite for cancer cell metastasis28, 33, we tested the role of ITGA1 on the kinetics of PANC1 
cell attachment to plastic, collagen and fibronectin substrates. Notably, ITGA1 knockdown completely abro-
gated collagen-induced cell attachment (Fig. 3D). While cells attached slightly faster and to a larger extent to the 
fibronectin substrate, this effect did not depend upon ITGA1 expression.

ITGA1 marks and promotes viability of ALDH1hi PDAC cells.  Highly tumorigenic stem-like cells 
were first identified in pancreatic cancer as a subpopulation that labeled positively for CD44, CD24 and EpCAM 
cell surface antigens34. Subsequent work reported that cell surface expression of CD133/CXCR4 marked a more 
restricted population of metastatic, therapy-resistant tumor-initiating cells35. More recently, aldehyde dehydro-
genase one (ALDH1) activity has been reported to accurately reproduce CD133 staining in pancreatic cancer as 
a marker of poor patient prognosis and therapy resistance36, 37. We analyzed PANC1 PDAC cells for their dual 
staining patterns of cell surface ITGA1 and total cellular ALDH1 activity (Supplemental Fig. 2D,E). As reported 
in Fig. 4A, nearly all cells that stain positive for cell surface levels of ITGA1 are also positive for ALDH1 activity 

Figure 2.  ITGA1 is required for PDAC cell survival and migration. (A) qPCR and Western blot analyses of 
ITGA1 levels in 4 human PDAC cell lines. (B) qPCR and Western blot analyses of ITGA1 in virally transduced 
FG and PANC1 with scramble or two unique ITGA1-specific shRNA constructs – normalized to GAPDH 
or a-tubulin. (C) Flow cytometry analysis of cell surface ITGA1 levels in virally transduced FG and PANC1 
cells stained with either IgG1 K Isotype control (red) or Anti-human CD49a (green). Data plotted as percent 
of cells staining positive of ITGA1. (D) Single cell migration assay of transduced PANC1 cells on collagen 
(3 μg/mL). (E) AQeuous One assay was performed on transduced FG and PANC1 cells 72 hours after plating 
on plastic or collagen. (F and G) Cell cycle profiles were analyzed 24 hours after plating transduced FG (F) or 
PANC1 (G) cells on plastic or collagen. Relative percent of cells in each stage are shown. Figure shows the best 
representative profile of 2 or more repeats. *, ** and *** indicate t-test derived p-values less than 0.05, 0.01 and 
0.001, respectively. Original blot images are cropped to show indicated bands.
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(left). However, only approximately 35% of ALDH1hi cells are also positive for cell surface ITGA1 (Fig. 4A, right). 
These data are summarized in the Fig. 4B Venn diagram that represents ITGA1hi cells as a subpopulation of 
ALDH1hi cells. In agreement with these data, depletion of cellular and cell surface ITGA1 levels significantly 
reduces the viability of ALDH1hi PDAC cells (Fig. 4C).

ITGA1 is an indicator of EMT and co-expresses with TGFβ response genes in PDAC.  Based upon 
the above data demonstrating a collagen-specific role for ITGA1 in cellular phenotypes involved during local dis-
semination and systemic spread of pancreatic cancer, we next asked whether ITGA1 co-expressed with markers 
of EMT. As shown in Supplemental Fig. 3A, ITGA1 positive tumors express lower levels of the epithelial marker 
E-Cadherin (CDH1) along with elevated levels of select mesenchymal markers (SERPINE1, VIM and ACTA2). 
TGFβ is a well-established tumor suppressing growth factor; however, loss of SMAD4 function or dysregulated 
TGFβ signaling can lead to cancer progression and metastasis38–40 – often, via the induction of an EMT program41, 42.  
Therefore, we compared TGFβ response genes16, 17, 43 against ITGA1 expression levels in multiple pancreatic can-
cer patient samples using the Cancer BioPortal database. This identified PEAK1, BMPR2, COL4A1 and ZEB1 
as ITGA1 co-expressors in pancreatic cancer and suggested that ITGA1 may play a role in regulating TGFβ 
responses in pancreatic cancer (Supplemental Fig. 3B,C).

ITGA1 mediates TGFβ/collagen-induced EMT and gemcitabine resistance in PDAC cells.  While 
TGFβ has been previously demonstrated to cooperate with the extracellular matrix to promote the progression of 
solid tumors16, 44–46, surprisingly, this observation has not been made in the context of pancreatic cancer. Here, we 
report for the first time that TGFβ and collagen cooperate to induce a mesenchymal morphology, downregulate 
E-Cadherin (CDH1) and upregulate ITGA1 expression in PDAC cells (Fig. 5A–C). While TGFβ can induce a sub-
tle EMT effect in the absence of ECM proteins or in the presence of fibronectin (Supplemental Figs 4A and 5A),  
ITGA1 levels are not markedly increased and decreased E-Cadherin levels are less pronounced across both cell 

Figure 3.  ITGA1 is necessary for collagen-induced PDAC cell attachment and spreading. (A) Phase-contrast 
images of FG and PANC1 cells on plastic or collagen (5 μg/mL) at day 1 and day 7 post-plating. (B) Phase-
contrast images at day 1 of PANC1 transduced lines plated on plastic or collagen (5 μg/mL). (C) Percent 
spreading quantified from replicates represented in (B) of PANC1 transduced lines on day 1 after plating onto 
plastic or collagen (5 μg/mL). (D) A modified cell viability assay was used to detect attachment of PANC1 
transduced lines at indicated time-points after plating onto plastic, collagen (5 μg/mL) and fibronectin  
(5 μg/mL). *, ** and *** indicate t-test derived p-values less than 0.05, 0.01 and 0.001, respectively.
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types under these alternate extracellular substrate conditions (Supplemental Figs 4B,C and 5B,C). We next tested 
whether ITGA1 expression was necessary for TGFβ/collagen-induced EMT. As shown in Fig. 5D, while ITGA1 
knockdown in FG and PANC1 cells did not completely abrogate the mesenchymal morphology shift, ITGA1 
depletion caused these cells to retain a more epithelial shape. Importantly, short-term cell attachment of PANC1 
cells to collagen was significantly potentiated by TGFβ treatment of the shScramble, but not observed in the 
ITGA1 knockdown variants of PANC1 cells (Fig. 5E). Notably, this ITGA1-dependent effect was not observed 
when PDAC cells were treated with TGFβ alone or with TGFβ after cells were plated on fibronectin (Supplemental 
Figs 4D,E and 5D,E). We next tested the role of ITGA1 expression on TGFβ/collagen-induced FN1, ZEB1 and 
MUC1 gene expression changes. We found that TGFβ was able to upregulate ZEB1 in the absence of ITGA1 and/
or ECM proteins (Fig. 5F and Supplemental Figs 4F and 5F). Furthermore, FN1 increased in response to TGFβ in 
the presence of collagen or plastic substrates, while only the combination of both TGFβ and collagen was able to 
reduce MUC1 levels in these cells (Fig. 5F and Supplemental Figs 4F and 5F). Since stem-like mesenchymal cells 
have been previously reported to resist the cytotoxic effects of gemcitabine (the FDA-approved standard-of-care 
therapy for PDAC)35, 47, we tested whether blockade of ITGA1 sensitizes mesenchymal PDAC cells to gemcit-
abine. We report here that cooperative TGFβ/collagen signaling decreases gemcitabine potency by nearly 10-fold 
and that ITGA1 knockdown significantly sensitizes these cells to gemcitabine-induced cytotoxicity (Fig. 5G and 
Supplemental Fig. 3D), presumably by modulating the mesenchymal-epithelial cell state. Taken together, these 
data suggest an essential role for ITGA1 in mediating TGFβ signaling crosstalk with the collagen-rich extracellu-
lar microenvironment of PDAC during disease progression and therapy resistance.

ITGA1 is necessary for the metastatic cascade originating from a TGFβ/collagen-rich tumor 
microenvironment.  To evaluate the role of ITGA1 during PDAC cell metastasis from a tumor microenvi-
ronment that is rich in TGFβ and collagen, we employed the chicken embryo chorioallantoic membrane (CAM) 
metastasis assay. As we and others have previously demonstrated, this system provides the ability to rapidly evalu-
ate organotropism of human tumor cells16, 19, 48, 49. Since our in vitro data in Fig. 5 demonstrate that ITGA1 is both 
upregulated and required for long-term EMT changes in PDAC cells, we devised a treatment and xenografting 
scheme (Fig. 6A) to evaluate the role of ITGA1 on PDAC cell metastasis to the liver, lung and brain. Although, 
brain metastasis is not common in PDAC patients, we felt it would be relevant to consider the effects of ITGA1 
on PDAC cell metastasis to this site as a general indicator of ITGA1 function. Briefly, FG and PANC1 shRNA cell 
lines were plated onto collagen and pre-treated with TGFβ for 72 hours prior to resuspension and xenografting 
onto the CAM of 10-day old embryos in the presence of exogenous collagen and TGFβ. Seven days later the 
primary tumor and other tissues were harvested for analysis. Figures 6B and 6C show sample images of the win-
dowed eggs and tumors on the CAM for the control scramble shRNA and ITGA1-specific shRNA derivatives of 
the PDAC cell lines. Surprisingly, although our in vitro data demonstrate that silencing ITGA1 reduces PDAC 
cell survival and the frequency of tumor-initiating ALDH1hi PDAC cells, ITGA1 depletion did not affect the 
in vivo average weight of the primary tumors isolated from the CAM tissue (Fig. 6D). However, we observed a 
marked effect of ITGA1 silencing on the ability for PDAC cells to metastasize to all three tissues – the biggest 

Figure 4.  ITGA1 marks and promotes viability of ALDH1hi PDAC cells. (A) Live FG and PANC1 cells, stained 
for cell surface ITGA1 levels using either IgG1 K Isotype control or anti-human CD49a. ALDH1 enzymatic 
activity in these cells was detected using the ALDEFLUOR assay kit and activity-quenching DEAB reagent as a 
negative control. (B) Venn diagram summarizing the possible relationship between ITGA1 and ALDH1 levels 
within live PDAC cell population. (C) The ALDH1 enzymatic activity was detected using ALDEFLUOR assay 
for shRNA transduced PANC1 cells 48 hours after plating on Collagen (3 μg/mL). (C) *Indicates t-test derived 
p-value less than 0.05.
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effect being observed in the liver (a common site of PDAC metastasis) (Fig. 6E–G). Notably, this pro-metastatic 
effect of ITGA1 was much less apparent in the absence of TGFβ/collagen pre-treatment and co-xenografting 
(Supplemental Fig. 6), demonstrating a TGFβ/collagen microenvironment-specific role for ITGA1 in pancreatic 
cancer progression.

Discussion
Three precursor lesion types have been carefully characterized in the pancreas of patients with and without ductal 
adenocarcinomas [i.e., intraepithelial neoplasms (PanINs), intraductal papillary mucinous neoplasms (IPMNs) 
and mucinous cystic neoplasms (MCNs)]. Although histopathologically distinct, they share a very similar genetic 
basis and progression grading scheme. In particular, PanIN lesions have been shown to precede the onset of 
ductal adenocarcinoma of the pancreas in a well-defined hierarchical fashion2, 3, 50. Given that these PanIN lesions 

Figure 5.  ITGA1 mediates TGFβ/collagen-induced EMT and gemcitabine resistance in PDAC cells. (A) Phase-
contrast microscopy images of FG and PANC1 cells plated on collagen (5 μg/mL) and treated with TGFβ. (B) 
qPCR for ITGA1 in FG cells – 1 and 7 days post-TGFβ treatment, and in PANC1 – 1 and 4 days post-TGFβ 
treatment. POLR2A was used as the house-keeping gene. (C) Western Blot for CDH1 levels following 7 (FG) 
or 4 (PANC1) day treatment with TGFβ. Original blot images are cropped to show indicated bands. (D) Phase-
contrast microscopy of transduced FG and PANC1 lines with or without TGFβ on day 7 and day 4, respectively. 
(E) A modified cell viability assay was used to detect attachment of PANC1 transduced lines with or without 
TGFβ treatment at indicated time points after plating onto collagen (5 μg/mL). (F) qPCR for FN1, MUC1 
and ZEB1 expression in transduced PANC1 cells following 4 days of control or TGFβ treatment. (G) IC50 
values from gemcitabine dose-response curves of FG shRNA cells on collagen (5 μg/mL) and TGFβ treated or 
untreated. *Indicates t-test derived p-value less than 0.05.
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develop within in window of time that affords patients more treatment options which may be curative, meth-
ods for the detecting these non-malignant precursor lesions hold great promise4, 50. In fact, reports have shown 
that between 16% to 45% of PanIN-containing pacreata do not have invasive carcinoma50, suggesting that these 
patients can primarily benefit from pre-malignant detection. This urgent need for early detection of these PanIN 

Figure 6.  ITGA1 is necessary for the metastatic cascade originating from a TGFβ/collagen-rich tumor 
microenvironment. (A) Experimental scheme to test TGFβ/collagen-induced metastasis of shRNA PDAC cells. 
(B and C) Images of the representative CAM tumors for the FG (B) and PANC1 (C) cells. (D) Average primary 
tumor weight (E–G) The relative metastases to liver, lung and brain quantified by qPCR detection of human 
ALU repeat genomic DNA against chicken gapdh gDNA. *, ** and *** indicate t-test derived p-values less than 
0.05, 0.01 and 0.001, respectively.
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abnormalities is made even more evident by recent reports showing that systemic dissemination of pancreatic 
cancer cells occurs even earlier than previously predicted4 and before a primary tumor is detectable by histologic 
analysis5. This alarmingly early metastatic progression was further associated with circulating tumor cells that 
adopted a mesenchymal phenotype and gene expression signature associated with epithelial-mesenchymal tran-
sition (EMT) – ultimately, leading to the seeding of distant metastases. In this regard, we report here that ITGA1 
is a novel cell surface26, 51 and soluble26, 52, biomarker for early grade 1 PanIN lesions (Fig. 1C). Moreover, we 
demonstrate that ITGA1 is frequently upregulated in PDAC patient tissue (Fig. 1A,B), associating with undiffer-
entiated tissue histology and mesenchymal protein expression patterns (Supplemental Fig. 3). Together with our 
in vitro and in vivo data demonstrating that ITGA1 expression increases in response to TGFβ/collagen signaling 
(Fig. 5A–C) and is required for EMT (Fig. 5D–F) and metastasis (Fig. 6), these patient data point to the utility of 
developing methods for detecting ITGA1 protein or ITGA1-positive cells in serum screening protocols to iden-
tify early, invasive, mesenchymal PanIN-derived cell populations in patients50.

Previous work has demonstrated that EMT is a critical pre-requisite to the metastatic cascade and that tumor 
cells commonly readopt epithelial character upon expansion within the metastatic niche53, 54. Moreover, recent 
evidence supports the existence of stem-like mesenchymal cell subpopulations with very high metastatic potential 
in PDAC55. Others have similarly reported that pancreatic tumor-initiating cells with stem-like character can seed 
pre-metastatic niches and are predominantly positive for the cell-surface CD133 marker7, 34, 35. Notably, these 
tumor-initiating and metastatic cell populations are commonly refractory to gemcitabine, the standard-of-care 
chemotherapeutic that is FDA-approved to treat PDAC35. Interestingly, it has also been reported that tumor cell 
dormancy within the metastatic niche is driven, in part, by altered ECM-integrin engagement56, 57. In agreement 
with these previous reports, we demonstrate that collagen is capable of modestly reducing the G0/G1 phase in 
PDAC cells (Fig. 2F,G and Supplemental Fig. 2E). Furthermore, targeting ITGA1 can induce cytotoxicity and 
reduce their expansion capacity in vitro (Fig. 2 and Supplemental Fig. 2). Together with our results demonstrating 
that ITGA1 inhibition sensitizes PDAC cells to gemcitabine-induced cytotoxicity (Fig. 5G and Supplemental 
Fig. 3A), ITGA1 represents a key new target for sensitizing both primary and metastatic tumor cells to currently 
available therapeutic strategies.

Although, EMT has been demonstrated to mark circulating tumor cells from pre-malignant precursor PanIN 
lesions5, recent reports have suggested that EMT may be dispensable for metastasis, driving primarily chemore-
sistance in pancreatic and breast malignancies47, 58. Still, it is clear from our previous work16 and the work of oth-
ers55, 59–61 that mesenchymal states within epithelial-derived cancers, such as breast and pancreatic, significantly 
associate with a higher metastatic potential, worse patient prognosis and therapy refractory nature. Moreover, 
inducing mesenchymal-epithelial transition (MET) has been proposed as a complimentary therapeutic strategy 
to improve patient responses to chemotherapy62. Thus, EMT is a critical process to understand in the context of 
pancreatic cancer progression and therapy effectiveness. TGFβ is one of the best characterized inducers of EMT, 
regulating this process during normal development as well as cancer progression63–66. It is also well-accepted that 
somatic inactivation of TGFβ receptors and Smad proteins are frequent in PDAC, with over half of all patients 
losing Smad4 function2, 3 – often leading to non-canonical signaling pathway activation by TGFβ. Our group 
and others have reported cooperativity between the ECM protein microenvironment and TGFβ to promote 
MAPK signaling and tumor progression16, 17, 67–72. These studies support previous notions of context-dependent 
TGFβ responses40. In this regard, we demonstrate here that unlike in breast cancer, where TGFβ cooperates with 
ITGB3-specific ECM proteins, TGFβ preferentially cooperates with ITGA1-specific collagens in PDAC to pro-
mote EMT (Fig. 5 and Supplemental Figs 4 and 5), therapy resistance (Fig. 5) and metastasis (Fig. 6). While 
these data support the development of ITGA1-targeting approaches in cancer tissue, it will be critical to eval-
uate the systemic effects of this approach or to develop low dose ITGA1-targeting therapies in the context of 
standard-of-care treatments, as previous work has shown that ITGA1 restricts TGFβ-induced renal fibrosis73.

Finally, recent work has suggested that one of the mechanisms by which TGFβ can suppress tumor growth 
in pancreatic cancer before the loss of Smad4 function is through the induction of a lethal EMT phenotype41 
- killing nearly all epithelial-like cells. Interestingly, residual mesenchymal-like cells can escape apoptosis and 
survive under these nutrient restricted in vitro and in vivo conditions. Notably, the metabolic reprogramming 
of KRas-driven PDAC has been well characterized and is one key factor leading to disease progression74. Data 
that we present throughout this study demonstrates that under nutrient rich conditions (e.g., as cells invade away 
from pancreatic PanIN or PDAC lesions and move through circulation) TGFβ can cooperate with collagen ECM 
proteins via ITGA1-dependent mechanisms to establish viable mesenchymal populations that are required for 
systemic spread and survival of PDAC tumor cells. Thus, targeting ITGA1 in this context has significant potential 
to reduce systemic tumor burden and improve patient survival.

Materials and Methods
Reagents.  Human Fibronectin was purchased from Corning (Cat. # 354008). Human Collagen Type I was 
purchased from Corning (Cat. #354243). Human transforming growth factor beta was purchased from Peprotech 
(Cat. #100–21).

Bioinformatics.  Oncomine.  The top 100 pseudopodium-enriched proteins previously published15 were 
screened for those frequently upregulated in PDAC (as described in Supplemental Fig. 1A) using Oncomine. This 
yielded 37 prospective genes/proteins enriched in the pseudopodium and upregulated in PDAC.

Cytoscape.  These 37 genes were used to generate a broad network interactome with the Agilent Literature 
Search Cytoscape plugin.

http://3
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Babelomics.  These same 37 genes were entered into Babelomics and analyzed as a gene set enrichment using the 
FatiGO tool, generating a hierarchical list of enriched gene ontologies.

Cell Culture.  BxPC3, FG, PANC1 and MiaPaca2 cells were cultured in DMEM/High-Glucose growth media 
supplemented with 10% FBS, pen/strep and gentamicin. Transduced cells with shRNA were cultured in complete 
DEME media (as indicated above) with 10 μg/mL puromycin as a selection reagent. Cells were maintained in an 
incubator at 37 degrees Celsius and 5% CO2.

Immunohistochemistry.  The BIC14011a tissue array slide was purchased from US Biomax. Slides were 
heated at 60 °C for one hour, incubated in xylene for ten minutes and washed with ethanol several times in five 
minute increments. Slides were then rinsed with PBS and incubated with endogenous peroxidase quenching 
solution (3% H2O2 in PBS with 0.3% serum) for ten minutes at room temperature. Slides were then placed in a 
staining dish with antigen retrieval buffer (0.01 M sodium citrate buffer at pH of 6.0) and boiled under pressure 
for ten minutes. After cooling with nanopure water rinses, slides were incubated with blocking solution (1.5% 
goat serum in PBS) inside a humidity chamber for twenty minutes. ITGA1 primary antibody (Abcam, 1.0 μg/mL 
– 1:500 dilution) was prepared in blocking serum and incubated on the slide at 4 °C humidity chamber overnight. 
Slides were rinsed with PBS twice and incubated with biotinylated secondary anti-rabbit IgG antibody solution 
prepared in blocking solution (Vector Laboratories, 1:200 dilution) for one hour at room temperature in a humid-
ity chamber. Slides were washed with PBS once and incubated with Vectastain ABC reagent for thirty minutes. 
One PBS wash was performed prior to treating with ImmPACT NovaRED peroxidiase substrate solution at room 
temperature for approximately five minutes. After desired staining was achieved, the slide was washed with nan-
opure water and counterstained with Hematoxylin QS for approximately eight minutes. Final ethanol and xylene 
washes were conducted before covering the slide with Permount and coverslip for imaging.

Quantitative PCR.  RNA was extracted from whole cells using the Thermo Scientific GeneJet RNA puri-
fication kit following the instructions provided. NanoDrop was used to determine the respective RNA concen-
trations as well as purity. The Thermo Scientific cDNA synthesis kit was used to synthesize cDNA using 100 ng 
of template, Maxima Enzyme Mix and 5X Reaction Mix. The samples were run on a thermocycler according to 
the kit specifications. NanoDrop was used to determine the respective cDNA concentrations as well as purity. 
The cDNA samples were diluted to 22.5 ng/mL to perform qPCR. Primers were purchased from Integrated DNA 
technologies and used at a concentration of 10 nmol/mL. 8.75 μL of nuclease-free water was mixed with 2.5 μL of 
diluted cDNA, 1.25 μL of gene-specific primer and 12.5 μL of Thermo Scientific Maxima SYBR Green. Samples 
were run on an ABI7300 instrument.

Western Blot.  Cells were lysed with Stringent RIPA Buffer and rotated at 4 degrees Celsius for ~3–4 hours. 
Lysates were precleared by centrifugation and the protein concentration was determined via a Bradford Assay. 
4–12% Bis-Tris gels were ran and transferred to nitrocellulose membranes. The membranes were probed at 4 
degrees Celsius overnight with indicated antibodies with the following dilutions: ITGA1 (abcam 1:1000), 
E-cadherin (cell signaling 1:1000), PEAK1 (milipore 1:1000), GAPDH (1:1000). Secondary antibodies were used 
at 1:10,000 dilutions. Band intensities were quantified using Fiji software after image thresholding. Pixel intensity 
was collected from boxes of the same size placed around different bands – protein of interest: housekeeping pro-
tein ratios were calculated and plotted.

RNAi.  siRNA Transfection.  5 × 104 cells were plated in 500 μL of antibiotic-free media in a 24-well plate then 
incubated in 37 C for 24 hours. After 24 hours, prepared a 5 μM siRNA solution in 1X siRNA buffer. For each 
sample, 2.5 μL of 5 uM siRNA solution and 47.5 μL of antibiotic/serum-free media was prepared in an Eppendorf 
tube and incubated for 5 minutes at room temperature. During the 5-minute incubation time for the siRNA solu-
tion, prepared a DharmaFECT2 solution that is enough for 3.5 samples with 4.67 μL of DharmaFECT2 reagent 
and 170.33 μL of antibiotic/serum-free media and incubated this solution for 5 minutes in room temperature. 
After 5-minute incubation of both solutions, mixed 50 μL of DharmaFECT2 solution with each of the (50 μL) 
siRNA solution resulting in 100 μL/sample. Incubate this in room temperature for 20 minutes. After incubation, 
add 400 μL of antibiotic-free complete (FBS) media to each of the Eppendorf tubes containing both the siRNA 
and DharmaFECT2 solution, mix well. Replace the media within the 24-well plate with the new transfection mix 
(500 μL/well) and replace the untransfected wells with 500 μL of antibiotic-free complete media. 24-hours after 
cells are treated with the transfection mix, replace wells with 500 μL of antibiotic-free complete media. 48-hours 
post transfection, harvest either lysates or protein for quantification.

Lentiviral Transduction.  FG and PANC1 cells were plated at 1.6 × 10^4 cells/well into a 96-well plate and left to 
attach overnight. Cells were then treated with 10 μL of viral particles containing a puromycin resistant pKLO.1 
vector with a scramble shRNA, ITGA1-specific shRNA (3′-UTR targeting) in 110 uL of complete media and left 
to incubate for 18 hours, after which the media was changed. The following day, media was changed and supple-
mented with 10 μg/mL puromycin. Media was changed with puromycin supplemented media every 3 days until 
resistance was definite. Cells were then maintained in media containing puromycin.

Cell Viability Assay.  24-well plate was coated for one hour with 3 ug/mL of collagen. Cells were plated at 
1 × 104 cell/mL in 200 μL and placed in an incubator for 72 hours. 72 hours post plating, 40 μL of AQeuous One 
solution was added to each well and the absorbance was taken at 1.5, 2, and 3-hour post-addition of the AQeuous 
One Solution.
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Cell Motility.  24-well plate was coated with collagen (3 μg/mL) in 1 mL and incubated for 1 hour at 37 C. After 
one-hour incubation, the wells were washed with 1 mL of media twice. Then, cells were plated at 1 × 104 cells/mL 
in 1 mL per well. The plated cells were incubated at 37 C over night (minimum of 16 hours). The next day, media 
was changed with new media with HEPES buffer solution 1X. Prior to imaging, each wells were filled with media 
and properly greased to exclude any bubbles to float in the wells when the lid is sealed. We selected minimum of 
three points per well and imaged for 24 hours post greasing using LEICA microscope. After 24 hours of imaging, 
cell velocity and displacement were quantified using the Fiji software.

Cell Morphology and Spreading Assay.  6-well plates were either uncoated (plastic) or coated with colla-
gen (5 μg/mL). PANC1-transduced cells were plated at 5 × 104 cells/mL in 2 mL per well. Cells were imaged at six 
different positions per well at 10X magnification using phase-contrast microscopy 24 hours post-plating. All cells 
from each position were analyzed and were classified as spread or unspread – cells were counted as spread when 
lamelapodia or pseudopodia were observable on a given cell. Percent spreading was calculated from the number 
of cells spread relative to the total number of cells per position.

Cell Attachment Assay.  96-well plates were either uncoated (plastic) or coated with collagen (5 μg/mL) or 
fibronectin (5 μg/mL). PANC1-transduced cells pretreated for 48 hours with 2.5 ng/mL TGFbeta or 0.1% BSA 
were plated at 1.0 × 104 cells/well in 200 mL serum-free media per well. Wells were aspirated, washed and refilled 
at the time points of 10 min, 30 min, 60 min, 6 hrs and 24 hrs. After the wells were refilled, 40 μL of AQueous One 
reagent was added to each well and incubated at 37 °C for 3 hours. Absorbance readings were measured at 490 nm. 
Student t-test analysis was used to determine statistical significance.

Fluorescence Activated Cell Sorting.  Cell Cycle Analysis.  6-well plate was coated with collagen (3 μg/
mL) in 2 mL and incubated for 1 hour at 37 °C. After one-hour incubation, the wells were washed with 1 mL of 
media twice. Then, cells were plated with concentration of 1 × 105 cells/mL in 2 mL per well. The plated cells were 
incubated at 37 °C over night (minimum of 16 hours). The next day, the cells were removed from the wells with 
1 mL/well of 0.25% trypsin. These cells were pelleted at 1000 rpm for 5 minutes. Then, we resuspend the pellets 
in 1 mL of of PBS and add 2.5 mL absolute ethanol to each sample – incubated on ice for 15 minute. During the 
15-minute incubation, we prepared a PI solution (505.25 μL/sample) for staining which included: 475 μL of PBS, 
25 υL of 1 mg/mL Propidium Iodide, 5 υL of 10 mg/mL RNase A, and 0.25 υL of 0.05% Triton X-100. After the 
15-minute ethanol incubation, the samples were pelleted at 1500 rpm for 5 minutes and resuspended in 500 υL/
sample PI solution. The resuspended samples are incubated at 37 °C for 40 minutes. After 40 minutes, we added 
3 mL of PBS to each samples and centrifuged at 1500 rpm for 5 minutes. Then, we resuspended the pellets in 
500 μL of PBS. We used the FL-2 channel (546 nm) on a BD Facs Calibur instrument to characterize the sample’s 
cell cycle profile.

ALDEFLUOR Assay.  10-cm plates were coated with collagen (3 μg/mL) in 5 mL 72 hours before harvesting. 
1 × 106 cells were collected per sample in 1 mL of medium and centrifuged at 1000 rpm for 5 minutes. They were 
resuspended in 1 mL of ALDEFLUOR assay buffer that was provided with the ALDEFLUOR kit. Each sample 
were split into two tubes (500 μL/tube) and each received 2.5 μL of Activated ALDEFLUOR reagent which was 
prepared according to the manual’s instruction. Immediately after, one of the tubes also received 5 μL of DEAB 
reagent to inhibit ALDH1 activity. These cells were incubated in 37 °C for 45 minutes before flow analysis using 
the FACS machine.

Cell Surface ITGA1 (CD49a) Staining Assay.  10-cm plates were coated with collagen (3 μg/mL) in 5 mL 72 hours 
before harvesting. 1 × 106 cells were collected per sample in 1 mL of medium and centrifuged at 1000 rpm for 
5 minutes. They were resuspended in 1 mL of PBS. Each sample were split into two tubes (500 μL/tube) and each 
received 10 μL of PE Isotype IgG1 K Isotype Control reagent or 10 μL of PE Mouse Anti-Human CD49a reagent. 
These cells were incubated in 37 °C for 45 minutes before flow analysis using the FACS machine.

Dual Staining Assay.  Cells were harvested directly from a 10-cm plate using PBS and 0.25% trypsin. After pel-
leting the cells at 1000 rpm for 5 minutes, these cells were resuspended in 5 mL of 10% FBS medium. 2 × 106 cells 
were aliquoted and spun at 1000 rpm for 5 minutes. After aspirating the supernatant, the tubes with the pellets 
were immediately transferred outside of the hood onto ice. Resuspended the pellet in 2 mL of ALDEFLUOR assay 
buffer then split into two tubes (1 mL/tube) and labeled as PE or CD49a. To both tubes, added 5 μL of activated 
ALDEFLUOR reagent and were split into two tubes (0.5 mL/tube) and labeled as follows: PE-DEAB, PE-Test, 
CD49a-DEAB, or CD49a-Test. Immediately after, added 5 μL of ALDEFLUOR DEAB reagent to the tubes labeled 
DEAB. To the tubes labeled PE, added 10 μL of PE Mouse IgG1 K Isotype Control reagent and to the tubes labeled 
with CD49a, added 10 μL of PE Mouse Anti-Human CD49a reagent. All tubes were wrapped in foil and incubated 
at 37 °C for 45 minutes. After 45 minutes, the tubes were centrifuged at 1000 rpm for 5 minutes and pelleted in 
0.5 mL of ALDEFLUOR assay buffer. These samples were placed on ice until flow cytometry was performed.

TGFβ-Induced EMT.  Cells were plated at 5 × 104 cells/mL in 2 mL in a 6-well plate and left to attach over-
night. Cells were then treated with 2.5 ng/mL TGFβ or 0.1% BSA. Cells were maintained (media changed every 
48 hours and passaged when necessary) and retreated every 48 hours. Cells were expanded as needed. Cells were 
either lysed with RIPA Lysis Buffer containing phophotase and protease inhibitors and a western blot was per-
formed or RNA was harvested using the Thermo Scientific GeneJet RNA purification kit.

Gemcitabine Dose-Response Curves.  shRNA-transduced FG cells were cultured on tissue culture plas-
tic or collagen at 3 μg/mL for 7 days in the presence or absence of TGFβ at 2.5 ng/mL. Cells were then seeded as 



www.nature.com/scientificreports/

1 2Scientific Reports | 7: 10060  | DOI:10.1038/s41598-017-09946-z

described in the AQueous One Assay procedure and treated with a dose range of gemcitabine across 3 orders of 
magnitude including the previously established IC50 for these cells. The assay was harvested 96 hours later and 
dose-response curves were generated using Graph Pad Prism.

Chorioallantoic Membrane (CAM) Metastasis.  Chicken eggs were purchased from Meyer Hatchery, 
and incubated for 10 days at 37 °C, 60% humidity. The CAM Assay was preformed according to a previously 
described protocol48. On day 10 post fertilization, the CAM was dropped and the eggs were windowed. A plastic 
ring was then placed on the CAM and cells were xenografted within the ring. Surgical tape was then placed over 
the window, and the egg was then placed back into the incubator. Alternatively, cells were prepared as described 
in Fig. 6A prior to xenografting. After an additional 7 day incubation time, the egg was opened and the primary 
tumor was removed from the CAM. The embryo was then extracted from the egg and sacrificed. Liver, lung and 
brain tissue was collected and flash frozen then stored at −80 °C until processed. Upon processing, the tissue was 
thawed on ice, weighed and homogenized in digestion solution. Samples were then heated at 57 °C for 5 hours. 
Genomic DNA was then extracted using Thermo Scientific GeneJet Genomic DNA purification kit. DNA con-
centration was then quantified by NanoDrop. gDNA was then diluted to 22.5 ng/mL and qPCR was preformed 
for human alu and chicken gapdh sequences. Relative metastasis was calculated as previously described48. Briefly, 
dCt values were calculated as aluCt - gapdhCt. ddCt values were calculated as dCtshITGA1 -Average dCtshScramble. RQ 
values were calculated as 2e(−ddCt).

Statistical Significance Analysis.  Unless noted otherwise in figure legends, statistical significance was 
calculated as unpaired p-value of less than 0.05 via Student’s T-test using GraphPad Prism (GraphPad Software 
Inc.). All graphs show representative mean + SEM from across at least three experimental replicates.

Data Availability.  The datasets generated during and/or analysed during the current study are available in 
the Oncomine (www.oncomine.org), Human Protein Atlas (http://www.proteinatlas.org) and Cytoscape Agilent 
Literature Search (http://www.cytoscape.org/) repositories.
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