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Abstract

Objectives: The purpose of this study was to validate a patch-based image

denoising method for ultra-low-dose CT images. Neural network with

convolutional auto-encoder and pairs of standard-dose CT and ultra-low-dose

CT image patches were used for image denoising. The performance of the

proposed method was measured by using a chest phantom.

Materials and methods: Standard-dose and ultra-low-dose CT images of the chest

phantom were acquired. The tube currents for standard-dose and ultra-low-dose CT

were 300 and 10 mA, respectively. Ultra-low-dose CT images were denoised with

our proposed method using neural network, large-scale nonlocal mean, and block-

matching and 3D filtering. Five radiologists and three technologists assessed the

denoised ultra-low-dose CT images visually and recorded their subjective

impressions of streak artifacts, noise other than streak artifacts, visualization of

pulmonary vessels, and overall image quality.

Results: For the streak artifacts, noise other than streak artifacts, and visualization

of pulmonary vessels, the results of our proposed method were statistically better

than those of block-matching and 3D filtering (p-values < 0.05). On the other
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hand, the difference in the overall image quality between our proposed method and

block-matching and 3D filtering was not statistically significant (p-value =

0.07272). The p-values obtained between our proposed method and large-scale

nonlocal mean were all less than 0.05.

Conclusion: Neural network with convolutional auto-encoder could be trained

using pairs of standard-dose and ultra-low-dose CT image patches. According to

the visual assessment by radiologists and technologists, the performance of our

proposed method was superior to that of large-scale nonlocal mean and block-

matching and 3D filtering.

Keywords: Computer science, Medical imaging

1. Introduction

Advances in CT technology have improved image quality and increased the total

number of CT examinations. However, this has raised concerns about radiation

exposure and the potential cancer risk induced by it [1]. To limit the radiation dose,

low-dose CT (LDCT) was performed in clinical situations. For example, National

Lung Screening Trial confirmed a 20% reduction in lung cancer mortality among

subjects allocated to a LDCT screening group [2].

Although LDCT has proven useful for screening of lung cancer, the cumulative

radiation dose associated with LDCT is a major problem. McCunney et al. showed

that the cumulative radiation dose from LDCT screening could exceed that

received by nuclear workers or atomic bomb survivors if LDCT lung cancer

screening was conducted over a 20–30-year period [3]. They also showed that such
a radiation dose could independently increase the risk of lung cancer beyond that

associated with cigarette smoking.

To overcome this issue, ultra-low-dose CT (ULDCT) has been studied intensively

[4, 5, 6]. Because images obtained by LDCT or ULDCT are severely affected by

noise (e.g., streak artifact) and differentiation between normal/abnormal findings

on the noisy CT images is difficult, image-processing techniques have been

utilized to improve image quality of LDCT or ULDCT [4, 5, 6, 7, 8, 9, 10]. While

many methods have been proposed in previous studies, image-processing

techniques of LDCT or ULDCT can be roughly divided into two categories:

raw-data-based techniques [4, 5, 6] and post-processing techniques [7, 8, 9, 10]. In

the present study, we focused on post-processing techniques. Although the major

strength of post-processing techniques is that it can be applied directly to CT

images, it is often difficult to differentiate noise and artifacts from the actual signal

on the noisy images. For example, Chen et al. showed that although one type of

large-scale nonlocal mean (LNLM) [7, 11] was useful for denoising abdominal

LDCT images, the LNLM method was not effective in suppressing the non-

stationary streak artifacts in thoracic CT images [8].
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One previous study showed that it was possible to achieve state-of-the-art image-

denoising performance with plain multilayer perceptron that maps noisy image

patches onto noise-free ones [12]. The performance of this perceptron could rival

that of block-matching and 3D filtering (BM3D) [13], a well-engineered image-

denoising algorithm. In line with this trend, the present study utilized neural

network for image denoising of ULDCT images as a post-processing technique.

One approach to use neural network as image denoising is denoising auto-encoder

(DAE), a special type of neural network. DAE takes a pair of original input and

noisy input, maps the noisy input to the latent representation, and uses the latent

representation to reconstruct the output [14]. DAE trains its parameter such that the

loss between the original input and its reconstruction is reduced. While noise was

artificially added to the original input in the previous study of DAE, pairs of

standard-dose CT (SDCT) and ULDCT image patches were used to train DAE in

the present study. In addition, we utilized convolutional auto-encoder (CAE) [15]

to improve image denoising. If CAE is successfully trained with pairs of SDCT and

ULDCT image patches, CAE would output the noise-free image patch of ULDCT.

The objectives of the present study were: i) to validate a patch-based, neural-

network-trained image-denoising method for ULDCT images; ii) to train the neural

network with CAE and pairs of SDCT and ULDCT image patches; and iii) to

investigate the performance of our proposed method using a chest phantom. In

addition, our proposed method was compared with the method proposed by Chen

et al. [16].

2. Materials and methods

The present study was experimental, and phantom study was performed. No patient

information was used in the present study.

2.1. CT scan of chest phantom

Helical CT scans of chest phantom (PBU-X-21; Kyoto kagaku, Japan) were

acquired from lung apices through lung bases using a 16-detector row scanner

(lightspeed; GE Healthcare, USA). During a CT examination session, one set of

SDCT images and two sets of ULDCT images were obtained. One set of UDLCT

images was used for training, while the other was used for testing. The following

CT parameters were used: tube current, 300 mA (SDCT) or 10 mA (ULDCT); tube

potential, 120 kV; and gantry rotation time, 0.5 s. Raw CT data were reconstructed

into 1.25-mm-thick images using high-frequency kernel. The CT scanner was

calibrated regularly.
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2.2. Denoising auto-encoder

DAE [14] is a special type of 3-layered neural network comprising an input layer,

one-hidden layer, and an output layer. First, the data set Dn = {x1, . . . , xn} is

prepared, where xi is a d-dimensional vector. Then, noise is added to xi (e.g.,
Gaussian noise), and pairs of original input and noisy input, Tn = {(x1, y1), . . . ,

(xn, yn}}, are constructed, where yi is obtained by adding noise to xi. DAE takes yi
and maps it to the latent representation hi using a function hi = σ (W yi + b) with
parameters {W, b}. Here, σ is an activation function, and the sigmoid function was

used in our main experiment. Then, the latent representation hi is used to

reconstruct the clean output xi’ by reverse mapping xi’ = σ (W’ hi + b’) with

parameters {W’, b’}, where the first parameter is constrained as W’ = WT. This

constraint means that the same weights are used for encoding the input and

decoding the latent representation. The parameters are optimized, minimizing an

appropriate cost function between xi and xi’ (i = 1, . . . , n) over the training set

Tn. If the training is successfully performed, DAE reconstructs the clean output

from the noisy input. A schematic illustration of the training DAE is shown in

Fig. 1.

2.3. Convolutional auto-encoder

Although the DAE ignores the 2D-image structure, CAE preserves the spatial

locality of the 2D image [15]. While the architecture of CAE is similar to that of

DAE, the major difference between DAE and CAE is that i) the weights are shared

and ii) CAE takes a 2D image as its input. First, pairs of original and noisy images,

Tn = {(x1, y1), . . . , (xn, yn)}, are given as training set to CAE. For a noisy image

y (here, index i is omitted), the latent representation of the k-th feature map is given

by hk = σ (y ∗ Wk + bk), where ∗ denotes the 2D convolution and Wk is the weight

of the k-th feature map. The reconstruction x’ is obtained using x’ =

σ ∑
k ∈ H

hk �W 0k þ c
� �

, where c is a bias parameter, H identifies the group of

[(Fig._1)TD$FIG]

Fig. 1. Schematic illustration of training the conventional DAE. Abbreviation: DAE, denoising auto-

encoder.
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latent feature maps, and W’ identifies the weights. The parameters of CAE are

trained, minimizing a cost function. In the present study, the cost function of

CAE is the mean squared error (MSE) between xi and xi’ (i = 1, . . . , n) over

the training set Tn: MSE ¼ 1
n∑

n

i¼1
xi � x0ið Þ2. After the training, CAE can reconstruct

the clean 2D image from the noisy 2D image. In the present study, CAE was

implemented using Python (http://www.python.org/) and chainer (http://www.

chainer.org/).

2.4. Preprocessing of CT images and preparation of the training
set

Before training CAE, patches of the SDCT and ULDCT images were prepared.

First, the SDCT and training ULDCT images were three-dimensionally co-

registered using Advanced Normalization Tools [17] because misregistration

between the SDCT and ULDCT images was caused by the difference in CT scan

path. Then, pairs of image patches with sizes = 28 × 28 pixels were randomly

extracted from lungs of the SDCT and training ULDCT images, and 100,000 pairs

were obtained for training. Here, pairs of patches of SDCT and ULDCT images

were represented as Tn = {(x1, y1), . . . , (xn, yn)}, where xi and yi are patches

obtained from SDCT and ULDCT images, respectively. Next, for ease of training,

the CT value of each pixel in the image patches was converted to results of the

following function f(x):

f ðxÞ ¼
0 if x < � 1500
1 if x > 1500
ðx þ 1500Þ = 3000 otherwise

8<
: [I]

where x is CT value. After converting the CT value, Tn was used for training of

CAE. As stated, the number of patches was 100,000 in the training set. A

schematic illustration of the preprocessing of CT images and the training of CAE is

shown in Fig. 2. To evaluate the effectiveness of the training, other pairs of image

patches were obtained from the SDCT and training ULDCT images (these pairs are

referred to as validation set). The number of patches was 10,000 in validation set.

2.5. Architecture of CAE and its training

The sizes of the latent representation and the output of CAE were affected by

padding and kernel of 2D convolution. To maintain the size of the input, the latent

representation, and the output at constant value (28 × 28 pixels), the following

value was used: kernel, 3 × 3 pixels; and padding, 1 × 1 pixels. In addition, the

following numbers of feature maps were tested: 20, 30, and 40. Typically, CAE is

3-layered neural network. However, a previous study showed that multilayer

perceptron with four hidden layers showed better performance than that with two

hidden layers [12]. Therefore, CAE with multiple hidden layers was used in the
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present study (CAE with multiple hidden layers corresponds to conventional

convolutional network without a pooling layer). Fig. 3 illustrates the network

architecture of CAE with multiple hidden layers. The following numbers of hidden

layers were tested: 1, 3, 5, 7, 9, and 11.

[(Fig._2)TD$FIG]

Fig. 2. Schematic illustration of the preprocessing of CT images and training CAE. Abbreviation: CAE,

convolutional auto-encoder; SDCT, standard-dose CT; ULDCT, ultra-low-dose CT.

[(Fig._3)TD$FIG]

Fig. 3. Network architecture of CAE with multiple hidden layers. Note: CAE with multiple hidden

layers corresponds to conventional convolutional network without a pooling layer. In the current study,

the number of hidden layers ranged from 1 to 11. The number of feature maps were 20, 30, and 40. To

maintain the sizes of the input, the latent representation, and the output at 28 × 28 pixels, the following

value was used: kernel, 3 × 3 pixels; padding, 1 × 1 pixels. Abbreviation: CAE, convolutional auto-

encoder.
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The training set was used for training of CAE. Then, the effectiveness of the

training was evaluated with the validation set and its MSE. This evaluation was

performed for each parameter of CAE, and the best parameters were selected based

on the MSE of the validation set.

2.6. Application of CAE to image denoising of CT

To denoise ULDCT images, ULDCT image was decomposed into overlapping

patches, and each image patch was denoised separately [12]. In the present study,

the overlapping image patches were obtained pixel-by-pixel on the ULDCT image,

and the image patch was denoised with the best CAE selected in the previous step.

After obtaining the denoised patches, the denoised images were obtained by

placing these patches and then averaging over the overlapping regions. The CT

value was converted using the function [I] before denoising, and inverse

transformation of the function [I] was performed after denoising. The testing

UDLCT images without image registration were used for assessment of the

denoised image.

2.7. Other methods of image denoising

The DAE, LNLM, and BM3D methods were tested for comparison with CAE. As

shown in the Results section, because the effectiveness of training for DAE was

worse than that for CAE, image denoising was not evaluated for DAE. Only MSE

of DAE was compared with that of CAE. To train DAE with image patches, the

patches of training and validation set were vectorized. After vectorization, the

preprocessing using the function [I] was performed before training DAE.

CT images denoised by LNLM and BM3D were compared with those denoised by

CAE. For image denoising with LNLM and BM3D, conversion of CT value using

the function [I] and inverse transformation of the function [I] were performed as in

CAE. For LNLM, the pixel values on denoised image is replaced by the weighted

average of pixel values on noisy image located in a neighborhood window. Each

weight expresses the similarity in intensity between the central pixel in the window

and each neighboring pixel and is given by difference between patch of the central

pixel and that of the neighboring pixels [7, 8]. The following parameters were

tested for LNLM: patch size, 11 × 11; distance between the patches, 41 × 41 or 81

× 81; h, 0.0001–0.05. In BM3D, image denoising is based on a sparse

representation in transform-domain. The enhancement of the sparsity is achieved

by grouping similar 2D fragments of the image into 3D group. Then, collaborative

filtering is performed, which is developed for dealing with these 3D groups. The

collaborative filtering reveals even the finest details shared by grouped fragments

and at the same time it preserves the essential unique features of each individual

fragment [13]. For the sigma parameter of BM3D, the range 5–40 was tested. In
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both LNLM and BM3D, the 1st- and 2nd-best parameters were selected from more

than 10 combinations of denoising parameters based on visual assessment of the

overall quality of the denoised ULDCT image.

2.8. Visual assessment of the denoised image

The testing ULDCT images of the upper-, middle-, lower-lung fields were

denoised with CAE, LNLM, and BM3D. Five radiologists with 1, 4, 8, 8, and 11

years of experience and three technologists visually assessed the denoised CT

images in lung window with a level setting of 1,500/−600 HU. They were unaware
of the denoising methods or parameters used. The CT images denoised with CAE,

LNLM, and BM3D were visually evaluated side-by-side. The readers indepen-

dently recorded their subjective impression of the following four items: streak

artifacts, noise other than streak artifacts, visualization of pulmonary vessels, and

the overall image quality. The denoising methods were ranked by the readers for

each image and item. The ranks of the three images (the denoised ULDCT images

of upper-, middle-, and lower-lung fields) were summed, and the sum of the ranks

of the three images was recorded as the result of the visual assessment. Because

each reader selected rank from 1 to 5 for each slice, the result of visual assessment

ranged from 3 to 15.

2.9. Objective assessment of the denoised image

Peak signal to noise ratio (PSNR) and structural similarity index (SSIM) [18] were

used for objective assessment of the denoised image. Because the training set was

obtained from CT images of the phantom lungs and subjective evaluation of the

denoised image was performed for evaluating the phantom lungs, PSNR and SSIM

were calculated using only the pixels of the phantom lungs. For this purpose, pixel

values of the SDCT images and the ULDCT images were converted 0 if the pixels

did not belong to the phantom lungs. Lung segmentation was performed for SDCT

image by using region growing method and threshold = −500 HU [19]. Then,

binary closing was applied to the result of lung segmentation to include lung vessel

in the result of lung segmentation. The result of lung segmentation was validated

visually by one board-certified radiologist (MN). The visually-validated result of

lung segmentation was used for calculation of PSNR and SSIM.

2.10. Statistical analysis

For each item of visual assessment, the differences in the ranks between various

denoising methods were assessed by Mann–Whitney U test. As the readers

conducted the visual assessment independently, a statistical test could be

performed. P-value <0.05 was considered to indicate statistical significance. All

analyses were performed by R-3.1.1 (available at http://www.r-project.org/).
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2.11. Extension of our CAE method and additional comparison

Additionally, our proposed method was extended and compared with the method

proposed by Chen et al. [16]. Because Chen’s paper was published after our paper

was submitted to Heliyon, extension of our proposed method and comparison

between our proposed method and Chen’s method was separated from the main

experiment.

The following parameters were used for Chen’s method in the current study,

because Chen’s paper does not fully show their parameters of convolutional neural

network (padding sizes).

• Number of convolution layers was 3. (Number of hidden layers was 2).

• Activation function was Rectified linear units (ReLU).

• Filter numbers (number of feature maps) in the hidden layers were 64 and 32.

• Filter sizes (kernel sizes of convolution) were 9, 3 and 5.

• Padding sizes were 4, 1, and 2.

The network architecture specified by these parameters of Chen’s method can be

viewed as a special case of our method shown in Fig. 3. Major differences between

Chen’s method and our proposed method shown in Fig. 3 are: (i) the type of

activation function (sigmoid vs ReLU), and (ii) sizes of kernel and padding (sizes

of kernel and padding were fixed in our proposed method of the main experiment).

From the viewpoint that Chen’s method can be viewed as a special case of our

proposed method of the main experiment, we fully optimized the network

architecture of Fig. 3. We performed random search [20], and the following

parameter space was used for optimizing the network architecture of Fig. 3;

• Numbers of hidden layers were randomly selected from 1, 3, 5, 7, 9, or 11.

• Activation function was ReLU.

• Filter numbers in the hidden layers were randomly selected from 16, 32, 48, or

80.

• Kernel sizes in convolution were randomly selected from 3, 5, 7, 9, or 11.

• Padding sizes were calculated from kernel sizes using the following equation:

(padding size) = decimal_truncation((kenel size)/2). For example, if kernel size

is 7, then padding size is 3.

In short, we searched the best parameters of numbers of hidden layers, filter

numbers, and kernel sizes in this optimization. The random search was performed

100 times, and the best MSE of validation set and its corresponding parameters

were selected. In this additional experiment, the same training set and validation

set as the main experiment were used in both our proposed method and Chen’s
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method. ULDCT images denoised with optimal method in the additional

experiment were also evaluated as in the main experiment.

3. Results

Fig. 4 show the effect of CAE parameters on MSE value obtained from the

validation set. As shown, the MSE of the validation set decreased as the number of

hidden layers increased. However, when the number of hidden layers was 7–11, the
effect of the number of hidden layers was small. In the present study, the best

parameters were: number of layers, 9; and number of feature maps, 20. These

parameters were used for the image denoising of the ULDCT images.

Table 1 shows the effect of the DAE parameters on MSE obtained from the

validation set. While DAE was tested with 1, 3, and 5 hidden layers, the MSE with

5 hidden layers was worse than that with 3 hidden layers. This result suggests that

DAE with many hidden layers resulted in vanishing gradients or overfitting.

According to Fig. 4 and Table 1, the effectiveness of training in DAE was worse

than that in CAE.

The radiologists and technologists visually evaluated the images of Fig. 5. The

following parameters were selected for visual assessment of LNLM and BM3D:

for LNLM, patch size = 11 × 11, distance between the patches = 81 × 81, and h =

0.02 or 0.03; for BM3D, sigma = 20 or 25. Table 2 and Table 3 and Fig. 6 show

the results of visual assessment of the testing ULDCT images denoised with CAE,

LNLM, and BM3D. The raw data of visual assessment are provided in Fig. 6.

According to Table 3, except the difference in the overall image quality between

BM3D with sigma = 20 and CAE, the p-values between CAE and the other

denoising methods were less than 0.05. The results of objective assessment of the

[(Fig._4)TD$FIG]

Fig. 4. Effect of CAE parameters on MSE obtained from the validation set of image patches. Note:

Before denoising the image patches of validation set, MSE between image patches of the SDCT and

those of the ULDCT was 2.104. Abbreviation: MSE, mean squared error; CAE, convolutional auto-

encoder; SDCT, standard-dose CT; ULDCT, ultra-low-dose CT.
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ULDCT images are shown in Table 4. Table 4 shows that, as lung CT images, the

best PSNR and SSIM were obtained in CAE. Generally, CAE outperformed both

LNLM and BM3D. Fig. 7 shows the axial, sagittal, and coronal images of the

testing ULDCT, which were denoised slice by slice with CAE.

For the additional experiment, MSE of the validation set was as follows: optimal

method in the main experiment, 0.478; Chen’s method, 0.365; optimal method in

the additional experiment, 0.255. The parameters of optimal architecture in the

additional experiment were as follows: number of hidden layers, 7; filter numbers

Table 1. Effect of DAE parameters on MSE obtained from the validation set of

image patches.

number of hidden layers number of hidden units per one layer

1000 2000 3000 4000

1 0.827 0.799 0.794 0.788

3 0.663 0.645 0.639 0.640

5 0.999 1.064 1.087 11.345

Note: Before denoising the image patches of the validation set, the MSE between image patches of

SDCT and those of ULDCT was 2.104. Abbreviation: MSE, mean squared error; DAE, denoising auto-

encoder; SDCT, standard-dose CT; ULDCT, ultra-low-dose CT.

[(Fig._5)TD$FIG]

Fig. 5. Testing ULDCT images denoised with CAE, LNLM, and BM3D. A, B, and C show the upper-,

middle-, and lower-lung fields, respectively. The denoising methods and parameters of these images

were: 1st column, BM3D with the parameter of sigma = 25; 2nd column, BM3D with the parameter of

sigma = 20; 3rd column, LNLM with the parameter of h = 0.03; 4th column, LNLM with the parameter

of h = 0.02; 5th column, CAE. Abbreviation: CAE, convolutional auto-encoder; ULDCT, ultra-low-

dose CT; LNLM, large-scale nonlocal means.
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in the hidden layers, 16, 64, 48, 64, 80, 48, 32; kernel sizes, 5, 7, 9, 5, 11, 5, 3, 3;

padding sizes, 2, 3, 4, 2, 5, 2, 1, 1. According to these results, MSE of Chen’s
method is better than that of optimal method in the main experiment. However, by

optimizing network architecture shown in Fig. 3, MSE of optimal method in the

additional experiment was better than that of Chen’s method. Visual assessment of

the denoised CT images was performed for comparison between the 3 methods.

According to the results of the one-board radiologist (MN), image quality of these

3 methods was very similar, and it was difficult for the radiologist to rank these 3

methods. Results of objective assessment of the denoised CT images was shown in

Table 5. The results show that image quality of ULDCT images denoised with

optimal method in the additional experiment was slightly better than that with

Chen’s method.

Table 2. Results of visual assessment of the denoised ULDCT images.

Visual assessment BM3D25 BM3D20 LNLM0.03 LNLM0.02 CAE

streak artifact mean 7.63 8.00 11.75 14.63 3.00

SD 1.11 0.87 1.20 0.48 0.00

noise other than streak artifact mean 7.63 7.38 11.88 15.00 3.13

SD 0.86 0.70 0.33 0.00 0.33

visualization of vessel mean 9.25 8.88 11.13 10.75 5.00

SD 2.05 2.03 1.36 3.56 3.00

overall image quality mean 7.88 7.00 12.38 13.00 4.75

SD 1.36 1.80 1.65 2.06 2.73

Note: The values of the mean and SD cells were calculated from the results provided by the 8 readers. In

the mean cell, the lower value is better. The best is 3, and the worst is 15. Abbreviation: BM3D25,

BM3D with the parameter of sigma = 25; BM3D20, BM3D with the parameter of sigma = 20; CAE,

convolutional auto-encoder; LNLM, large-scale nonlocal means; LNLM0.03, LNLM with the parameter

of h = 0.03; LNLM0.02, LNLM with the parameter of h = 0.02; ULDCT, ultra-low-dose CT.

Table 3. Results of statistical tests between CAE and other denoising methods.

Visual assessment BM3D25 vs CAE BM3D20 vs CAE LNLM0.03 vs CAE LNLM0.02 vs CAE

streak artifact 0.0003491 0.0003212 0.0003615 0.0003098

noise other than streak artifact 0.0004935 0.0004779 0.0002950 0.0002054

visualization of vessel 0.01785 0.02452 0.003091 0.01356

overall image quality 0.02474 0.07272 0.001622 0.001326

Note: The number is the p-value obtained with Mann-Whitney U test. Except the overall image quality between BM3D20 and CAE, the

p-values are less than 0.05. Abbreviation: BM3D25, BM3D with the parameter of sigma = 25; BM3D20, BM3D with the parameter of

sigma = 20; CAE, convolutional auto-encoder; LNLM, large-scale nonlocal means; LNLM0.03, LNLM with the parameter h = 0.03;

LNLM0.02, LNLM with the parameter of h = 0.02.
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[(Fig._6)TD$FIG]

Fig. 6. Raw Results of visual assessment of denoised ULDCT images assessed by the 8 readers.

(A)–(D), raw results of streak artifacts, noise other than streak artifacts, visualization of pulmonary

vessels, and overall image quality, respectively. Note: The sum of the ranks obtained from the three

denoised ULDCT images was recorded as the result of the visual assessment. Abbreviation: BM3D25,

BM3D with the parameter of sigma = 25; BM3D20, BM3D with the parameter of sigma = 20; CAE,

convolutional auto-encoder; LNLM, large-scale nonlocal mean; LNLM0.03, LNLM with the parameter

of h = 0.03; LNLM0.02, LNLM with the parameter of h = 0.02.
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4. Discussion

The results of the present study show that it was possible to train CAE with pairs of

SDCT and ULDCT image patches and to use the trained CAE for patch-based

image denoising of ULDCT images. In addition, the results of visual assessment by

the radiologists and technologists show that the performance of CAE was better

than that of LNLM or BM3D. These results validate the usefulness of image

denoising of ULDCT using CAE.

Reduction of radiation dose results in an increase of CT image noise, which is an

important factor reducing image quality. Because the high contrast between air and

other tissues in lungs helps to maintain diagnostic accuracy, radiologists can

reliably evaluate chest LDCT images. In contrast, as severe noise and a significant

number of artifacts are present in chest ULDCT images, ULDCT hinders the

radiologists’ evaluation. To reduce the noise or artifacts in LDCT or ULDCT

Table 4. Results of objective assessment of the ULDCT images.

PSNR SSIM

upper middle lower upper middle lower

Undenoised 58.221 57.593 60.173 0.99791 0.99756 0.99865

BM3D25 61.756 60.973 61.485 0.99888 0.99863 0.99892

BM3D20 61.753 60.977 61.767 0.99890 0.99865 0.99898

LNLM0.03 60.098 59.205 61.091 0.99857 0.99821 0.99886

LNLM0.02 58.282 57.646 60.876 0.99794 0.99759 0.99882

CAE 64.634 62.354 62.363 0.99948 0.99900 0.99911

Note: upper, middle, and lower represent upper-, middle-, and lower-lung field, respectively.

Abbreviation: BM3D25, BM3D with the parameter of sigma = 25; BM3D20, BM3D with the parameter

of sigma = 20; CAE, convolutional auto-encoder; LNLM, large-scale nonlocal means; LNLM0.03,

LNLM with the parameter h = 0.03; LNLM0.02, LNLM with the parameter of h = 0.02; ULDCT, ultra-

low-dose CT; PSNR, peak signal to noise ratio; SSIM, structural similarity index.

[(Fig._7)TD$FIG]

Fig. 7. Axial, sagittal, and coronal images of the testing ULDCT which were obtained by denoising

with CAE slice-by-slice. Abbreviation: ULDCT, ultra-low-dose CT; CAE, convolutional auto-encoder.
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images, various types of post-processing techniques have shown potential for

reduction of CT radiation dose.

This paper proposes to denoise ULDCT images using CAE. Previously, non-

medical images, such as images of human faces, vegetables, and birds have been

denoised with neural network [12, 21, 22], and multilayer perceptron or

convolutional neural network have achieved good performance for image

denoising of non-medical images. For medical image denoising, there are several

studies to use conventional neural network [23, 24, 25, 26, 27, 28, 29, 30, 31]. On

the other hand, literature survey of Litjens et al. shows that, in deep learning with

convolutional neural network or CAE, number of applications of image

enhancement like image denoising is limited [32]. Only a few studies show the

usefulness of deep learning for image enhancement of CT [16, 33].

Although the previous study shows that multilayer perceptron with four hidden

layers performed better than that with two hidden layers [12], Table 1 shows that

the neural network with many hidden layers resulted in vanishing gradients or

overfitting. CAE was used in the present study to overcome these problems, and

our results show that CAE with many hidden layers, corresponding to

convolutional neural network without a pooling layer, could be trained

successfully. In CAE, the large number of hidden layers resulted in better MSE.

These results of the present study validate the usefulness of deep learning with

convolutional neural network.

The advantage of CAE is twofold. First, it can be implemented on any CT scanner

without using raw CT data. There have been several studies that have showed the

usefulness of iterative reconstruction through raw-data-based techniques (e.g.,

ASIR or SAFIRE) for dose reduction of chest CT [4, 5, 6]. Because iterative

reconstruction technique is usable in relatively new CT scanners, the merits of the

iterative reconstruction technique cannot be accessed in institutions where older

Table 5. Results of objective assessment of the ULDCT images for the additional

experiment.

PSNR SSIM

upper middle lower upper middle lower

Optimal method in the main experiment 64.634 62.354 62.363 0.99948 0.99900 0.99911

Chen’s method 64.845 62.390 62.648 0.99950 0.99900 0.99920

Optimal method in the additional experiment 64.884 62.464 62.678 0.99951 0.99901 0.99921

Note: upper, middle, and lower represent upper-, middle-, and lower-lung field, respectively.

Abbreviation: ULDCT, ultra-low-dose CT; PSNR, peak signal to noise ratio; SSIM, structural similarity

index.
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CT scanners are used. This limitation does not exist for post-processing techniques

including our CAE method. Second, CAE utilized machine learning to denoise

ULDCT images. If training data are plentiful and training of CAE is successfully

performed, CAE can automatically optimize an efficient and accurate way to

denoise CT images without exact knowledge of the CT scanner model and

reconstruction algorithm. In addition, if training data are prepared for each CT

parameter (e.g., CT scanner model, radiation-dose level, reconstruction algorithm,

and so on), CAE will potentially become useful for automatically optimizing the

denoising technique CT images depending on these CT parameters. This scheme

would reduce the cost of tuning denoising methods.

The results of visual assessment show that, for noise or artifact reduction, CAE was

superior to LNLM or BM3D (p-values < 0.05). Although the difference in the

overall image quality between BM3D with sigma = 20 and CAE was not

statistically significant (p-value = 0.07272), the image quality of CAE tended to be

better than that of BM3D. In addition, the image quality of CAE was significantly

better than that of LNLM. These results validate the usefulness of CAE for image

denoising of ULDCT images.

There were several limitations in the present study. First, because the present study

was experimental, we could not use clinical LDCT or ULDCT images. It is

possible that, if patient data is used, our results will not be reproduced. For further

study, we would evaluate CAE with the CT images obtained from clinical patients.

Second, the raw-data-based techniques were not evaluated in the present study, as

the iterative reconstruction technique was not available in the CT scanner of our

institution. Therefore, we could not compare CAE with iterative reconstruction

technique. If a CT scanner equipped with the iterative reconstruction technique is

available, we will compare CAE with the iterative reconstruction technique.

In conclusion, the current study proposed image denoising with CAE, which was

trained with the patches of SDCT and ULDCT images. After training of CAE,

ULDCT images could be reliably denoised. According to visual assessment by

radiologists and technologists, the performance of CAE was superior to that of

LNLM and BM3D.
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