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Following the seminal unravelling of the double helical structure of DNA by

Watson, Crick and colleagues in 1952, work of equal significance and similarly

recognized by a Nobel Prize led to the appreciation that DNA is an unstable struc-

ture subject to damage from chemical attack by agents arising endogenously or

exogenously, and from metabolic transactions, such as replication and transcrip-

tion [1,2]. The past 50 years has seen mounting recognition of the enormous

significance of DNA damage response (DDR) pathways in protecting against

the harmful effects of this damage, and particularly our understanding of the

DNA repair processes [1]. Indeed, we now understand the importance these path-

ways play in cancer avoidance, in protection against ageing and in ensuring

normal development [3,4]. We now have a good understanding of the basic

DNA repair processes, at least when considering their action on naked DNA.

However, in a cellular setting, our DNA is organized within a chromatin environ-

ment, which can represent a diverse range from open to closed conformations of

distinct types. Our DNA sequences can be unique or repetitive. And there are

ongoing DNA transactions, which can profoundly influence the DNA repair pro-

cesses. Thus, a current focus of research is to understand how chromatin is

modified and reorganized to allow optimal DNA repair and interplay between

the DDR and metabolic processes such as transcription and replication.

Our goal in this themed issue is to review our current understanding of the

epigenetic changes that arise in the vicinity of DNA double strand breaks

(DSBs) and the chromatin remodelling complexes employed to reorganize chro-

matin. While the focus lies on DSBs, we include a consideration of how DNA

damage influences transcription/replication as well as how chromatin is remo-

delled to allow replication since an evaluation of these interfacing processes is

integral to our understanding of the processes arising following DNA damage.

This area of research is still at an early stage. It is highly dynamic and, like all cur-

rent research, confusion and conflicting data sometimes precede clarity—and the

underlying mechanisms remain poorly defined. In this introductory report, we

summarize the goals of this theme issue and consider the current questions,

insights and apparent contradictions.

The ataxia telangiectasia mutated kinase (ATM) is the central orchestrator of

the DDR to DSBs [5]. ATM has long been recognized as a central regulator of pro-

cesses, such as cell cycle checkpoint arrest, that enhance the opportunity for

optimal DSB repair [6]. Recent studies have extended this notion to include

roles in inhibiting transcription specifically in the DSB vicinity [7,8]. Critically,

however, more recent studies have unearthed the central role that ATM plays in

orchestrating chromatin changes at a DSB. Indeed, while ataxia telangiectasia

(A-T), a disorder caused by mutations in ATM, was originally considered to be

a DNA repair disorder and later a checkpoint disorder, it could now be argued

to be a disorder that fails to appropriately orchestrate DSB-induced chromatin

changes, helping to explain its more significant role in higher compared with

lower organisms [9–15]. In our opening article, Goodarzi and colleagues [16]

set the scene by reviewing the complex nature of the chromatin changes regulated

by ATM at a DSB. The route by which ATM effects epigenetic changes at a DSB

has been emerging for several years. The process starts by ATM-dependent
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phosphorylation of H2AX, with this signal being read and

transduced via MDC1 binding to promote or expose additional

histone modifications including ubiquitination, SUMOylation

and methylation [17,18]. Importantly, these histone modifi-

cations exert two somewhat distinct endpoints; firstly,

histone modifications can directly effect the recruitment of

DDR proteins, such as BRCA1 and 53BP1, and secondly,

coupled with direct ATM-dependent phosphorylation of

DDR proteins, they can lead to the recruitment or modification

of chromatin remodelling complexes. Goodarzi and colleagues

[16] review insight into the mechanism of the ATM-dependent

processes regulating chromatin reorganization where detailed

knowledge is available. Wilson & Durocher [19], in our

second review, discuss how the distinct histone modifications

can be read to influence recruitment of DDR proteins. They dis-

cuss the characterized domains at a mechanistic and structural

level, revealing important insight into the ‘reading’ signatures

and the downstream consequences. Such ‘reading’ encom-

passes roles for BRCT, Tudor and ubiquitin binding domains

in binding to phosphorylation, methylation and ubiquitin

modifications but their interplay with readers of, for example,

acetylation, provides a network of balances. Extending this

theme, Miller and colleagues [20] focus on bromodomain

(BRD) proteins, discussing how they ‘read’ histone acetylation

and the route by which they promote chromatin remodelling.

Indeed, BRD-containing proteins are central to several chroma-

tin remodelling complexes, providing an interface with the

reviews that focus more on chromatin remodelling.

While modification of histone variant forms, such

as H2AX, H2AZ and H3.3, has been recognized for some

time to play critical roles in chromatin organization after

DNA damage or during transcription, the N-terminal tail

of H4, which has well conserved lysine residues primed for

acetylation at the amino group, is becoming increasingly

recognized as a central factor regulating the DDR [21,22].

Acetylation of the H4 tail can also directly influence chromatin

organization through charge-regulated histone interactions.

Moreover, as discussed in our second review [19], histone

acetylation can serve to block or restrict other modifications

on the same or nearby residues. Dhar et al. [23] provide a

focused review on the N-terminal tail of H4 considering the

processes influencing lysine acetylation, how it influences chro-

matin organization and the downstream impact on repair.

The ubiquitin-dependent molecular unfoldase/segregase,

p97, also known as VCP in vertebrates and Cdc48 in lower

eukaryotes, has emerged as another route by which epigenetic

modifications can influence chromatin remodelling at the sites

of DNA damage, as well as during transcription and repair

[24]. p97 is an AAAþ ATPase, which uses ATP to unfold or seg-

regate ubiquitinated substrates, targeting them for proteasome-

mediated degradation and relieving their impact on chromatin

structure. p97-mediated protein degradation can directly

impact upon DSB repair, such as the targeted removal of

DNA-bound Ku, but can also interface and cooperate with chro-

matin remodelling complexes to reorganize chromatin structure

after DNA damage. Somewhat distinctly, p97 can also regulate

the inhibition and recovery of transcription at the sites of

DNA damage via the removal of arrested RNA polymerase II.

Ramadan and colleagues [25] provide a review of the emerging

understanding of roles of p97 during DNA DSB repair.

While the phosphorylation, ubiquitylation and acetylation

modification machinery has been well examined, SUMO modi-

fiers, ‘reader’ motifs and interacting proteins have been less
well characterized, although there is clear evidence that

SUMOylation occurs during the DDR and directly influences

DSB repair [17]. Garvin & Morris [26] focus on these aspects

of SUMOylation in their review, providing a nice addition to

the reviews discussed above.

Chromatin remodelling enzymes use the energy derived

from the hydrolysis of ATP to alter the structure or composition

of chromatin. The enzymes can be divided into families based

on their domain organization, and most remodelling enzymes

are found within multisubunit complexes. While they all

share a related catalytic subunit, each remodelling enzyme (or

complex) leads to different outcomes, such as nucleosome

repositioning, histone eviction, or histone subunit exchange

[27]. This specificity in mode of action is generated by the acces-

sory domains and subunits attached to the motor proteins.

One remodelling complex, INO80, has been shown to play

numerous important roles in the maintenance of genome stab-

ility, with many of the insights generated in work done using

budding yeast as a model system. The review from Morrison

[28] focuses on the role of INO80 in mediating the checkpoint

response to replicative stress, which highlights the importance

of individual subunits of these complexes, since a key player

in this activity is the non-catalytic Ies4 subunit of INO80. In

addition, she discusses a mitotic role for INO80, which impacts

on the fidelity of chromosome segregation.

In a review from Poli and colleagues [29] the central role of

INO80 in mediating the complex interplay between replication,

transcription and DDRs is discussed. The authors point out

that this is no doubt a contributing factor to the known

impact of INO80 on development and disease in higher eukar-

yotes. In addition, this review brings up an important concept

related to the role of remodellers in DDRs: that of chromosome

mobility. It is perhaps intuitive that an increase in chromosome

mobility might facilitate the manipulation required to carry out

repair, but it was more surprising that some breaks are moved

to the nuclear periphery during the repair process. The contri-

bution of INO80 to these events is discussed.

Highly complementary with this review is one from Chiolo

and colleagues [30], which examines the challenges associated

with DSB repair in heterochromatin. This review focuses pri-

marily on work on Drosophila, where movement of DNA

breaks arising in heterochromatin is required for repair, but

the authors also highlight elements of the cellular responses

that are intriguingly conserved in other organisms. In addition,

they also consider the distinction between expansion of hetero-

chromatin and mobilization of the break to a new location,

and discuss the dynamic nature of heterochromatin proteins

in this process.

While INO80 plays a central role in DDRs, many more chro-

matin remodelling enzymes have also been implicated.

Clearly, the different enzymes contribute distinct functions to

the process of repair, and understanding why so many are

needed and what each one is doing is of great importance.

This is the subject of the review by Rother & van Attikum

[31], who cover the current state of knowledge around nine

remodellers with known functions in DNA repair. How each

of these is recruited to the right place at the right time, which

step in the repair process is promoted by each, and how the

complexes talk to each other are still very open questions.

As discussed above, the chromatin changes required to

optimize DSB repair must be evaluated in the context of

other DNA transactions, of which transcription is, arguably,

the most important process. Recent findings have revealed
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that RNA Pol II-dependent transcription is arrested in the

vicinity of a DSB in a manner that requires chromatin remodel-

ling, which may itself influence the DSB repair process [7,8,32].

Yasui and colleagues [33] provide a review of the chromatin

changes involved in that process. As discussed in this review,

emerging evidence indicates that there is a repair process that

occurs in regions open for transcription interfacing transcrip-

tional arrest and repair, akin to the distinction between

transcription coupled repair and global genome repair at UV

photoproducts. An emerging topic in the field of DNA repair

is the contribution of transcription and RNA to the repair pro-

cess [34–36]. In particular, DNA-RNA hybrids or R-loops can

present a source of DNA damage but equally can profoundly

influence the repair process. Sebastian & Oberdoerffer [37]

provide a timely review of the influence of RNA on genome

maintenance. Although less focused on chromatin, this

review is significant in overviewing the evidence for how

RNA or R-loops can drive transcription-associated DNA

damage as well as potentially providing a template to optimize

DSB repair. Insight into this novel aspect of DSB formation and

repair must be evaluated in future considerations of chromatin

changes at damage sites, particularly given recent evidence

that RNA can be transcribed in an end-templated manner [38].

The very early studies on A-T provided seminal evidence

for a role of ATM (although the causal genetic defect was

uncharacterized at that time) in arresting replication in the

presence of DSBs [13]. We still have only a poor understanding

of how ATM influences replication and, more significantly, the

chromatin changes required to promote replication. As a step

towards addressing this critical topic, Bellush & Whitehouse

[39] have discussed DNA replication in the context of a chro-

matin environment, considering origin licensing, origin firing

and the replication process itself. Although somewhat distinct

from our focus on DSB repair, an evaluation of replication in a

chromatin environment reveals the role of factors, including

chromatin remodelling complexes, that may also participate

in DSB repair as well as providing insight into the mechanism

underlying this related process.

What emerges from these reviews is the magnitude and

complexity of the changes that arise in the DSB vicinity, fre-

quently with seemingly conflicting consequences. Important

contributing factors to the range of responses are the influence

of transcription, replication and other transactions involving

the DNA molecule coupled with the nature of the pre-existing

chromatin structure prior to DNA damage (e.g. unique or repeti-

tive sequences, heterochromatic or euchromatic); there are also

likely to be kinetic and distance related requirements forchroma-

tin structure at a DSB. Studies employing a site-specific DSB

have shown that there are temporal changes in chromatin struc-

ture, with early but transient chromatin expansion followed by

extensive and persistent condensation [40,41]. Nevertheless,

others have provided evidence that these changes occur in the

opposite order. Namely, there is an initial stage of recruitment

of repressive complexes such as HP1, H2AZ and the NuRD com-

plex, followed by a shift to a more open structure involving

acetylation of the H4 tail compaction with subsequent chromatin

relaxation [42,43]. This apparent contradiction may be due to the

different scales measured in the different approaches (for

example, immunofluorescence compared with chromatin

immunoprecipitation). Indeed, it seems likely that chromatin

relaxation, histone sliding or eviction will be required immedi-

ately adjacent to the DSB to facilitate repair while a compacted

environment may be required more distal to the DSB to restrict
translocation formation. An important goal for future work

will be to determine how the modifications and chromatin

dynamics change in a temporal and location-dependent

manner, as well as how they are influenced by ongoing

DNA transactions.

Similarly, the data regarding the role of upstream signalling

factors do not lend themselves well to a straightforward single

model. This is almost certainly due to the fact that not all events

will take place at every break. The location, timing, and com-

plexity of the break are just a few of the factors that might

influence which events are carried out and in what order.

Another critical question is about how the pre-existing

chromatin environment influences pathway usage so that the

cell uses the optimal choice. The core process of DNA non-

homologous end-joining (c-NHEJ) represents a compact pro-

cess, demanding little chromatin opening. There may, in fact,

be a significant benefit from a highly compacted environment

distal to a DSB undergoing c-NHEJ to restrict the possibility of

translocation events, which can potentially occur readily by

c-NHEJ owing to the lack of requirement for sequence hom-

ology for rejoining. Homologous recombination (HR), in

contrast, necessitates extensive end-resection and histone

changes if branch migration also occurs and the extensive hom-

ology requirements restrict the opportunity for translocation

formation. However, paradoxically, the extensive chromatin

changes necessitated by HR may be a significant factor restrict-

ing its usage in higher organisms, where the precise epigenetic

code is complex but critical, since the precision of this code

needs to be reconstituted after the completion of repair.

Recent studies have suggested that, at least in late S/G2

phase, HR is exploited to repair DSBs within transcriptionally

active regions, a possibility that appears rational given the

potential enhanced accuracy of HR compared with NHEJ

[44]. As discussed in the review by Chiolo and colleagues

[30], there is also evidence, though with less obvious ration-

ality, that DSBs within repeat sequences may be preferably

repaired by HR. If correct, then what determines how the opti-

mal pathway is chosen and how do these signals interface with

damage-induced chromatin modifications?

If HR repairs transcription-associated DSBs in late S/G2

phase, then what happens to such DSBs in G1 phase? Recent

studies have revealed that the slow component of DSB repair

in G0/G1 phase cells occurs via a resection-mediated process

of c-NHEJ [45], which arises in a manner akin to HR in late

S/G2 phase cells [46]. This process will most likely require a

greater degree of chromatin relaxation than the fast process of

c-NHEJ, which occurs without the requirement for resection

nucleases. Significantly, many of the reporter constructs for

NHEJ are likely to monitor this resection-mediated NHEJ

process, since resection-independent c-NHEJ will predomi-

nantly reconstitute the restriction site. Thus, an important

future question is how damage-induced chromatin modifi-

cations and chromatin remodelling influence the usage of these

two forms of c-NHEJ (resection-independent or resection-

dependent) versus HR (dependent upon extensive resection).

However, to address such questions it is vital to understand

the factors influencing which repair pathway is optimally used,

which may itself be determined by pre-existing (i.e. non-DNA

damage-induced) chromatin modifications or structure.

Collectively, our reviews demonstrate the significance of

the nucleosome as a central hub that organizes the recruitment

of repair and signalling factors in a coordinated fashion to

achieve optimal DSB repair. Such optimal DSB repair may
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itself, however, be determined, at least in part, by the chroma-

tin environment prior to DNA damage. The optimal DSB

repair process at these distinct sites has possibly been evolutio-

narily determined by the route limiting genomic instability.

This encompasses a range of endpoints including the avoid-

ance of junctional deletions or missense mutations,

translocations and longer term epigenetic changes in the DSB

vicinity. Moreover, the ability to interface DSB repair with

the arrest and subsequent recovery of DNA transactions,

such as repair and replication, is clearly important. This

likely involves a complex network of changes in chromatin
structure that arise in a temporal- spatial- and context-

dependent manner. The future challenge lies in unravelling

this complex web.
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