
rstb.royalsocietypublishing.org
Review
Cite this article: Watanabe R, Kanno SI,

Mohammadi Roushandeh A, Ui A, Yasui A.

2017 Nucleosome remodelling, DNA repair

and transcriptional regulation build negative

feedback loops in cancer and cellular ageing.

Phil. Trans. R. Soc. B 372: 20160473.

http://dx.doi.org/10.1098/rstb.2016.0473

Accepted: 17 March 2017

One contribution of 14 to a theme issue

‘Chromatin modifiers and remodellers in DNA

repair and signalling’.

Subject Areas:
molecular biology, cellular biology

Keywords:
chromatin remodeling, nucleosome

remodeling, DNA repair, BAF complex,

cancer therapy, cellular aging

Author for correspondence:
Akira Yasui

e-mail: akira.yasui.d8@tohoku.ac.jp
†Present address: National Institutes of

Biomedical Innovation, Osaka 567-0085, Japan.
‡Present address: Department of Anatomical

Science, Faculty of Medicine, Hamadan

University of Medical Science, Hamadan, Iran.
§Present address: Tokyo University of

Technology, Tokyo 192-0983, Japan.
& 2017 The Author(s) Published by the Royal Society. All rights reserved.
Nucleosome remodelling, DNA repair
and transcriptional regulation build
negative feedback loops in cancer and
cellular ageing

Reiko Watanabe†, Shin-ichiro Kanno, Amaneh Mohammadi Roushandeh‡,
Ayako Ui§ and Akira Yasui

Division of Dynamic Proteome and IDAC Fellow Research Group for DNA Repair and Dynamic Proteome Institute
of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan

AY, 0000-0003-2130-0523

Nucleosome remodelling (NR) regulates transcription in an ATP-dependent

manner, and influences gene expression required for development and cellular

functions, including those involved in anti-cancer and anti-ageing processes.

ATP-utilizing chromatin assembly and remodelling factor (ACF) and

Brahma-associated factor (BAF) complexes, belonging to the ISWI and SWI/

SNF families, respectively, are involved in various types of DNA repair. Sup-

pression of several BAF factors makes U2OS cells significantly sensitive to X-

rays, UV and especially to cisplatin, and these BAF factors contribute to the

accumulation of repair proteins at various types of DNA damage and to

DNA repair. Recent cancer genome sequencing and expression analysis has

shown that BAF factors are frequently mutated or, more frequently, silenced

in various types of cancer cells. Thus, those cancer cells are potentially X-ray-

and especially cisplatin-sensitive, suggesting a way of optimizing current

cancer therapy. Recent single–stem cell analysis suggests that mutations and

epigenetic changes influence stem cell functionality leading to cellular ageing.

Genetic and epigenetic changes in the BAF factors diminish DNA repair as

well as transcriptional regulation activities, and DNA repair defects in turn nega-

tively influence NR and transcriptional regulation. Thus, they build negative

feedback loops, which accelerate both cellular senescence and transformation

as common and rare cellular events, respectively, causing cellular ageing.

This article is part of the themed issue ‘Chromatin modifiers and remodellers

in DNA repair and signalling’.
1. Introduction
DNA interacts closely with histones and other proteins to build chromatin, often

in a very compact configuration. To utilize the genetic information held in

DNA for transcription and replication, chromatin structure needs to be transiently

relaxed and remodelled and then to recover, in a process that is called chromatin

remodelling (CR). DNA damage of different types is produced in DNA, even

within a compact chromatin structure, where DNA repair proteins are inaccess-

ible, and DNA repair does not occur until chromatin structure relaxes. If DNA

damage is not repaired due to inaccessible chromatin structure, replication

encounters unrepaired DNA damage, which enhances the possibility of

genome instability, mutation, cellular senescence and cell death.

CR has a fundamental role in transcriptional regulation, and its mechanisms

have been extensively analysed in transcription research. There are two types of

CR: one initiated by various types of histone modification and the other by

ATP-dependent mobilization of nucleosomes; the latter is called nucleosome

remodelling (NR) [1–3], which will be discussed in terms of DNA repair in this

review. The functions of NR are nucleosome sliding, histone exchange and ejec-

tion of nucleosomes containing a target sequence, by utilizing ATP. NR also
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recovers the correct nucleosome spacing after the completion of

transcription and replication. In many cellular processes, both

enzymatic modification of histones and NR occur in a combined

manner to regulate chromatin structure [4]. Accumulating evi-

dence suggests that NR supports the repair of DNA damage.

Therefore, NR is important for transcriptional regulation and

DNA repair. The high frequency of mutation and silencing of

SWI/SNF NR factors recently found in cancer cells suggests fre-

quent genetic and epigenetic changes of NR genes and proteins.

As NR, DNA repair and transcriptional regulation all influence

each other, we discuss the possibility that defects in NR influ-

ence the integrity of genome and cellular functions, leading to

acceleration of both cellular senescence and transformation as

common and rare cellular events, respectively, and that they

cause cellular ageing.

2. Nucleosome remodelling influences DNA
damage response and DNA repair

NR complexes are divided into four families, SWI/SNF, ISWI,

CHD and INO80, each of which harbours a family-specific

ATPase; BRM or BRG1 (SWI/SNF), SNF2H (ISWI), CHD3

(CHD) and INO80 (INO80). In each family there are many

protein complexes consisting of an ATPase, core and variant

factors, targeting specific DNA sequences or chromatin for

the regulation of transcription in certain cellular tissues or at

specific developmental stages. NR is also necessary in DNA

replication for the process of opening up and reconstituting

chromatin, before and after DNA synthesis, respectively. The

influence of NR complexes or factors belonging to different

subfamilies on various DNA repair systems has been reported

in mammalian cells [5–11]. The accumulation of DNA repair

proteins at sites of DNA damage can be influenced by chroma-

tin itself due to the inability of repair proteins to access DNA

damage. If knockdown of an NR subunit decreases the access

of a DNA repair protein to its substrate DNA damage, thus

influencing repair of the damage and making cells sensitive

to the DNA-damaging agent, the NR subunit and possibly

its NR complex may be judged to be involved in the repair pro-

cess. However, questions remain as to which NR complex

contributes to DNA repair, which NR factors are involved in

the repair, which DNA repair is supported by NR, where

and when NR is required for DNA repair and how important

is the contribution of NR to cellular resistance against DNA

damage. The data reviewed here indicate that NR plays signifi-

cant roles in DNA damage repair and cellular resistance to

various types of DNA damage.
3. DNA damage response of ACF/CHRAC complex
of the ISWI family

The ISWI family of ATP-NR harbours SNF2H as the ATPase,

building an ATP-utilizing chromatin assembly and remodel-

ling factor (ACF) complex with ACF1. There are two

supporting factors influencing transcriptional regulation,

CHRAC15 and CHRAC17, which are known as subunits in

the Polymerase e complex and these build the CHRAC com-

plex with SNF2H and ACF1. All the subunits of CHRAC

accumulate at DNA damage, including DSB for example,

and interact via ACF1 with KU proteins when cells are treated

with bleomycin; in addition, they are required for cellular

resistance to X-rays, where DNA damage–induced interaction
between ACF1 and KU may initiate at least a part of the

repair process and NR [11]. ISWI contributes to non-homolo-

gous end joining (NHEJ), homologous recombination and

nucleotide excision repair (NER), suggesting a general role in

DNA repair [7,11]. Artemis-dependent NHEJ of DSB in hetero-

chromatin requires ACF1-SNF2H with the aid of RNF20-

mediated chromatin relaxation [12], suggesting a role for ISWI

NR in DNA repair in heterochromatin. Another paper has

reported that the deacetylase sirtuin 6 (SIRT6) recruits SNF2H

to DSB for CR to prepare for DSB repair [13]. Cooperation

between deacetylation of histone H3K56 and NR by SNF2H

may contribute to efficient DSB repair in heterochromatin.

4. DNA repair by nucleosome remodelling
complex belonging to SWI/SNF family

NR complex or subunits belonging to the SWI/SNF family

have been reported to be involved in various types of DNA

repair processes in various species [9,14–16]. The Brahma-

associated factors (BAF) complex consists of more than 13 sub-

units in mammalian cells and its precise components differ in a

tissue- and developmental stage–dependent manner [17,18]. A

BAF-like SWI/SNF complex, PBAF, has also been reported to

be required for the DNA damage response and repair [14].

Recently, whole-cell sequencing of cancer genomes has

revealed that a number of genes encoding the subunits of

BAF and PBAF are frequently mutated in various types of

cancer cells. The subunits of NR complexes in the SWI/SNF

family turned out to be mutated in around 20% of human can-

cers of various tumour types (see below) [19]. Therefore,

knowing which BAF factors are involved in DNA repair and

which DNA repair is under the influence of the repair-related

BAF complex becomes extremely important for understanding

DNA repair within cells. Furthermore, it suggests a possible

relationship between the high frequency of cancer with DNA

repair defects, and it may lead to an efficient cancer therapy

because of the repair defects in cancer cells. Another interesting

question is the difference in NR and its mechanisms between

transcription and DNA repair. DNA damage is produced any-

where in the genome, whereas DNA is transcribed only at

certain places, in a sequence- and cellular condition–depen-

dent manner. How DNA damage is recognized and repaired

in chromatin is a long-standing key question in DNA repair

research. Here we present our recent analysis of the BAF factors

that influence the DNA damage response and repair, including

some new data on the cellular response to UV for discussion

regarding the role of NR in DNA repair and beyond.
5. BAF factors are required for the recruitment of
KU proteins at DSB and NHEJ activity

Figure 1 shows our recent analysis of BAF factors at

their commitment to DNA repair and cellular resistance to

various treatments with an addition of UV-survival curves

for ARID1A or/and ARID1B-suppressed U2OS cells [20].

A model for BAF complex showing interacting subunits is

presented in figure 1a, in which only those factors character-

ized in our assays are indicated. There are theoretically a

large number of different BAF complexes containing different

combinations of the components [17]. The major subunits in

the BAF complexes are: the catalytic ATPase core subunit,

either BRG1 or BRM; three core subunits present in almost
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Figure 1. Influence of suppression of BAF factors on NHEJ of DSB and sensitivity to X-rays, cisplatin and UV, modified from Watanabe et al. [20]: (a) schematic complex
model of the BAF complex and factors characterized here. (b) Assay for NHEJ activity in living human cells. This assay unit was integrated in the genome of the H1299 cell
line and NHEJ activity was measured as the rate of GFP expression after I-SceI was expressed in the cells [21]. (c) Relative influence of suppression of BAF factors on NHEJ
activity, accumulation of GFP-KU proteins and GFP-XRCC4 at laser-irradiated sites in H1299 cells. NHEJ activity and accumulation of GFP-tagged proteins at laser-irradiated
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BAF factors tested here except BRG1. The siRNA with suppressed NHEJ is marked in red, while that without the influence is in blue. siACF1 was used as positive control.
(d ) Western blots for ARID1A and/or ARID1B suppression in U2OS cell. (e) Colony-forming ability of U2OS cells treated with siRNA directed to ARID1A or/and ARID1B after
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of U2OS cells treated with siRNA directed to other BAF factors after X-ray irradiation ((i)) and cisplatin treatment ((ii)).
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every BAF complex, BAF170, BAF155 and SNF5 (BAF47);

and several subunits that vary in each complex, including

BAF-specific variant subunits, ARID1A (BAF250a) or

ARID1B (BAF250b), which are thought to be mutually exclu-

sively present in the complexes for transcriptional regulation.

Our approach was to use two independent sets of

presumed off-target free siRNAs for each subunit and the

influence of the suppression of each subunit on the repair

of DSB was analysed in regard to NHEJ activity, accumu-

lation of co-expressed GFP-tagged KU70 and KU80, and

GFP-tagged XRCC4 at laser micro-irradiation sites, the

latter of which corresponds to the accumulation of endogen-

ous KU protein at laser-induced DSB. NHEJ activity was

determined as the expression rate of GFP in an H1299 cell

line harbouring an NHEJ assay system integrated within its

genome sequence to measure the frequency of NHEJ repair

of I-SceI-induced DSBs [21] (figure 1b). Figure 1c shows the

results of the three assays for H1299 cells with suppressed

expression of a BAF factor, using one set of siRNAs for

each subunit. As H1299 cells express all the subunits tested

except BRG1, knockdown of BRG1 expression represents a

further negative control in addition to the control siRNA
treatment. Recently, it was reported that BRG1 has a specific

role in the DSB response and repair. ATM activated by DSB

phosphorylates BRG1, which binds gH2AX-containing

nucleosomes and stimulates gH2AX formation and NHEJ

of DSB, whereby no ATPase activity is required [22]. It is,

therefore, not a NR function. The results obtained here with

H1299 cells represent the DSB response and repair, where

BRM was used as the ATPase for CR, and indicate that in

addition to the BRG1-specific function in response to DSB,

there is BAF complex contributing to DSB repair. The results

obtained with H1299 coincide very well with the high cellular

sensitivity obtained with U2OS cells expressing both BRG1

and BRM (see below). Going back to figure 1c, the results

of the three different assays were quite similar for each sub-

unit. Importantly, we obtained exactly the same results by

using another set of siRNAs (not shown here but see Wata-

nabe et al. [20]). The siBRG1 negative control provided the

same results as those obtained with siControl, siBAF53a or

siBAF57, whereas the results of other subunit deletions

showed between 30 and 60% of the activity obtained with

the controls and were similar to the result obtained with a

positive control for ACF1, which has been discussed above.
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Besides the ATPase and three core factors, the two BAF-

specific variant factors, ARID1A and ARID1B, have emerged

as components required for DSB repair (figure 1c, far right

two siRNAs). ARID1A (BAF250a) and ARID1B (BAF250b)

are proteins of around 240 kDa and contain a large disordered

region harbouring an ARID domain and a carboxy-terminal

armadillo-like helical domain (figure 2a). The name ARID

is derived from A–T Rich Interaction Domain, which is con-

served in the human ARID family consisting of 15 proteins

[23]. Since both ARID1A and ARID1B proteins interact with

transcriptional activators and bind to DNA, their roles are

thought to be the recruitment of the BAF complex to the

target sequence or chromatin for transcriptional regulation

[24,25]. We obtained the results of the ARID1A and ARID1B

suppression experiments by using the second siRNA sets,

and a third siRNA, targeting the 30-UTR of each gene, and

further confirmed the results of KU-accumulation at DSB

and its complementation with wild-type cDNA expression

of either ARID1A or ARID1B. Because of the interdependent

protein stability within the BAF complex, knockdown of

ARID1A reduces the expression of BAF155, which further

reduces the expression of SNF5, but ARID1B does not influence

other BAF factor so far analysed. Knockdown of either

ARID1A or ARID1B does not influence the expression of

ARID1B or ARID1A, respectively, for H1299 as well as for

U2OS (figure 1d) [20]. Cellular resistance to X-rays, shown in

figure 1e(i), indicates that either ARID1A or ARID1B knockdown

provides U2OS cells with almost the same per cent survival as the
double knockdown, which is milder than that obtained with KU

knockdown. KU and ARID1A or ARID1B knockdown did not

increase the sensitivity obtained by KU knockdown alone.

These data suggest independent roles for ARID1A and ARID1B

in the classic NHEJ pathway of DSB repair, which are different

from their roles in transcriptional regulation, where they are

thought to be mutually exclusive components in the complex

for transcriptional regulation. These BAF factors may build a

specific complex for the DNA damage response or they may

belong to different complexes required for the DNA damage

response. We have no answer to this question yet.

Suppression of the expression of other BAF factors con-

ferred X-ray sensitivity on U2OS cells when the BAF factors

required for NHEJ and KU accumulation in figure 1c were

depleted (figure 1f(i)), whereas suppression of the BAF fac-

tors, BAF57 or BAF53a, which were negative in NHEJ

assays in figure 1c, did not also influence cellular resistance

to X-rays. Thus, the results of the NHEJ assays using H1299

cells in figure 1c exactly coincide with the results of X-ray sen-

sitivity using U2OS cells, strongly suggesting that the BAF

factors function in the recruitment of KU protein at DSB

and contribute to NHEJ. The X-rays’ sensitivity obtained by

the suppression of the BAF factor was milder than that

obtained with KU suppression, but the depletion of each of

the BAF factors provided cells with the same sensitivity to

X-rays (figure 1f(i)), suggesting that they are working as a

complex in a process or on the same repair pathway with

equivalent contribution.
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6. The BAF factors required for NHEJ are
necessary for cisplatin resistance

Besides being necessary for resistance to X-rays, the BAF factors

required for NHEJ are also necessary for cisplatin resistance.

Suppression of ARID1A or ARID1B provided U2OS cells with

the same sensitivity of cells to cisplatin as the double knock-

down (figure 1e (ii)). It has been reported that BRM- or BRG1-

depleted cells are sensitive to cisplatin [26]. In our assay, the

BAF-depleted cells are significantly more sensitive to cisplatin

than to X-rays, or in other words, resistance to cisplatin is

more BAF-dependent than resistance to X-rays. The same is

true for the other BAF factors required for X-ray resistance

(figure 1f(ii)). Suppression of ARID1A or ARID1B expression

provided cells with sensitivity to UV in addition (figure 1e(iii)),
suggesting their involvement in NER, which partly explains the

sensitivity to cisplatin in cells depleted with the ARID1 protein.

It has been reported that a human cell line lacking BRG1

expression is sensitive to UV and, after exogenous expression of

BRG1, UV resistance was recovered [9]. Whether BRG1 may

playan additional role in the UV damage response is not yet clear.

Suppression of the expression of either ARID1 gene leads to

a reduced accumulation of GFP-tagged XPA at UV damage

and slows the repair of UV-induced (6–4) photoproducts

(figure 2b and c, respectively). These data may explain the

UV sensitivity induced by knockdown of ARID1A or

ARID1B (figure 1e(iii)). While (6–4) photoproducts are recog-

nized first by XPC-RAD23B [27], accumulation of GFP-XPC

is hardly influenced by suppression of ARID protein

expression, rather disturbed by ARID1B protein (not shown),

suggesting that ARID1 proteins may support the process

between XPC and XPA. It was reported previously that down-

regulation of BRG1 and BRM did not affect the recruitment of

XPC to cisplatin DNA lesions, but affected ERCC1 recruitment

[26]. This ERCC1 recruitment to cisplatin may have followed

XPA. As DDB1 with CR activity supports XPC to recognize

UV-induced DNA damage, XPC may not need NR.
7. Significant contribution of the BAF complex
for repair to cellular resistance

Thus, the BAF complex for DNA repair contributes to NHEJ,

NER and cisplatin resistance (figure 2d ). Not only the variety

of the repair, to which the BAF complex contributes, but also

the extent of the survival increase by the NR is surprising.

When the doses resulting in 37% survival (one lethal lesion

per cell) after X-rays, cisplatin or UV irradiation of U2OS

cells are compared between control and ARID1A and

ARID1B double knocked-down cells (red dotted lines in

figure 1e), the contribution of the BAF factors to the repair

of DNA damage is measured as the dose increase (dose incre-

ment) needed in the control compared with the BAF factor

knockdown, as a proportion of the dose (a/b�100 in

figure 1e(ii) for cisplatin) for a 37% survival rate. The dose

increment was 56% for X-rays, 70% for UV and 85% for cis-

platin (figure 2d ), which corresponds almost exactly to the

amount of lesions repaired by the contribution of the BAF,

if the amount of lesions increases linearly with the dose, as

was the case as judged from the survival curves. Because of

the incomplete nature of gene silencing, the actual influence

of the BAF complex on cellular survival may be greater than

suggested by the data presented above. The significant
contribution of the BAF factors to cellular resistance of U2OS

cells to various types of DNA damage suggests that the BAF

complex is required before several DNA repair processes

begin, and that it operates in a larger area of chromatin, poss-

ibly more than that of heterochromatin, which remains to be

determined. Cisplatin produces both intra- and inter-DNA

cross-links, the latter of which requires a multi-step repair pro-

cess, including NER and other repair activities [28], which may

be dependent on the BAF. The high sensitivity of BAF-defective

cells to cisplatin may explain why it is still often useful for

cancer therapy, which has not been well understood.
8. Mutation of BAF factors and their silencing:
their relation to cancer and cancer therapy

Recent whole-genome sequencing of cancer cells has identified

a number of CR factors that are highly mutated in various

types of cancer cells. Mutations of SWI/SNF subunits are

found to be widespread across human cancers. The subunits

of BAF complexes including PBAF complex, in which

ARID1A or ARID1B is replaced by BAF200/BAF180/BRD7

complex, consisting of 29 genes encoding 15 subunits, are

mutated in around 20% of human cancers [19]. Figure 3a
depicts BAF factors and associated frequent cancers, taken

from reviews [29,30]. There must be specific anti-oncogenic

roles for each BAF subunit to explain why mutations in BAF

factors are so strongly biased toward specific types of cancer

formation [30]. ARID1A targets SWI/SNF complex to tran-

scriptional enhancer regions for gene activation, whereas

ARID1B does not replace the role of the enhancer activity of

ARID1A, suggesting that the ARID1A-specific gene regulation

prevents cancer [31]. As ARID1A and ARID1B make a similar

contribution to DNA repair and cellular resistance to X-rays

and cisplatin, their role in DNA repair does not explain the sig-

nificantly greater number of mutations in ARID1A in specific

cancers. However, there are many examples of preference in

specific cancer caused by DNA repair deficiency, such as mis-

match repair in colorectal cancer and BRCA1/2 in breast cancer

and, therefore, careful examination of any influence of repair

defect on the tumourigenesis is necessary. Within the BAF

components tested here, mutation in either BAF57 or BAF53a,

which does not contribute to DNA repair (figure 1), has

barely been reported in cancer cells [32,33].

In addition to genetic mutation, BAF subunits are very fre-

quently silenced in cancer cells [34]. In a majority of lung

cancer cell lines we found loss of detectable expression in a

number of BAF factors, which are required for DNA repair

[20] (figure 3b). Of 18 lung cancer cell lines 13 cell lines indicated

with X in figure 3b are lacking at least one of the BAF factors

required for DNA repair, predicting repair defects. Furthermore,

there are cell lines lacking several BAF factors expression simul-

taneously. Therefore, a majority of these cancer cells are repair-

deficient due to mutated or silenced BAF factors related to

DNA repair. While multiple silencing of the expression of

SWI/SNF factors in cancer cells may be achieved by loss of an

interaction partner, as shown previously [20], it explains only a

part of the silencing occurring in cancer cells, suggesting a mech-

anism of multiple silencing of various BAF factors. One

mutation or silencing of a subunit may cause silencing of the

other and accompany loss of several functions of BAF com-

plexes, which may cause repair deficiency and abnormality in

transcriptional regulation. It is known that many cancer cells
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are sensitive to X-rays or cisplatin treatment at the early phase of

cancer, for example, at the first chemotherapy, but cells become

resistant later on. The resistance may be due to a mutation in p53

leading to resistance to apoptosis. While two reports published

in 2011 suggested a mutually exclusive relationship between

ARID1A and TP53 mutations in ovarian clear-cell carcinoma

and gastric cancer [35,36], in pancreatic cancer all the SWI/

SNF mutated cancer carried TP53 mutations, which suggests

that mutual exclusivity may correlate with tumour subtypes

[37] and tumour stage. However, these data are very encoura-

ging, as ARID1A-deficient cancer cells may be sensitive to

DNA damage. Since the silencing as well as mutation in the

BAF factors required for DNA repair can be detected in cancer

tissues, sensitivity of cancer cells to cisplatin or X-rays can be pre-

dicted before therapy begins. Intensive treatment of cancer with

cisplatin at the first instance for cells lacking the BAF factor may

help to eliminate cancer cells or delay cancer development.
9. Accumulation of DNA damage and cell killing
NR and its factors function in transcriptional regulation as well

as in DNA repair (figure 4a). Although BAF factors for tran-

scriptional regulation differ from those for DNA repair, there

are many common factors in both functions and one mutation

in a gene encoding such a common factor inactivates both func-

tions. Judging from the data presented in figures 1 and 2, the

majority of DNA damage produced by X-rays, UV or cisplatin

requires NR for efficient DNA repair and for survival of cells.

The amount of DNA damage left unrepaired increases in

cells with a deficient BAF complex for DNA repair and

accumulates especially in resting or slowly growing cells like

stem cells, oocyte cells or aged cells before cells begin to repli-

cate, suggesting a source of mutation and epigenetics changes.

It has been reported that mammalian SWI/SNF NR complex

prevents apoptosis after DNA damage [38]. We think that the

BAF complex rescues cells from DNA damage by supporting

DNA repair and minimizing apoptosis caused by unrepaired

DNA damage at a replication site (figure 4b).
10. Relationships among nucleosome
remodelling, DNA repair and transcription
and cellular ageing

There are mutually supportive relationships among NR, tran-

scriptional regulation and DNA repair processes (figure 4c).

NR supports DNA repair and DNA repair suppresses mutation

frequency. NR and transcription cooperate for optimum regu-

lation of gene expression. Genetic and epigenetic changes in

genes and proteins of NR factors increase with age as a result

of constitutive oxidative stresses within the cell. Chromatin modi-

fications are also induced during repair of DNA damage [39].

Concerning the relationship between NR and transcriptional

regulation related to cellular ageing, it has been reported that

the SWI/SNF complex interacts with and regulates the transcrip-

tion factor DAF-16/FOXO, which regulates the stress response

and contributes to cellular longevity in Caenorhabditis elegans
[40]. Defective NR increases unrepaired DNA damage, which

furthermore suppresses both NR and transcriptional activity.

Recent studies on stem cells suggest that mutations and epige-

netic changes influence stem cell functionality leading to

cellular ageing [41]. Epigenetic changes in CR factors have been

thought to cause cellular ageing [42–44], but the relationship

between the epigenetic changes and ageing-dependent genome

instability or mutation has remained unknown. While cellular

senescence is a model for cellular ageing [45], the way in which

genetic or epigenetic damage accumulates with age, the basis

for cellular ageing, has also remained elusive.
11. Negative feedback loops in NR, DNA repair
and transcriptional regulation accelerate
cellular transformation and ageing

A recent review has proposed nine tentative ‘hallmarks’ of

ageing, which include genomic instability, telomere attrition,

epigenetic alterations, loss of proteostasis, deregulated nutrient
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sensing, mitochondrial dysfunction, cellular senescence, stem

cell exhaustion and altered intercellular communication, and

emphasized their interconnected contribution to ageing [46].

Genome-wide changes and their link to the alteration of mol-

ecular complexes and cellular networks are thought to be

important for interconnectedness of the hallmarks leading to

age-related phenotypic consequences [47]. Genetic and epige-

netic changes in the BAF factors diminish DNA repair as

well as transcriptional regulation activities, and DNA repair

defects negatively influence NR and transcriptional regulation,

representing a typical undermining cross talk between genome,

epigenome and complexes for transcriptional regulation

(figure 4d). While DNA damage unrepaired due to defective

NR causes genome instability and mutation leading to cancer,

high frequency of NR defects and repair defects in cancer
cells is useful for cancer therapy. Thus, NR, DNA repair and

transcriptional regulation build negative feedback loops,

which accelerate the genomic and epigenomic defects leading

to both cellular senescence in normal cells and transformation

of cancer cells as common and rare cellular events, respectively.
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