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Key points

� The ascending brainstem transmitter acetylcholine depolarizes thalamocortical relay neurons
while it induces hyperpolarization in local circuit inhibitory interneurons.

� Sustained K+ currents are modulated in thalamic neurons to control their activity modes; for
the interneurons the molecular nature of the underlying ion channels is as yet unknown.

� Activation of TASK-1 K+ channels results in hyperpolarization of interneurons and
suppression of their action potential firing.

� The modulation cascade involves a non-receptor tyrosine kinase, c-Src.
� The present study identifies a novel pathway for the activation of TASK-1 channels in CNS

neurons that resembles cholinergic signalling and TASK-1 current modulation during hypoxia
in smooth muscle cells.

Abstract The dorsal part of the lateral geniculate nucleus (dLGN) is the main thalamic
site for state-dependent transmission of visual information. Non-retinal inputs from the
ascending arousal system and inhibition provided by γ-aminobutyric acid (GABA)ergic local
circuit interneurons (INs) control neuronal activity within the dLGN. In particular, acetyl-
choline (ACh) depolarizes thalamocortical relay neurons by inhibiting two-pore domain
potassium (K2P) channels. Conversely, ACh also hyperpolarizes INs via an as-yet-unknown
mechanism. By using whole cell patch-clamp recordings in brain slices and appropriate
pharmacological tools we here report that stimulation of type 2 muscarinic ACh receptors
induces IN hyperpolarization by recruiting the G-protein βγ subunit (Gβγ), class-1A
phosphatidylinositol-4,5-bisphosphate 3-kinase, and cellular and sarcoma (c-Src) tyrosine kinase,
leading to activation of two-pore domain weakly inwardly rectifying K+ channel (TWIK)-related
acid-sensitive K+ (TASK)-1 channels. The latter was confirmed by the use of TASK-1-deficient
mice. Furthermore inhibition of phospholipase Cβ as well as an increase in the intracellular level
of phosphatidylinositol-3,4,5-trisphosphate facilitated the muscarinic effect. Our results have
uncovered a previously unknown role of c-Src tyrosine kinase in regulating IN function in the
brain and identified a novel mechanism by which TASK-1 channels are activated in neurons.
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GRK2, G-protein-coupled receptor kinase 2; IKL, K+ leak current; IN, local circuit interneuron; IRS-1-Y608P, insulin
receptor substrate-1 Tyr608 peptide; ISO, standing outward current; K2P channel, two pore domain potassium
channel; MAChR, muscarinic ACh receptor; M2AChR, muscarinic ACh receptor type 2; OxoM, oxotremorine M;
PI3K, class-1A phosphatidylinositol-4,5-bisphosphate 3-kinase; PIP2, phosphatidylinositol-4,5-bisphosphate; PIP3,
phosphatidylinositol-3,4,5-trisphosphate; PLCβ, phospholipase Cβ; RMP, resting membrane potential; SFK, Src family
of kinases; SH2, Src homology 2; TASK, TWIK-related acid-sensitive K+; TREK, TWIK-related K+; TRPC, transient
receptor potential canonical channel; TWIK, two-pore domain weakly inwardly rectifying K+; TC, thalamocortical relay;
TK, tyrosine kinase.

Introduction

The thalamus is strategically placed to control the flow
of signals from the sensory organs to the cerebral cortex
in a state-dependent manner (Steriade et al. 1997).
Processing of information by thalamocortical networks
is dynamically modulated by several neurotransmitters.
Within the dorsal lateral geniculate nucleus (dLGN),
γ-aminobutyric acid (GABA)ergic local circuit inter-
neurons (INs) that inhibit thalamocortical relay (TC) cells,
the principal projection neurons of the thalamus, are key
players for shaping the output of this circuitry (Gabbott
& Bacon, 1994). In particular, INs play a critical role in
feed-forward inhibition, thereby dynamically regulating
the transfer of information from primary sensory afferents
to TC neurons, shaping receptive field properties in
the visual thalamus and configuring thalamic network
oscillations (Blitz & Regehr, 2005; Lorincz et al. 2009;
Antal et al. 2010; Wang et al. 2011; Crandall & Cox, 2013).
Besides inhibition via conventional axodendritic synapses
(F1 terminals), INs exert a powerful inhibitory control
over the excitability of TC neurons by releasing GABA
from vesicle-containing dendrodendritic F2 terminals
organized in complex triadic synaptic arrangements
(Sherman & Guillery, 2006). The output of F2 terminals is
strongly controlled by acetylcholine (ACh) released from
cholinergic fibres of the ascending arousal system that
are closely associated with the triad. In addition, it has
been established that INs express muscarinic ACh receptor
type 2 (M2AChR; Plummer et al. 1999). Stimulation of
these receptors activates a K+ leak current (IKL), hyper-
polarizes INs, decreases spontaneous inhibitory inputs
onto TC neurons, and regulates feed-forward inhibition
in a stimulus intensity-dependent manner (McCormick &
Pape, 1988; Pape & McCormick, 1995; Cox & Sherman,
2000; Zhu & Heggelund, 2001; Antal et al. 2010).
However, the molecular nature of IKL and the intra-
cellular signalling cascade in INs have not yet been
assessed.

The negative value of the resting membrane potential
(RMP) in neurons critically depends on the sustained
activity of members of the K2P channel family (Enyedi &
Czirjak, 2010). In TC neurons, two-pore domain weakly
inwardly rectifying K+ (TWIK)-related acid-sensitive K+
(TASK) and TWIK-related K+ (TREK) channels represent
the central elements for determination of RMP. They

both play a role in controlling the state-dependent switch
in activity modes (tonic firing and bursting activity),
and thus influence sensory information processing as
well as the generation of natural sleep oscillations
and pathophysiological rhythms (Bista et al. 2015a).
Our previous studies demonstrated that membrane
depolarization induced by muscarinic agonists in TC
neurons depends on the inhibition of TASK and TREK
channels after activation of M1/M3 acetylcholine receptor
(AChRs) coupled to G-protein α subunit of the subtype
q (Gαq protein) and phospholipase Cβ (PLCβ), which is
then followed by phosphatidylinositol-4,5-bisphosphate
(PIP2; an activator of TREK channels) breakdown and
diacylglycerol (DAG; an inhibitor of TASK channels)
production (Meuth et al. 2003, 2006; Broicher et al.
2008; Bista et al. 2012, 2015b; Wilke et al. 2014). Based
on these findings, we hypothesized that K2P channels
are also central for muscarinic signalling of INs (Bista
et al. 2015a). Previous studies on signal transduction
pathways that regulate smooth muscle function suggested
that cellular and sarcoma (c-Src) tyrosine kinase (TK)
might be involved in the modulation of TASK-1 channels
(Gerthoffer, 2005; Nagaraj et al. 2013; MacKay & Knock,
2015). In PC12 cells, it was shown that phosphorylation
of the tyrosine residue 370 of rat TASK-1 channels
(corresponding to Y368 in mouse and Y353 in human
TASK-1) was associated with activation of c-Src TK by
class-1A phosphatidylinositol-4,5-bisphosphate 3-kinase
(PI3K) and transient co-localization of c-Src with the
channel (Matsuoka & Inoue, 2015). In addition, PI3Ks
play important roles in most cell types and affect
multiple biological functions (Vanhaesebroeck et al.
2010; Dbouk & Backer, 2013; Gross & Bassell, 2014).
The enzymatic activity of PI3Ks in phosphorylation of
membrane-associated phosphoinositides is mediated by
a group of catalytic subunits (class IA: p110α/PIK3CA,
p110β/PIK3CB, p110δ/PIK3CD; class IB: p110γ/PIK3CG)
that are associated with one of seven regulatory sub-
units (p85α, p55α, p50α, p85β, p55γ, p101, p87).
Some regulatory subunits have protein–protein inter-
action domains including Src homology 2 (SH2) domains.
In particular, class IA but not class IB PI3Ks bind
the SH2 domains of p85 type regulatory subunits.
While in non-neuronal cells PI3K catalytic subunits may
have partially redundant functions, there is increasing
evidence that their roles are more confined to distinct
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receptor-dependent pathways in neurons. The analysis of
their role in neuronal signalling as well as dysfunction has
been identified as an emerging field in neuroscience (Gross
& Bassell, 2014).

In this study, we performed whole cell patch clamp
recordings in INs and used the muscarinic agonist
oxotremorine M (OxoM) to activate MAChRs while
monitoring the standing outward current (ISO). This is
to a large degree carried through K2P channels in different
neuronal cell types (Millar et al. 2000; Meuth et al. 2003;
Deng et al. 2007; Dobler et al. 2007). To improve targeting
of INs in brain slices containing the dLGN, we used pre-
viously established transgenic mice expressing enhanced
green fluorescent protein (EGFP) in GABAergic neurons
(glutamate decarboxylase 67 (GAD67)–enhanced green
fluorescent protein (EGFP) mice) (Leist et al. 2016). Our
findings point to a novel neuronal signalling pathway that
leads to activation of K2P channels via M2AChR, PI3K and
c-Src TK activity in INs.

Methods

Ethical approval

The authors understand the ethical principles under
which The Journal operates and our work complies
with the animal ethics checklist (Grundy, 2015). All
animal care and experimental work has been approved
by local authorities (LANUV NRW; approval ID:
84-02.05.50.15.026) and was performed in accordance
with Directive 2010/63/EU of the European Parliament
and of the Council of 22 September 2010 on the protection
of animals used for scientific purposes. A total number
of 84 animals were used and all efforts were made to
minimize the animals’ pain and suffering. Experiments
were performed on tissue from GAD67-EGFP mice (Leist
et al. 2016) of both sexes ranging in age from postnatal
day (P) 14 to P24. To visualize INs in TASK-1-deficient
mice, we crossbred GAD67-EGFP with TASK-1−/− mice
(Mulkey et al. 2007; Meuth et al. 2009). Mice were bred
and kept in institutional facilities in a 12 h light–dark cycle
with food and water available ad libitum. For removal of
the brain, mice were deeply anaesthetized using isoflurane
(2-chloro-2-(difluoromethoxy)-1,1,1-trifluoro-ethane;
4% in O2), decapitated and brain tissue was used for
electrophysiological analyses in vitro.

Acute slice preparation procedure

After decapitation and removal of the skull, a block of
brain tissue containing the thalamus was removed from
the cranial vault and submerged in ice-cold aerated (O2)
saline containing (in mM): sucrose, 200; Pipes, 20; KCl,
2.5; NaH2PO4, 1.25; MgSO4, 10; CaCl2, 0.5; dextrose, 10;
pH 7.35, with NaOH. Thalamic slices of 270–300 μm

thickness were prepared as coronal sections on a vibrating
blade microtome (Leica Biosystems, Nussloch, Germany)
by advancing the blade from the frontal to the caudal side
of the brain. Finally, slices were transferred into a holding
chamber and initially kept submerged at 30°C in a solution
containing (in mM): NaCl, 125; KCl, 2.5; NaH2PO4, 1.25;
NaHCO3, 24; MgSO4, 2; CaCl2, 2; dextrose, 10; pH
adjusted to 7.35; equilibrated with 95% O2–5% CO2 (v/v)
gas mixture. After 30 min the slices were cooled down to
room temperature.

Whole-cell patch clamp recordings

Brain slices were transferred to a recording chamber
and continuously perfused (1–1.5 ml min−1) at 33–35°C
(In-Line Solution Heater, Harvard Apparatus, March,
Germany) with aerated (O2) artificial cerebrospinal
fluid (ACSF) containing (in mM): NaCl, 120; KCl,
2.5; NaH2PO4, 1.25; Hepes, 30; MgSO4, 2; CaCl2, 2;
dextrose, 10; pH 7.25, adjusted with HCl (osmolality
305 mosmol kg−1). Slices were viewed using infrared video
microscopy (DIC-IR) and fluorescence imaging. Patch
pipettes were pulled from borosilicate glass (GC150T-10;
Clark Electromedical Instruments, Pangbourne, UK) and
had a resistance of 2.5–4.5 M� when filled with intra-
cellular solution containing (in mM): potassium gluconate,
95; K3-citrate, 20; NaCl, 10; Hepes, 10; MgCl2, 1; CaCl2,
0.5; BAPTA, 3; Mg-ATP, 3; Na2-GTP, 0.5. The internal
solution was set to a pH of 7.25 with KOH and an
osmolality of 295 mosmol kg−1. The glass electrode was
subsequently connected to an EPC-10 amplifier (HEKA
Elektronik, Lambrecht, Germany) via a chlorinated
silver wire. Tight seals were obtained on the soma of
labelled dLGN interneurons. When seal resistance was
> 1.5 G�, the pipette capacitance was compensated and a
fluorescence image of the pipette touching the membrane
patch was made for documentation. After obtaining the
whole-cell configuration, recordings were filtered and
digitized using Pulse software (HEKA Elektronik). Series
resistance at the start of experiments was 6–14 M� and
compensation of > 40% was routinely applied. Series
resistance was monitored and recordings were terminated
whenever a significant increase (> 25%) occurred. Input
resistance of INs ranged from 100 to 500 M�. A liquid
junction potential of 8 mV was corrected offline for
all recordings. RMP was measured when the access
resistance had stabilized and perfusion of the intra-
cellular milieu was expected to be complete (� 5 min
after establishing the whole cell configuration). Only
cells displaying overshooting action potentials (APs) and
a negative RMP of up to −50 mV were included for
analysis. Finally, only recordings of cells in which the
EGFP signal was dialysed and depleted by the pipette
solution were taken into consideration for the present
study.
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Determination of the intrinsic electrophysiological
properties of INs

Current clamp recordings were used to analyse passive
and active membrane properties. Analysis was performed
according to established procedures (Leist et al. 2016).
Electrophysiological parameters were measured from
responses to step current injections of 800 ms duration
that were applied from the RMP. Injected currents
varied between −120 and +130 pA (increments of
50 pA). Membrane input resistance (Rin) was deduced
from the slope of the current–voltage (I–V) relationship
obtained from the current injections to −20 and
+30 pA. Membrane time constants (τm) were obtained
by fitting single or double exponentials (FitMaster,
HEKA Elektronik) to negative voltage deflections induced
by hyperpolarizing current injections of −20 pA. The
membrane capacitance (Cm) was calculated using the
equation: Cm = τm/Rin. The voltage sag (Vsag) of
the membrane potential was measured for potentials
reaching a maximal negative value of about −95 mV
and was calculated as the relative change between
the maximal (Vmax; typically reached within 200 ms)
and steady state voltage deflection (Vss; at the end of
hyperpolarizing current injections) using the equation:
((Vmax − Vss)/Vmax) × 100%.

Drug application

Pharmacological substances were applied in the
absence or presence of the muscarinic agonist
OxoM while monitoring the amplitude of ISO. The
phosphatidylinositol-3,4,5-trisphosphate (PIP3) analogue
(1-(1,2-dihexadecanoylphosphatidyl)inositol-3,4,5-tris-
phosphate tetra-sodium salt), the Src family of kinases
(SFK) activator EPQpYEEIPIYL phosphopeptide and the
insulin receptor substrate-1 (IRS-1) (Tyr608) peptide
(IRS-1-Y608P) were dissolved in the intracellular
recording solution and directly applied via the patch
pipette. The tips of pipettes containing peptides or
PIP3 were filled with drug-free intracellular solution
for obtaining the whole-cell configuration. For some
cell-permeant pharmacological substances which act
on intracellular targets, brain slices were pre-incubated
for at least 60 min (including gallein, LY294002,
U73122, PP2, genistein, KBsrc4). K2P channel antagonists
(including A293, A1899, PK-THPP, norfluoxetine
and spadin), muscarinic antagonists (including
1,1-dimethyl-4-diphenylacetoxypiperidinium iodide
(4-DAMP), pirenzipine, AF-DX 116 and AF-DX 384)
and PI3K activators (including demethylasterriquinone
B1 (DAQ B1) and β-oestradiol) were applied with the
extracellular solution. In the case where substances
were dissolved in dimethylsulfoxide (DMSO), the final
concentration did not exceed 2‰. Drug suppliers were

as follows: Sigma-Aldrich Chemie GmbH (Taufkirchen,
Germany) for Src kinase family activator; Santa Cruz
Biotechnology Inc. (Dallas, TX, USA) for PIP3 analogue,
IRS-1-Y608P and β-oestradiol; and Sanofi-Aventis
Deutschland GmbH (Frankfurt, Germany) for A293
and A1899. All other drugs were purchased from Tocris
Bioscience Ltd (Bristol, UK).

Statistics

If not mentioned otherwise all results are presented as the
mean ± SEM. A two-sample test for data variance was
used to indicate differences in variance. Depending on
variance homology (normally distributed) or significant
alternations in data variance, Student’s paired/unpaired t
test (Pt) or the non-parametric Mann–Whitney test (PMW)
was used to test for statistical significance (OriginPro 8
software, Additive GmbH, Friedrichsdorf, Germany). For
multiple comparisons, one-way ANOVA (PANOVA) testing
(OriginPro 8 software) was used followed by Tukey’s test
for indicating significance levels. Levels of significance
were indicated as ∗ (P < 0.05), ∗∗ (P < 0.01) and ∗∗∗
(P < 0.001). n represents the total number of cells (usually
only one cell was analysed per brain slice; slices from � 3
different animals were used per experimental condition.

Results

Muscarinic stimulation of INs is associated with
membrane hyperpolarization and an increase in ISO

A total of 234 GAD67–EGFP-labelled dLGN INs were
analysed using the whole-cell patch clamp technique
(Fig. 1A). Under the present experimental conditions,
INs revealed an RMP of −63.5 ± 0.4 mV (n = 234)
when recorded in current clamp mode. Bath application
of OxoM (10 μM) induced a significant hyperpolarization
of the RMP by 7.8 ± 1.2 mV (paired Pt = 0.003; n = 5;
Fig. 1B). The generation of an AP was triggered by a short
depolarizing current step (15 ms, +120 pA) under control
conditions that was prevented after OxoM application
(Fig. 1C). Some INs (8%) revealed spontaneous AP
generation in the form of tonic firing (n = 21; Fig. 1D)
or bursting (n = 6; Fig. 1E). Bath application of the
muscarinic agonist OxoM induced hyperpolarization
of membrane potential and was sufficient to abolish
spontaneous AP firing (Fig. 1D and E). These findings
indicate that membrane hyperpolarization induced by
muscarinic signalling prevents AP generation in INs.

Next, INs were recorded under voltage clamp
conditions. Cells were held at a potential of −28 mV
to induce ISO, a current that is carried by persistently
open ion channels like K2P channels (Fig. 2A). Current
measurements started 8–15 min after establishing the
whole cell configuration when ISO amplitudes revealed
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a constant level (Fig. 2B). In a total of 132 INs, the steady
state level of ISO revealed an amplitude of 244.0 ± 9.9 pA
(n = 132). For current amplitude vs. time histograms
(Fig. 2B), ISO amplitudes were determined every 25 s
at a 200 ms epoch just before a voltage ramp protocol
was initiated. Voltage ramps (duration 800 ms, rate of
hyperpolarization of 7 ms mV−1) were used (Bista et al.
2015b) to adjust the membrane potential from −28 to
−138 mV (Fig. 2A, inset). Bath application of OxoM
(10 μM) increased ISO by 13.4 ± 3.5% (n = 10; Fig. 2B;
the maximal effect was determined by taking time peri-
ods of 4 min before washing in and out of the drug into
account). The OxoM effect was reversible (Fig. 2B) and
repeatable within the same IN (data not shown). Without
any further experimental manipulation, ISO amplitudes
were stable over a time period of at least 40 min (the mean

normalized ISO at 40 min was 99.5 ± 1.5% compared to the
level at the beginning; n = 7; compare Fig. 4C). The I–V
relationship of the OxoM-sensitive current was obtained
by graphical subtraction of control currents from those
recorded in the presence of OxoM (i.e. OxoM – control;
Fig. 2C). The resulting graph revealed a reversal potential
of the OxoM-sensitive current at−109.1±1.6 mV (n=10,
Fig. 3C), which was close to the expected K+ equilibrium
potential (EK) of −104 mV under the present experimental
conditions. We noticed that subtracted I–V relationships
did not always reveal ideal Goldman–Hodgkin–Katz
rectification. Multiple modifying influences may have
contributed to the appearance of the native macroscopic
current measured here (Renigunta et al. 2015).

Previously, we categorized INs based on their cell size as
small and large neurons (Leist et al. 2016). When small
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Figure 1. Muscarinic receptor stimulation causes hyperpolarisation of the RMP that is sufficient to
abolish AP generation in dLGN INs
A, fluorescence image of a dLGN IN obtained from a brain slice of an EGFP-GAD67 mouse. Note the patch pipette
on the left side of the cell (marked with asterisk in image). The scale bar represents 10 μm. B, scatter diagram
of the RMP under control conditions and during the application of OxoM. Points connected by lines indicate
individual cell changes. The horizontal bars indicate the mean RMP under the two recording conditions (black,
control; red, OxoM). C, current-clamp recording of an IN in the absence (black trace) and presence (red trace) of
OxoM (10 μM). OxoM mediates membrane hyperpolarization, which is sufficient to abolish the induction of an
AP during a short lasting (15 ms) depolarizing current step (+120 pA). D and E, whole cell voltage recordings of
spontaneously active INs revealing tonic firing (D) and rhythmic bursting (E). Muscarinic receptor stimulation by
OxoM (10 μM; as indicated by the horizontal line) leads to membrane hyperpolarization and silencing of INs. Insets
show the activity patterns at higher temporal resolution. Scale bars represent 50 mV and 2 s, respectively.
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(72.7 ± 2.5 pF, n = 65) and large (136.5 ± 3.5 pF,
n = 67) INs were analysed, the current density of ISO

was not different between the two types of IN (small
IN: ISO = 2.56 ± 0.12 pA pF−1, n = 65; large IN:
ISO = 2.28 ± 0.11 pA pF−1, n = 67; PMW = 0.08). To
ensure that the two subtypes of INs in the mouse dLGN
showed no differences concerning the OxoM-mediated
modulation of ISO, we further investigated an additional
set of cells. INs that were identified as large in size
revealed significantly higher Cm values (129.1 ± 11.5 pF;
Pt = 0.002; n = 7) and significantly smaller Vsag amplitudes
(3.9 ± 0.8%; Pt = 0.002; n = 7) compared to small
INs (Cm: 62.5 ± 5.5 pF; Vsag: 28.4 ± 5.3%; n = 7).
In contrast, averaged ISO current density in large INs
(1.86 ± 0.26 pA pF−1; n = 7) was not significantly different
when compared to small INs (2.38 ± 0.21 pA pF−1;
n = 7; PMW = 0.35). Moreover, the maximal increase
in ISO due to stimulation of muscarinic receptors was not
significantly different in large (14.5 ± 4.2%; n = 7) and
small (12.5 ± 4.2%; n = 7; Pt = 0.74; Fig. 2D) INs. Under
current clamp conditions, the two types of IN exhibited

both spontaneous tonic firing and bursting activity (small
IN: 3 bursting, 18 tonic firing; large IN: 3 bursting, 3 tonic
firing). Data from small and large INs were, therefore,
pooled in subsequent experiments.

These findings indicate that muscarinic receptor
stimulation activates a K+ outward current with the typical
characteristics of K2P channels.

TASK-1 channels are modulated by MAChR
stimulation

In order to identify the effector channels activated by
muscarinic stimulation, selective K2P channel blockers
were used to determine functional expression of TASK
and TREK channels. As a first step, the selective TASK
channel blocker A293 was tested (Putzke et al. 2007). Bath
application of A293 (5 μM) decreased ISO by 11.1 ± 2.2%
(n = 8, Fig. 3A; maximal effect was determined in a
time period of 4 min before and after wash-in of the
drug). In addition, the mean ISO increase following OxoM
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(black trace) and in the presence of OxoM (10 μM; red trace). The inset shows the applied voltage clamp protocol.
B, mean values of ISO vs. time plot indicating a reversible increase in ISO (n = 10). C, exemplar current–voltage (I–V)
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as previously described (Leist et al. 2016).
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application was significantly smaller in the presence of
A293 (4.0 ± 0.3%; Fig. 3B and F) compared to the
control effect (PMW < 0.001). Moreover, the I–V of the
A293-sensitive current was obtained by graphical sub-
traction of currents obtained in the presence of the blocker
from control currents (i.e. control – A293) and revealed
outward rectification and a negative reversal potential of
−110.5 ± 2.0 mV (n = 9; Fig. 3C). Furthermore, in
the continuous presence of OxoM, application of A293
completely reversed the OxoM-induced increase in ISO

amplitude (data not shown). We next used PK-THPP
and A1899 as these two compounds show opposite
selectivity for TASK-1 (IC50 = 300 nM for PK-THPP;
IC50 = 35 nM for A1899) in comparison to TASK-3
(IC50 = 35 nM for PK-THPP; IC50 = 350 nM for A1899)

channels (Streit et al. 2011; Coburn et al. 2012). In the
presence of PK-THPP (300 nM), the mean ISO increase
(11.0 ± 0.9%; n = 8) was not significantly different
compared to the control effect (Fig. 3D and F). In
contrast, bath application of OxoM in the presence of
A1899 (200 nM) resulted in a significantly smaller mean
ISO increase (6.0 ± 0.3%; n = 6) compared to OxoM
control application as well as the combination of OxoM
with PK-THPP (PANOVA < 0.001; Fig. 3D and F). The
use of TASK-1-deficient mice (Mulkey et al. 2007; Meuth
et al. 2009) further confirmed the importance of TASK-1
channels for muscarinic modulation in INs (Fig. 3E).
In the absence of TASK-1 channels, the OxoM-induced
current increase was significantly (PANOVA < 0.001)
reduced to 5.3 ± 0.5% (n = 8) and revealed a rather
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linear I–V relationship that approached zero at the most
hyperpolarized potentials (Fig. 3E and F)

Next, we applied the active metabolite of fluoxetine
known as norfluoxetine to INs, which has been shown
to block TREK-1 and TREK-2 currents in the low micro-
molar concentration range (Kennard et al. 2005). Bath
application of norfluoxetine (20 μM) decreased ISO by
10.8 ± 1.0% (n = 7). Additional application of OxoM
increased ISO mean values by 14.8 ± 0.9% (n = 7),
which was significantly (PMW = 0.007) stronger compared
to the mean effect of OxoM under control conditions
(11.0 ± 0.5%; n = 10; Fig. 3F). Moreover, INs showed
sensitivity for the selective TREK-1 channel blocker spadin
(Moha Ou Maati et al. 2012). The mean ISO decrease
induced by spadin (1 μM) application was 14.7 ± 1.7%
(n=4; PMW =0.002). It should be noted that spadin blocks
homomeric TREK-1 and heteromeric TREK-1/TREK-2
channels but not homomeric TREK-2 channels (Moha
Ou Maati et al. 2012). Application of OxoM in the pre-
sence of spadin increased ISO mean values by 15.1 ± 1.1%,
which was significantly stronger compared to the OxoM
control effect (PMW = 0.009; Fig. 3F).

The transient receptor potential canonical channel 4
(TRPC4) is involved in the control of GABA release in
INs (Munsch et al. 2003), and is activated by M2AChR
(Jeon et al. 2012). Therefore, we applied 10 μM of the
selective TRPC4 channel blocker ML204 (Miller et al.
2011), which, however, resulted only in a 3.1 ± 1.0%
(n = 7) reduction in ISO amplitude. In the presence of
ML204, the mean ISO change during OxoM application
(10.6 ± 0.5%; PMW = 0.41) was not different compared to
the control effect of OxoM (Fig. 3D).

These findings indicate that homomeric TASK-1
(or possibly heteromeric TASK-1/TASK-3) channels
but not homomeric TASK-3, TREK-1-, TREK-2- or
TRPC4-containing channels form the molecular basis of
OxoM-mediated ISO increase.

The increase in ISO via M2/M4AChRs requires c-Src TK
activity

We next addressed the question which muscarinic receptor
subtypes were involved in the OxoM-mediated activation
of TASK-1 channels by using specific antagonists. Thus, we
applied a combination of M2/M4AChR antagonists (10 μM

of each AF-DX 166 and AF-DX 384, termed here cocktail
2) and observed a reduction in ISO by 15.7 ± 3.7% (n = 11;
Fig. 4A) pointing to some basal receptor activity. Under
these conditions, additional application of OxoM further
reduced ISO by 12.8 ± 4.9% (n = 8; Fig. 4A and B). On the
other hand, when a cocktail containing the M1/M3AChR
antagonists pirenzipine and 4-DAMP (10 μM each, termed
here cocktail 1) was applied, an initial reduction in ISO by
5.1 ± 1.7% (n = 20) was followed by an ISO increase
of 10.2 ± 1.6% (n = 11) when OxoM was added to

the external solution (Fig. 4A and B). The latter was not
significantly different compared to the OxoM effect under
control conditions, indicating that M2/M4AChRs were
relevant for the positive modulation of ISO. In smooth
muscle cells M2AChR-dependent stimulation of c-Src
TK was described, and c-Src TK auto-phosphorylation
was found to be associated with the phosphorylation of
TASK-1 channels and increased current activity (Nagaraj
et al. 2013). To test whether similar mechanisms exist in
CNS INs, the following experiments were conducted in
the presence of cocktail 1 (blocking M1/M3AChR). When
slices were pre-incubated (100 μM, > 1 h) with the TK
inhibitor genistein (Akiyama et al. 1987), the application
of OxoM revealed a reduction of ISO by 8.7 ± 2.5% (n = 9;
Fig. 4B) that was significantly different (PANOVA < 0.001)
compared to the change in ISO induced by OxoM under
control conditions and in the presence of cocktail 1. A
similar reduction of ISO by OxoM (7.5 ± 4.2%; n = 8)
was observed following pre-incubation (1 μM, > 1 h)
with the unspecific SFK inhibitor PP2 (Hanke et al.
1996). Moreover, pre-treatment of slices with 0.1 μM

of the selective c-Src TK inhibitor KBsrc4 (Brandvold
et al. 2012) completely abolished any ISO modulation
mediated by OxoM (ISO reduction: 1.7 ± 1.6%; n = 7;
Fig. 4B; PANOVA < 0.001 compared to cocktail 1). As
an additional indicator for the involvement of c-Src TK,
we applied the SFK activator peptide (EPQpYEEIPIYL
phosphopeptide) via the patch pipette (Eck et al. 1993).
While the SFK activator peptide diffused into the cell
interior a strong transient increase in ISO was observed
in 4 (53.2 ± 9.6%; n = 4; maximal increase calculated
for these INs) out of 10 cells, which was never seen
under control conditions within the same time period
(0.5 ± 2.0% change in amplitude within 20 min; n = 7;
Fig. 4C). In addition, application of OxoM in the pre-
sence of the SFK activator peptide significantly enhanced
the increase in ISO (19.1 ± 1.5%; n = 10; PMW = 0.037;
Fig. 4D and E) compared to the control effect of OxoM.
Note that in the presence of the SFK activator peptide,
a transient additional increase in ISO occurred when
OxoM was washed out (26.5 ± 7.4%; PMW = 0.014
compared to control wash-out 7.4 ± 2.7%). The
OxoM-activated current in the presence of SKF activator
revealed outward rectification and reversal close to EK

(Fig. 4F).
These findings indicate the involvement of c-Src TK

in the increase in ISO amplitude following M2/M4AChR
stimulation.

Coupling of M2/M4AChRs to Gβγ and PI3K is involved
in the modulation of ISO in INs

M2AChRs in smooth muscle cells have been shown
to preferentially couple to G-protein α subunit of the
subtype i/o (Gαi/o), PI3K and c-Src TK to modulate
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ion channel activity (Gerthoffer, 2005). Furthermore,
rapid deactivation of Gαi/o is mediated by c-Src TK via
a G-protein βγ subunit (Gβγ)- and PI3K-dependent
pathway (Huang et al. 2014). Following stimulation of
Gαi/o type G-protein-coupled receptors (GPCRs), SFK
members are known to form protein complexes with PI3Ks
via the N-terminal SH2 (nSH2) domain of the p85 sub-
unit (Nozu et al. 2000; Gentili et al. 2002). Using the
SMALI prediction for SH2 domains (Li & Li, 2017), we
found that mouse c-Src TK (Uniprot ID: P05480) has
at least one site (including Y144) for binding the nSH2
domain of the p85β (score = 1.09) or p85α (score = 1.06)
regulatory subunit of PI3K (data not shown). To assess
the possible involvement of these signalling proteins,
the following measurements were obtained in the

presence of cocktail 1 (blocking M1/M3AChR). First, we
pre-incubated (> 1 h) dLGN INs with gallein (10 μM),
an antagonist for Gβγ (Lehmann et al. 2008), which
significantly reduced the OxoM-induced increase of ISO

(2.6 ± 2.3%; n = 5; PANOVA < 0.01) compared to the effects
recorded in the presence of cocktail 1 (Fig. 5A and C).
Next, we tested inhibitors and activators of PI3K activity.
Preincubation (> 1 h) with LY294002 (5 μM), which
inhibits PI3K activity (Vlahos et al. 1994), strongly reduced
the M2/M4AChR-mediated increase in ISO (2.3 ± 1.8%,
n = 8; Fig. 5C). This effect was significantly different
compared to the OxoM effect in the presence of cocktail
1 (PANOVA < 0.01). PI3K activators were applied with
the extracellular medium (DAQ B1, β-estradiol) or via
the patch pipette (IRS-1-Y608P). Wash-in of DAQ B1
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(10 μM), an insulin mimetic compound (Weber et al.
2000), increased ISO by about 10% (Fig. 5B). Additional
application of OxoM resulted in a strong further increase
(PANOVA < 0.01, with respect to the OxoM effect in
cocktail 1) in ISO (23.5 ± 1.8%, n = 8; Fig. 5C). The
OxoM-activated current was characterized by outward
rectification and reversal close to EK (Fig. 5A). The use of
IRS-1-Y608P (10 μM), which activates PI3K by association
with the SH2 domains of the p85 subunit (Shoelson et al.
1992; Noh et al. 2013), confirmed the effect of insulin
receptor activation. With IRS-1-Y608P included in the
internal solution, the OxoM effect was strongly increased
(28.1 ± 2.1%, n = 7; PANOVA < 0.01, with respect to
the OxoM effect in cocktail 1) and the I–V relationship
of the OxoM-sensitive current was typical for outwardly
rectifying K+ channels (Fig. 5A and C). Activation of
PI3K by interaction with the regulatory p85 subunit is a

non-genomic mechanism of the steroid hormone estradiol
(Simoncini et al. 2000). Therefore we tested the effect of
β-estradiol on muscarinic activation of ISO. In the presence
of β-estradiol, the OxoM effect on ISO was significantly
increased (25.4 ± 2.3, n = 6; PANOVA < 0.01, with respect
to the OxoM effect in cocktail 1; Fig. 5C) with the sensitive
component revealing outward rectification and reversal at
EK (Fig. 5A).

Next, we assessed the role of the product of catalytic
PI3K activity, namely PIP3. Application of OxoM in
the presence of intracellular PIP3 (50 μM) revealed
a strongly enhanced ISO increase of 62.8 ± 13.7%
(n = 7; PMW = 0.001; Fig. 5D and F) compared to
control conditions. It is important to note that PIP3

diffusion into the cell did not alter ISO amplitudes per
se. Muscarinic stimulation was necessary to modulate
ISO in a fully reversible manner (Fig. 5F). Moreover,
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the OxoM-sensitive current in the presence of PIP3 was
characterized by outward rectification and reversal close
to EK (Fig. 5E). To further assess the role of phospholipids,
slices were pre-incubated (10 μM, > 1 h) with the
PLCβ antagonist U73122 (Bleasdale et al. 1990; Bista
et al. 2012). Under these conditions, OxoM induced
a strong increase in ISO (32.4 ± 9.9%; n = 7; data
not shown). Moreover, OxoM-mediated ISO modulation
following U73122 treatment was completely reversed by
A293 application (data not shown).

These findings indicate that the interaction of
the p85 SH2 domain with c-Src is essential for
ISO modulation following M2/M4AChR stimulation.
Furthermore, PIP3 signalling increases the muscarinic
effect, possibly facilitating the SH2-dependent protein
interaction.

Discussion

The findings presented here indicate that stimulation
of M2/M4AChRs mediates the up-regulation of TASK-1
channels in dLGN INs, eventually causing hyper-
polarization and silencing of neuronal firing. The
modulation pathway (Fig. 6) resembles muscarinic
signalling that is observed in smooth muscle cells
(Gerthoffer, 2005). Therefore, we have identified a novel
and unique pathway that activates K2P channels under
physiological conditions in central neurons.

Components of the signalling pathway: MAChR, Gβγ,
PI3K, c-Src TK and TASK-1

Based on the effects of the subtype-specific blockers
pirenzepine (M1AChR), AF-DX 116 (M2AChR), 4-DAMP
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Figure 6. Proposed signalling pathway for the modulation of TASK-1 channels in dLGN IN
Binding of ACh to Gi/o-protein-coupled M2/M4AChR (the α subunit is not shown) leads to the activation of PI3Kβ

via binding of the G-protein βγ subunit. While the inhibition of the catalytic p110 subunit by the regulatory p85
subunit is released, the SH2 domain-dependent interaction of p85 with c-Src leads to activation of TK activity.
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short time scale of minutes of the Oxo effect) with the channel protein. Facilitation of trafficking and integration of
channels into the membrane (possible via the adapter proteins p11 and 14-3-3) is a potential second mechanism.
The product of p110 enzymatic activity, the phospholipid PIP3, potentially facilitates the interaction between the
components of the receptor cascade, which may be arranged in close spatial proximity. The box indicates the sites
of action of enzyme activators (green arrows) and inhibitors (depicted by grey ┬ symbols) used in the present
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(M3AChR) and AF-DX 384 (M2/M4AChR), we conclude
that M2/M4AChRs, but not M1/M3AChRs, are involved in
the activation of ISO in INs (Hammer et al. 1980, 1986;
Michel et al. 1989; Miller et al. 1991). Moreover, the
blocking effect of gallein confirmed the involvement of
G-protein Gβγ subunits (Lehmann et al. 2008; Ukhanov
et al. 2011).

Downstream of Gβγ-dependent activation, an inter-
action exists between PI3K class IA and c-Src TK
that is established following GPCR stimulation through
formation of a complex via the nSH2 domain of the p85
subunit (Chan et al. 1990; von Willebrand et al. 1998;
Yu et al. 1998; Nozu et al. 2000; Cuevas et al. 2001;
Chan et al. 2002; Gentili et al. 2002). In particular, the
nSH2 domain of p85 is known to mediate an inhibitory
influence via the helical domain of the catalytic p110 sub-
unit (Miled et al. 2007; Mandelker et al. 2009), which can
be disrupted by the binding of tyrosine-phosphorylated
proteins or peptides (Yu et al. 1998; Burke et al. 2011;
Zhang et al. 2011). To probe the involvement of p85-related
SH2 domains in the modulation of TASK-1 channels
in dLGN INs, we used the PI3K antagonist LY294002
and the PI3K activators DAQ B1 (Salituro et al. 2001;
Webster et al. 2003), IRS-1-Y608P (Shoelson et al. 1992;
Ito et al. 1997) and β-estradiol (Simoncini et al. 2000;
Marin et al. 2005). Indeed, the modulation of ISO was
blocked by LY294002 application and enhanced by the
three PI3K activators. Activation of the insulin receptor
by DAQ B1 results in tyrosine phosphorylation of IRS-1,
which associates with the p85 subunit of PI3K followed by
activation of the enzyme (Salituro et al. 2001). In a similar
way IRS-1-Y608P applied via the patch pipette bound to
the p85 subunit via SH2 domain recognition (Backer et al.
1992; Shoelson et al. 1992). Also the activated oestrogen
receptor signals via the p85 subunit (Simoncini et al. 2000),
thereby pointing to the central role of this regulatory sub-
unit for the modulation cascade investigated here. Besides
this direct interaction, p85 is also capable of activating
c-Src indirectly (Walker et al. 2007; Boroughs et al. 2014).
Furthermore, our results indicate that downstream of Gβγ

proteins, c-Src activity is regulated by PI3Kβ but not by
PI3K class IB enzymes.

The involvement of c-Src TK was further confirmed
through use of the TK inhibitor genistein (Akiyama et al.
1987), the SFK inhibitor PP2 (Hanke et al. 1996), and the
specific c-Src kinase antagonist KBsrc4 (Brandvold et al.
2012), all of which abolished the ISO increase mediated
by OxoM. It should be noted, however, that genistein
may modulate ion channel function via inhibition of TK
enzymatic activity (Yu et al. 2004; Missan et al. 2006)
and/or direct blocking (Paillart et al. 1997; Belevych et al.
2002; Altomare et al. 2006; Gierten et al. 2008; Zhao et al.
2008). Furthermore, we found a positive effect of the SFK
activator peptide (EPQpYEEIPIYL phosphopeptide) on
the OxoM-induced increase in ISO. The transient increase

in ISO seen in some cells during diffusion of the SFK
activator peptide into the cell indicates that receptor
stimulation of the signalling cascade is necessary for
sustained activation. Here the production of PIP3 may play
a role (see below). From our data it is not clear whether
direct phosphorylation of the channel protein and/or
additional interacting proteins like the adapter protein
14-3-3 contributes to TASK-1 modulation by TK. While
mutations at the single TK phosphorylation site (Y323)
within the TASK-1 protein were not found to be involved
in genistein modulation of the channel (Gierten et al.
2008), several members of the TASK channel family reveal
14-3-3-dependent surface expression which is sensitive
to the phosphorylation/dephosphorylation status of the
trafficking control region of the channels (Kilisch et al.
2015, 2016; Fernandez-Orth et al. 2016). However the fast
time course of minutes of the OxoM-induced response
may point to increased channel opening in the present
study.

The ISO current component modulated by muscarinic
stimulation revealed hallmarks of a current through
TASK-1 channels. The I–V relationship of the
OxoM-sensitive current was characterized by outward
rectification and the reversal potential was found to be
close to the K+ equilibrium potential. Moreover, bath
application of the selective TASK-1 (A293, A1899) but
not TASK-3 (PK-THPP) channel blockers decreased ISO

(Putzke et al. 2007; Streit et al. 2011; Coburn et al. 2012;
Chokshi et al. 2015). Importantly, the OxoM-mediated ISO

modulation was significantly smaller in TASK-1-deficient
mice. However, since pharmacological block and genetic
knock-out of TASK-1 did not completely block the OxoM
effect, a contribution of heteromeric TASK-1/TASK-3
(Berg et al. 2004; Kang et al. 2004; Aller et al. 2005; Kim
et al. 2009; Enyedi & Czirjak, 2010; Turner & Buckler, 2013;
Rinné et al. 2015) channels or other outward rectifying K+
channels cannot be excluded.

The present results therefore point to a scenario (Fig. 6)
in which c-Src TK acts downstream of Gβγ dimers (Igishi
& Gutkind, 1998) with direct activation of PI3K by Gβγ

(Vanhaesebroeck et al. 2010; Dbouk & Backer, 2013)
increasing the activity of c-Src and modulating additional
downstream elements (Schwindinger & Robishaw, 2001).
The interaction of p85 containing PI3Ks with c-Src kinase
is essential for the increase in ISO that is carried by
the modulation of monomeric TASK-1 or heteromeric
TASK-1/3 channels.

Muscarinic control of K2P channels in the thalamus

The findings that TASK channels are reciprocally
modulated by Gαi/o-coupled M2/M4AChRs and
Gαq/11-coupled M1/M3AChR pathways that activate and
inhibit them, respectively, point to a possible crosstalk
between signalling pathways (Gerthoffer, 2005; Bista et al.
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2015a). Indeed strong evidence for a partially cooperative
signalling between M2AChR and M3AChR as well as
between Gαi and Gαq on the levels of second messengers
and effector kinases, especially PI3K, has been presented
(Blaukat et al. 2000; Hornigold et al. 2003; Arrighi et al.
2013). While the reduced ISO amplitude after M2/4AChR
inhibition may be straightforwardly explained by effects
due to ambient ACh in the slice and/or basal receptor
activity, the current reduction in response to M1/3AChR
inhibition may be based on the convergence of pathways
on PI3K. The finding that block of M1/3AChR in slices
pre-incubated with LY294002 had no effect on ISO may
point to this scenario (data not shown). Also differences
in the dynamics of signalling pathways when basally active
or stimulated by synthetic agonists may be of relevance
here (Geppetti et al. 2015). The effect of ambient ACh
and/or basal MAChR activity has been observed in dLGN
TC neurons before (Broicher et al. 2008).

Furthermore, while blocking M2/M4AChRs, OxoM
induced a decrease in ISO, which in the present study was in
agreement with the inhibition of TASK channels by DAG
due to M1/M3AChR stimulation (Wilke et al. 2014; Bista
et al. 2015b). However, blocking c-Src TK activity (i.e.
blocking the activation of TASK channels) by application
of genistein and PP2 was associated with a decrease
in ISO during OxoM treatment. Although M1/M3AChRs
were blocked during these experiments, several additional
factors may have contributed to this observation. (1) The
blocking of M1/M3AChRs may have been incomplete;
(2) Gαq/11-coupled M5AChRs that are present in the
dLGN may have been activated (Wei et al. 1994; Broicher
et al. 2008); (3) GPCRs and SFKs show multi-layered
forms of crosstalk including direct association of SFKs
with GPCRs or receptor-associated proteins (Luttrell &
Luttrell, 2004). Therefore c-Src TK activity may have
influenced critical components of MAChR pathways. For
instance, G-protein-coupled receptor kinase 2 (GRK2)
phosphorylation by c-Src TK is known to increase its
activity following M2AChR stimulation (Sarnago et al.
1999; Mahavadi et al. 2007) and the interaction between
Gαq and GRK2 is associated with the inhibition of
M3AChRs as well as Gαq-dependent PLCβ activity (Huang
et al. 2007; Luo et al. 2008; Wolters et al. 2015). The latter
will reduce and increase DAG and PIP2 levels, respectively,
resulting in facilitation of currents through TASK and
TREK channels (Wilke et al. 2014; Bista et al. 2015b).
Indeed, we found that pre-incubation with the PLCβ

inhibitor U73122 significantly increased the modulation
of ISO by OxoM, thereby resembling the effect of PIP3

application. It is not clear, however, whether the activation
of PI3K can significantly reduce the availability of PIP2

to serve as a substrate for PLCβ to form DAG and
whether increased availability of PIP2 can stimulate PIP3

production. Nevertheless it is interesting to note that
M1AChR receptor-induced intracellular DAG transients

have been shown to increase DAG levels by about 50%
with respect to baseline (Wilke et al. 2014).

The role of PIP3 in the modulation of TASK channels

Intracellular application of PIP3 via the patch pipette
strongly increased the OxoM effect in dLGN INs. Once
synthesized, PIP3 signals via direct PIP3-binding effector
proteins (Kriplani et al. 2015). In addition PIP3 may
act via stabilizing and recruiting protein–protein inter-
actions: (1) PIP3 is known to play a role in recruiting
SH2-containing signalling proteins including PI3K and
c-Src TK to the plasma membrane (Chellaiah et al. 2001).
Therefore, PIP3 interacts with the cSH2, but not the
nSH2 domain of the p85 subunit (Ching et al. 2001).
Specific phosphopeptides such as pYEEI compete for the
binding of PIP3 to the SH2 domain of c-Src TK (Rameh
et al. 1995). Thus, PIP3 could facilitate the assembly
of a c-Src/PI3K-containing complex by promoting SH2
binding to c-Src-phosphorylated sites. For instance, the
p85 subunit was found to bind with 100-fold greater
affinity to c-Src-phosphorylated epidermal growth factor
receptors (EGFRs) in comparison to autophosphorylated
EGFRs (Stover et al. 1995). (2) Both lipid kinase and
protein kinase activity of PI3K are required for the
transactivation of EGFRs by β2-adrenergic receptors,
prototypical GPCRs (Watson et al. 2016). Mechanistically,
the generation of PIP3 stabilizes the GPCR complex while
phosphorylation of c-Src by PI3K activates its TK activity.
Since MAChRs also signal as part of large multiprotein
complexes (Nelson et al. 2007; Huster et al. 2010), the
role of PIP3 may be to stabilize protein interactions in the
activated signalling cascade (Fig. 6).

TK- and PI3K-dependent signalling in the thalamus

c-Src TK has been identified as a crucial element for setting
a negative resting membrane potential and a low resting
pulmonary vascular tone by activating TASK-1 channels in
smooth muscle cells (Gerthoffer, 2005; Nagaraj et al. 2013;
MacKay & Knock, 2015). Therefore, the modulation of
TASK-1 channels in INs, exemplifies a smooth muscle-like
signal transduction pathway in the brain. Also, vascular
L-type Ca2+ channels are up-regulated following M2AChR
stimulation by a signalling pathway involving Gβγ, PI3Kβ

and c-Src TK (Macrez et al. 2001; Oldenburg et al. 2003;
Callaghan et al. 2004). Since L-type Ca2+ channels are
expressed in dLGN INs, a similar modulation may be
expected in these cells (Munsch et al. 1997; Budde et al.
1998). Indeed, activation of M2AChR led to long-lasting,
nimodipine-sensitive plateau potentials when INs were
challenged by stimulation of the optic tract (Antal et al.
2010). Future studies have to assess the involvement
of c-Src TK in this modulation. Different PI3K sub-
types are characterized by neuron-specific signalling and
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function (Gross & Bassell, 2014). Here, we add activation
of TASK-1 channels via PI3K and c-Src TK to this
growing list indicating that there are currently emerging
roles of TK signalling in modulating thalamocortical
circuits.

Functional significance of muscarinic modulation
in INs

Feed-forward inhibition exerted by INs plays critical roles
in the dynamic regulation of the precision of firing and the
refinement of receptive field properties of TC neurons and
thus the information transfer of primary sensory afferents
to the cortex (Blitz & Regehr, 2005; Antal et al. 2010;
Crandall & Cox, 2013). Phasic inhibition from INs leads
to effective temporal framing of the relay mode output of
TC neurons in the α-frequency range, which is essential
for visual perception (Lorincz et al. 2009). Besides phasic
inhibition, synaptic GABA release in the dLGN generates
a GABAA receptor-mediated tonic inhibition that hyper-
polarizes TC neurons, thereby favouring thalamic burst
firing and synchronized slow rhythmic activity in the
thalamocortical network and modulating burst precision
(Cope et al. 2005; Bright et al. 2007).

Here, we show that muscarinic receptor stimulation
causes hyperpolarization of INs, due to the increased
activity of TASK-1 channels. In the absence of intense
optic tract stimulation, activation of MAChRs leads to
the cessation of spontaneous or induced AP firing of INs
(McCormick & Pape, 1988; Pape & McCormick, 1995;
Antal et al. 2010). Since bursting from hyperpolarized
potentials is less pronounced in dLGN INs, and oscillatory
activity occurs at more depolarized potentials compared
to TC neurons (McCormick & Pape, 1988; Pape et al.
1994; Zhu et al. 1999; Broicher et al. 2007; Halnes et al.
2011; Seabrook et al. 2013; Leist et al. 2016), a reduced
GABAergic inhibition of TC neurons may be expected
following muscarinic stimulation. Indeed, GABA release
and inhibitory connections in the thalamus are suppressed
by the activation of M2AChRs (Cox & Sherman, 2000;
Castro-Alamancos, 2002; Antal et al. 2010), whereas ACh
activation of M1/M3AChR increases the ability of TC
neurons to excite cortical cells through increased tonic
firing (Bista et al. 2015a). This is important since the
desynchronized cortical state during active behaviour in
mice is driven by increased thalamic AP firing rates (Poulet
et al. 2012).

Our findings point to an intriguing scenario where
INs in the rodent dLGN possess distinctive modulatory
pathways for K2P channels in comparison with those
of TC neurons. While TASK-1/3 channels are inhibited
via activation of M1/M3AChR in TC neurons, TASK-1
channels are increased via M2AChR in INs. Together, the
direct excitation of TC neurons and inhibition of INs
allow the ascending cholinergic brainstem system to exert

a powerful facilitatory influence on the transfer of visual
information to the cerebral cortex (McCormick & Pape,
1988). Cholinergic signalling within the thalamocortical
system is known to enhance the attentional modulation
of neuronal activity (Herrero et al. 2008). Therefore,
it is of interest to note that similar to the circuit
modulation in the thalamus, ACh acts via M2/M4AChR
on fast-spiking GABAergic interneurons in the cortex
and decreases the probability of GABA release (Kruglikov
& Rudy, 2008). Thereby, ACh reduces the amount of
feed-forward inhibition of pyramidal neurons (Gabernet
et al. 2005; Higley & Contreras, 2006), while ACh
depolarizes pyramidal neurons via activation of M1AChR
(McCormick & Prince, 1985, 1986; Kruglikov & Rudy,
2008). Thus, ACh release in the thalamocortical system
results in the enhancement of neuronal activity during
wakefulness. These findings point towards the idea
that mechanisms facilitating the informational relay are
conserved within different parts of the thalamocortical
system.
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