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Previous physical exercise alters the hepatic profile of
oxidative-inflammatory status and limits the secondary
brain damage induced by severe traumatic brain injury
in rats
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Key points

� An early inflammatory response and oxidative stress are implicated in the signal transduction
that alters both hepatic redox status and mitochondrial function after traumatic brain injury
(TBI).

� Peripheral oxidative/inflammatory responses contribute to neuronal dysfunction after TBI
� Exercise training alters the profile of oxidative-inflammatory status in liver and protects against

acute hyperglycaemia and a cerebral inflammatory response after TBI.
� Approaches such as exercise training, which attenuates neuronal damage after TBI, may have

therapeutic potential through modulation of responses by metabolic organs.
� The vulnerability of the body to oxidative/inflammatory in TBI is significantly enhanced in

sedentary compared to physically active counterparts.

Abstract Although systemic responses have been described after traumatic brain injury (TBI),
little is known regarding potential interactions between brain and peripheral organs after neuro-
nal injury. Accordingly, we aimed to investigate whether a peripheral oxidative/inflammatory
response contributes to neuronal dysfunction after TBI, as well as the prophylactic role of exercise
training. Animals were submitted to fluid percussion injury after 6 weeks of swimming training.
Previous exercise training increased mRNA expression of X receptor alpha and ATP-binding
cassette transporter, and decreased inducible nitric oxide synthase (iNOS), cyclooxygenase-2
(COX-2), tumor necrosis factor (TNF)-α and interleukin (IL)-6 expression per se in liver.
Interestingly, exercise training protected against hepatic inflammation (COX-2, iNOS, TNF-α
and IL-6), oxidative stress (decreases in non-protein sulfhydryl and glutathione, as well as
increases in 2′,7′-dichlorofluorescein diacetate oxidation and protein carbonyl), which altered
hepatic redox status (increases in myeloperoxidase and superoxide dismutase activity, as well
as inhibition of catalase activity) mitochondrial function (decreases in methyl-tetrazolium and
�ψ, as well as inhibition of citrate synthase activity) and ion gradient homeostasis (inhibition of
Na+,K+-ATPase activity inhibition) when analysed 24 h after TBI. Previous exercise training also
protected against dysglycaemia, impaired hepatic signalling (increase in phosphorylated c-Jun
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NH2-terminal kinase, phosphorylated decreases in insulin receptor substrate and phosphorylated
AKT expression), high levels of circulating and neuronal cytokines, the opening of the blood–brain
barrier, neutrophil infiltration and Na+,K+-ATPase activity inhibition in the ipsilateral cortex after
TBI. Moreover, the impairment of protein function, neurobehavioural (neuromotor dysfunction
and spatial learning) disability and hippocampal cell damage in sedentary rats suggests that
exercise training also modulates peripheral oxidative/inflammatory pathways in TBI, which
corroborates the ever increasing evidence regarding health-related outcomes with respect to
a physically active lifestyle.
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Introduction

Traumatic brain injury (TBI) is a public health concern
highly related to morbidity and mortality. This neuro-
logical injury is characterized by a combination of
immediate mechanical dysfunction of the brain tissue,
and secondary damage developed over a period of hours
to days following the injury. Furthermore, TBI-related
injuries are not limited to the CNS because protein
metabolism alterations are linked to nitrogen transfer
from muscles to the liver after a TBI, which participates
in the synthesis of inflammatory proteins (Mansoor et al.
1996; Mansoor et al. 1997) and leads to local dysfunctions
in different tissues (Mirzayan et al. 2008).

From a metabolic perspective, injuries caused by TBI
are not limited to the CNS. In this context, TBI-induced
hepatic inflammation reinforces the idea that neuronal
injury signals may impact on the function of organs
distant from the injury site (Moinard et al. 2008; Anthony
& Couch, 2014). Indeed, the production of acute phase
proteins after CNS injury leads to systemic inflammatory
response syndrome, characterized by local damage as a
result of the accumulation of blood inflammatory cells in
different organs, such as the liver (Bao et al. 2011). Recent
studies also have demonstrated that fast hepatic chemo-
kine production after TBI amplifies focal injury (Anthony
et al. 2012; Villapol et al. 2015a). However, the role of
these hepatic inflammatory mediators on the neuronal
dysfunction after TBI remains largely unknown.

Liver is involved in endogenous glucose production,
which is regulated by insulin through insulin binding and
subsequent activation of the insulin receptor substrate
(IRS) (Wang et al. 2014). In this context, the unsuppressed
hepatic glucose output significantly contributes to fasting

hyperglycaemia as observed in patients with diabetes
and/or glucose intolerance (Rizza, 2010). Furthermore,
injuries (including TBI) commonly induce high glucose
reactions (emergency insulin resistance) similar to high
glucose and insulin levels in type-2 diabetes (Ljungqvist
et al. 2000; Tsatsoulis et al. 2013), although the mechanism
of the disease is not completely understood.

The experimental model of TBI induced by fluid
percussion injury (FPI) has demonstrated major decreases
in liver weight and protein content, which were associated
with homeostasis impairment (Moinard et al. 2005;
Moinard et al. 2008). Although not as energy-dependent
as the skeletal muscle, the liver is also a highly demanding
metabolic organ. In this sense, the relationships between
energy metabolism, redox biochemistry and reactive
oxygen species (ROS) generation at mitochondrial level
are highly relevant, considering this organelle is also a
primary target of uncontrolled ROS production (Ray,
2012). ROS overproduction has long been known to
damage cell components in the liver, such as nucleic acids,
protein and lipids (Apel & Hirt, 2004; Bergamini et al.
2004; Dong et al. 2014). Furthermore, the combination of
abnormal oxygen metabolism and ATP depletion in organs
such as the liver results in the collapse of the mitochondrial
machinery, with the cell being destined for necrotic death
(O’Connell et al. 2012).

Over past several decades, experimental and clinical
evidence has validated the contribution of ROS
and inflammation to TBI-induced multidimensional
secondary injury responses (Bains & Hall, 2012). However,
only a few studies have addressed the role of the liver in
TBI-induced toxicity (Kamm et al. 2006; Wang & Yang,
2010; Yang et al. 2013). Furthermore, the understanding
of post-injury neuroendocrine dysregulation in TBI is
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essential for establishing scientific-based rehabilitative
strategies. One of these strategies may be to support
exercise training from a pre-clinical, prophylactic, point of
view, considering its role in the reduction of damage onset
after a TBI, which limits the secondary neuronal death
outcomes and promotes neural repair and behavioural
rehabilitation (Lima et al. 2009; Kim et al. 2010; Mota
et al. 2012).

Regarding systemic adaptations elicited by exercise,
cross-sectional studies have suggested that regular
training protects against diseases associated with chronic
low-grade systemic inflammation (Petersen & Pedersen,
2005). Aerobic exercise has been effective in reducing
food intake in animals fed a fructose-rich diet by
reducing inflammatory pathways triggered through c-Jun
NH2-terminal kinase (JNK) phosphorylation and nuclear
factor kappa B activation in both the liver and skeletal
muscle (Botezelli et al. 2016). Aerobic exercise training
also increased liver X receptor (LXR)-α, a member of
the ligand-activated transcription factor that regulates
lipid metabolism, plasma high-density cholesterol and
inflammatory responses (Kazeminasab et al. 2012; Fu
et al. 2014). This hepatic modulation of pro- and
anti-inflammatory responses (Abd El-Kader et al. 2014;
Motta et al. 2015), with intermittent states of rest and
the exercise-related anti-oxidant effect, reinforces the
rationale that metabolic adaptations to training are not
restricted to the exercising muscles (Lima et al. 2013).

Liver plays essential roles during exercise, particularly
in the energy metabolism, as well as inflammatory and
oxidative responses (Barcelos et al. 2017). Although
the immune modulation induced by exercise training
provides a unique non-pharmacological therapeutic
approach for controlling TBI-related secondary damage
(Ang & Gomez-Pinilla, 2007; Motta & Dutton, 2013),
little information regarding the prophylactic role of
exercise training in the liver is currently available.
In this sense, we aimed to investigate whether: (i)
acute TBI induces insulin resistance in the liver; (ii)
induced resistance is associated with hepatic inflammatory
responses; (iii) inflammation-related hepatic chemokine
release amplifies the neuronal injury response, as well as
how these mediators contribute to cognitive dysfunction
after TBI; and (iv) interference in the secondary injury
development elicited by previous physical exercise breaks
the progression of neuronal damage and cognitive
dysfunction after TBI.

Materials and methods

Experimental design

The present study consists of two independent
experiments, in which animals were randomly assigned
to sedentary and exercise groups. Twenty-four hours

after the last training session, animals underwent
surgery for the FPI protocol, which resulted in four
groups: sedentary/sham, sedentary/TBI, exercise/sham
and exercise/TBI. Then, animals were subjected to a neuro-
motor evaluation 24 h after FPI. Immediately afterward,
animals were killed and ipsilateral cortex and liver samples
were obtained for biochemical analysis (Experiment 1).
Another subset of animals performed memory tests 48 h
after FPI. Immediately afterward, animals were killed
by decapitation and ipsilateral hippocampus samples
were obtained for biochemical and histological assays
(Experiment 2) (Fig. 1).

Animal and reagents

Male Wistar rats (250–350 g) were maintained under
12:12 h light/dark photocycle at 24 ± 1ºC and 55% relative
humidity, with free access to food and water. Experimental
procedures were conducted in accordance with national
and international legislations (Brazilian College of Animal
Experimentation and US Public Health Service Policy on
Humane Care and Use of Laboratory Animals guidelines)
and previously approved by the Ethics Committee on
Animal Research of the Universidade Federal de Santa
Maria (Protocol number 081/2014). The experiments were
carried out in accordance with the principles described by
Grundy (2015).

Exercise training protocol and lactate threshold assay

Exercise training was carried out as previously described
by Souza et al. (2009). Briefly, animals were placed in a
cylindrical pool (diameter 1.05 m, height 60 cm). The
swimming training protocol lasted 6 weeks with 60 min
sessions five times per week. The water temperature was
32°C and swimming sessions were performed between
09.00 h and 11.00 h. Animals underwent a swimming
adaptation period without weights during the first week
of training. After adaptation, rats were submitted to
swimming training with a workload of 5% of body weight
to improve endurance. This training intensity is based
on 80–90% of lactate threshold (LT) (Gobatto et al.
2001) and no animal drowned or struggled to keep the
head above water. Sedentary groups were placed in a
different tank with shallow water (5 cm) at 32°C for
30 min, 5 days per week, without workload. Twenty-four
hours after the last training session, LT were evaluated
in sedentary (n = 6) and trained (n = 6) rats. The
LT test was conducted in accordance with the protocol
described previously (Marquezi et al. 2003). The test
consisted on swimming sessions of 3 min (1 min of resting)
with progressive workload corresponding to 4%, 5%, 6%,
7% and 8% of the body weight of each animal. During
resting periods, blood samples (25 μl) were collected
from the tail vein into heparinized capillary tubes to
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determine lactate concentration. The LT for each animal
was calculated based on the point of inflection of the graph
when the lactate concentration was plotted against the
corresponding exercise workload.

Traumatic brain injury (TBI)

Twenty-four hours after the LT (Experiment 1), sedentary
and trained rats were subjected to lateral FPI as
described by D’Ambrosio et al. (2004). Briefly, animals
were anaesthetized with a single injection of xylene
(10 mg kg−1)/ketamine (100 mg kg−1) mixture and
placed in a rodent stereotaxic apparatus. Heart rate,
temperature, tale and eyelid reflexes were monitored to
verify anaesthetic depth and duration. A burr hole of
3 mm in diameter was drilled on the right convexity,
2 mm posterior to the bregma and 3 mm lateral to the
midline, avoiding dura mater injury. A plastic injury
cannula was placed over the craniotomy with acrylic
cement. When the cement hardened, the cannula was
filled with chloramphenicol and closed with a proper
plastic cap. The animal was then removed from the
stereotaxic device and returned to the cage. After 24 h,
animals were anaesthetized with isofluorane, had the
injury cannula attached to the FPI device, and were
placed in a heat pad maintained at 37 ± 0.2°C.
Frontoparietal TBI (2 mm posterior to the bregma and
3 mm lateral to the midline) was produced by a FPI
device developed in our laboratory. A brief (10–15 ms)
transient pressure fluid pulse (4.05 ± 0.17 atm) impact

was applied against the exposed dura mater. Pressure
pulses were measured extracranially by a transducer (Fluid
Control, AmScien Instruments, Brazil) and recorded
on a storage oscilloscope (Gould Ltd, Hainault, UK).
During the recovery period from anaesthesia and injury,
neurological function was assessed by determining the
presence or absence of reflexes, including paw-pinch
withdrawal, corneal, pinna, respiratory drive and righting
reflex. During the surgery and subsequent recovery,
body temperature was maintained with a circulating
water-heating pad. Immediately upon responding to a
paw pinch, anaesthesia was restored and the skull was
sutured. Neomycin was applied on the suture and the rats
were placed in a heated recovery chamber before being
returned to their cages. The sham group underwent the
same procedures and was coupled to the injury device,
although no fluid pulse was delivered.

Assessment of neuromotor function

Twenty-four hours after neuronal injury, the neuromotor
function was tested via the neuroescore test as described
by Raghupathi et al. (1998). Briefly, animals were sub-
jected to a grid-walk test for 1 min to allow assessment
of the number of foot-faults. Subsequently, forelimb and
hindlimb functions were evaluated by suspending animals
by the tail and observing how they grasped the top of the
cage when lowered towards it (for the forelimbs) and with
the same pattern with respect to spread and hindlimb
extension during the suspension (for hindlimbs). Finally,

Exercise

A

B
Exercise

1st 2nd 3rd 4th 5th 6th

48 Hrs after TBI

24 Hrs after TBI

1st 2nd 3rd 4th 5th 6th

Overload 5%

Overload 5%

Lactate/Surgery

Lactate/Surgery

Weeks

Weeks

TBI

TBI

Neuroescore and
Biochemical analyses

Spatial learning and
Histological analyses

Figure 1. Schematic representation of the experimental design with the exercise training protocol
In the experiment 1 (A), animals underwent a swimming adaptation period without weights during the first week
of training. After the swimming adaptation, animals trained with an extra overload equivalent to 5%/body weight
during 5 weeks. One day after the last exercise session, animals were submitted to LT. Twenty-four hours after LT,
sedentary and the trained rats were subjected to lateral FPI. One day after this procedure, motor function was
assessed by the neuroescore test (Experiment 1). Immediately after behavioural analysis, animals were killed for
biochemical and histological analysis in ipsilateral cortex and liver. In the second experiment (B), exercise training
and FPI procedures applied were the same as described in Experiment 1, except that object recognition memory
test was carried out 48 h after FPI. Immediately after this behavioural test, animals were killed for histological
analysis in ipsilateral hippocampus.

C© 2017 The Authors. The Journal of Physiology C© 2017 The Physiological Society



J Physiol 595.17 The effect of exercise on hepatic and neuronal oxidativeinflammatory 6027

Table 1. Sequences and size of the primers used for quantitative PCR amplifications

Gene Forward primer (5′- to 3′) Reverse primer (5′- to 3′) Size bp

LXRs CCTGATGTTTCTCCTGACTC TGACTCCAACCCTATCCTTA 147
β-actin GGAGAAGATTTGGCACCACAC GGATGGCTACGTACATGGCTG 164
ABCA1 CTTGCTTCCGTTATCCAACTCCAG GCTGTAATGTTCTCAGGACCTTGTG 162
iNOS CTTGCAAGTCCAAGTCTTGC GTATGTGTCTGCAGATGTGCTG 369
TNF-α TTCGAGTGACAAGCCTGTAGC AGATTGACCTCAGCGCTGAGT 390
IL-6 CATATGAGCTGAAAGCTCTCCA GACACAGATTCCATGGTGAAGTC 435
COX-2 CCCCCACAGTCAAAGACACT AGGCAATGCGGTTCTGATAC 348
GAPDH GTATGACTCCACTCACGGCAA GGTCTCGCTCCTGGAAGATG 132

animals were tested for both right and left resistance to
lateral pulsion. Animals were scored from 0 (severely
impaired) to 4 (normal) for each of the following indices:
forelimb function, hindlimb function and resistance to
lateral pulsion. The maximum score for each animal
was 12. Evaluation of neurological motor function was
conducted by an experienced researcher who was blinded
to all groups.

Blood, liver and ipsilateral cortex tissue preparation

After the neuroescore test, rats were re-anaesthetized
with isofluorane and decapitated. Livers and ipsilateral
cortex were rapidly dissected and stored at −80°C for
further biochemical assays. Trunk blood also was collected
and allowed to clot for 10 min at room temperature,
centrifuged 1500 g for 15 min and stored at −80°C for
further biochemical assays.

Determination of glucose and insulin resistance
calculation

An Aviva Accu-check monitor (Roche Diagnostic Corp.,
Indianapolis, IN, USA) was used to analyse blood
glucose levels. For the insulin test, blood concentration
in each group was determined using an enzyme-linked
immunosorbent assay (ELISA) kit in accordance
with the manufacturer’s instruction (Linco Research,
St Charles, MO, USA). The Homeostasis Model
Assessment (HOMA2-%S) was calculated with a virtual
platform released by the Diabetes Trials Unit, University
of Oxford: HOMA2 Calculator (http://www.dtu.ox.ac.
uk/homacalculator/index.php).

Cytokine, aspartate and alanine aminotransferase
levels in blood

Serum interleukin (IL)-6 and tumor necrosis factor
(TNF)-α levels were measured using a commercially
available ELISA kit, in accordance with the manufacturer’s
instructions (R&D Systems, Minneapolis, MN, USA).

Serum alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) were determined with a Hitachi
7020 automatic analyser (Hitachi, Tokyo, Japan) using
commercially available reagents (Shino-Test Corporation,
Tokyo, Japan).

RT-PCR in liver samples

Hepatic total RNA was obtained by using a Trizol reagent
(Life Technologies, Carlsbad, CA, USA) and quantified by
spectrophotometry (NanoDrop 1000; Thermo Scientific,
Waltham, MA, USA). Residual genomic DNA was
removed by incubating RNA with RQ1 RNase-free DNase
(Promega, Madison, WI, USA). First-standard cDNA
was synthesized using a High-Capacity cDNA Archive
Kit (Applied Biosystems, Weiterstadt, Germany). The
negative control (no transcriptase control) was performed
in parallel. First-standard cDNA was synthesized using a
High-Capacity cDNA Archive Kit (Applied Biosystems,
Paisley, UK) and then amplified using TaqMan

R©

Universal PCR Master Mix (Applied Biosystems) on
a StepOnePlusTM Real-Time PCR System (Applied
Biosystems) (Filippin et al. 2011). The Taqman

R©
probes for

inducible nitric oxide synthase (iNOS) (Rn00561640 m1)
and cyclooxygenase-2 (COX-2) (Rn01483828 m1) were
acquired from Applied Biosystems. The primer sequences
for LXR-α, ATP-binding cassette transporter (ABCA)1,
iNOS, COX-2 and β-actin are presented in Table 1.
Relative changes in gene expression levels were determined
using the 2−��CT method, as described previously
(Garcı́a-Mediavilla et al. 2005; Tuñón et al. 2011). The
cycle number at which the transcripts were detectable
(Ct) was normalized to the cycle number, referred to
as�CT.

Cytokine immunoassay

The contents of IL-6 and TNF-α were determined in
liver homogenates. Cytokine levels were measured using
a commercially available ELISA kit from R&D Systems,
in accordance with the manufacturer’s instructions. The
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concentration of cytokines was normalized to protein
concentration of samples the and results are expressed
as pg mg–1 protein.

Western blot analysis

Liver samples were homogenized at 4°C in 300 μl of
0.25 mM sucrose, 1 mM EDTA, 10 mM Tris and protease
inhibitor cocktail (Sigma-Aldrich, St Louis, MO, USA).
The homogenate was centrifuged at 4°C for 30 min at
13 000 g. The supernatant fraction was collected and
stored at −80°C in aliquots until use. Samples containing
40 μg of protein were fractionated by SDS-PAGE and
then, transferred to a polyvinylidene fluoride membrane
by a Trans-Blot TurboTM Transfer System (Bio-Rad,
Hercules, CA, USA). The membranes were incubated
overnight at 4°C with the corresponding antibodies
(Gobatto et al. 2001). Antibodies against iNOS (130 kDa),
pIRS (130 kDa), pJNK (48 kDa) and pAkt (60 kDa)
were purchased from Santa Cruz Biotechnology (Santa
Cruz, CA, USA); antibody against COX-2 (70 kDa) was
purchased from Abcam (Cambridge, UK). After washing
with TBST, the membranes were incubated for 1 h at
room temperature with secondary HRP conjugated anti-
body (dilution 1:5000; Dako, Glostrup, Denmark), and
visualized using ECL detection kit (Amersham Pharmacia,
Uppsala, Sweden). The blots were stripped and probed
again for anti-β-actin (42 kDa) antibody (Sigma-Aldrich)
to confirm equal protein loading (Gobatto et al. 2001).
The density of the specific bands was quantified with
an imaging densitometer (Image J, version 1.46a; NIH,
Bethesda, MD, USA).

Estimation of ROS production, non-protein
sulfhydryl, protein carbonyl and reduced glutathione
(GSH) content

Production of ROS was estimated in liver mitochondria
with the fluorescence probe 2′,7′-dichlorfluorescein
diacetate (DCFH-DA) as described by Myhre et al. (2003).
Free -SH groups were determined as described by Ellman
& Lysko (1967). Total protein carbonyl content was
determined using the method described by Yan et al.
(1995) and Levine et al. (1990). For measurement of GSH
levels, the method previously described by Hissin & Hilf
(1976) was used.

Superoxide dismutase (SOD) and catalase (CAT)
enzyme activities

The hepatic SOD activity was measured as described by
Mirsra and Fridovich (1972). CAT activity was determined
by following the decomposition of hydrogen peroxide in
accordance with the method proposed by Aebi (1984).

Mitochondrial 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) reduction

The hepatic MTT assays were carried out with a
modification (Cohen et al. 1997) of the method described
by Berridge and Tan (1993) the respiration buffer was used
as stock buffer.

Mitochondrial membrane potential (�ψ) and citrate
synthase (CS) activity

The hepatic mitochondrial ��m determination was
estimated by fluorescence changes in safranine-O, assayed
as described previously (Akerman & Wikstrom, 1976). CS
activity was determined spectrophotometrically using the
method of Srere & Brooks (1969), which measures the
appearance of free CoA.

Na+,K+-ATPase activity

Hepatic Na+,K+-ATPase activity was measured as
described by Silva et al. (2013a). The amount of inorganic
phosphate released was quantified by the colorimetric
method described by Fiske & Subbarow (1927). The
Michaelis–Menten constant (Km) for ATP was then
calculated using the non-linear fit function of Prism,
version 5.0 (GraphPad Software, Inc., La Jolla, CA, USA).

Evaluation of MPO activity as a marker of neutrophil
inflitration

MPO activity in the ipsilateral cortex was assayed
in accordance with the method of Suzuki et al.
(1983), with some modifications. Briefly, perilesional
cortex samples were homogenized with 10 volumes
of 50 mM sodium acetate buffer (pH 5.4) plus 0.5%
hexadecyltrimethylammonium bromide, centrifuged
(11 200 g at 4°C for 20 min) and the supernatants were
collected. Next, 10 μl of supernatant and 230 μl of 50 mM

sodium acetate buffer (pH 5.4) containing 15% of 0.3 mM

H2O2 were added in triplicate to a 96-well plate. The
reaction was initiated by the addition of 20 μl of 18.4 mM

tetramethylbenzidine. The mixture was incubated for
50 min at 37 °C follwed by immersion in an ice bath. The
reaction was stopped by adding 30 μl of acetic acid and
absorbance was monitored at 630 nm.

Cerebral cytokine immunoassay and Na+,K+-ATPase
activity

The contents of IL-6 and TNF-α were determined in
ipsilateral cortex homogenized in solution containing
BSA (10 mg ml−1), 2 mM EGTA, 2 mM EDTA and
0.2 mM phenylmethylsulphonyl fluoride in PBS (pH 7.4).
Cytokine levels were measured using a commercially
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available ELISA kit from R&D Systems, in accordance
with the manufacturer’s instructions. The concentration
of cytokines was normalized to the protein concentration
contained in the samples. The results are expressed as
pg/mg–1 protein. The activity of Na+,K+-ATPase was
determined in the ipsilateral cortex homogenized using
the method of Silva et al. (2013b).

Evaluation of blood–brain barrier (BBB) permeability

For evaluation of BBB permeability to small molecular
mass compounds, 24 h after neuronal injury, a subset
of animals was injected with sodium fluorescein (10 mg
in 0.1 ml of sterile saline I.P.) as described by Olsen et al.
(2007). In brief, animals were anaesthetized with ketamine
HCl (200 mg kg−1) I.P., 45 min after sodium fluorescein
injection for blood sampling. The brain was removed,
weighed, homogenized (dilution 1:10) in trichloroacetic
acid, centrifuged at 1250 g for 5 min and then the
supernatant was stored at −70°C until biochemical
analysis. Samples were analysed on fluorometer (emission
538 nm; extinction 480 nm). BBB permeability degree was
measured as the percentage of sodium fluorescein in the
brain per amount of sodium fluorescein in a milliliter of
serum.

Barnes maze assay

To determine the effect of previous physical exercise and
TBI on spatial learning memory, a subset of animals was
trained to solve the Barnes maze 48 h after neuronal injury.
The Barnes maze is a validated test often used for the
assessment of spatial learning and memory in rodents
(Barnes, 1979). The Barnes maze paradigm exploits the
natural inclination of small rodents to seek escape to
a darkly lit, sheltered environment when placed in an
open arena under bright, aversive illumination. Our maze
consists of a circular wooden table (diameter 120 cm,
thickness 3.5 cm) elevated 90 cm above the floor.

Twenty holes (diameter 6 cm) were equidistantly located
around the perimeter and centred 5 cm from it. The
apparatus was located in a 4 × 4 m test room where four
visuospatial cues made of rigid black paper (rectangle,
circle, cross, triangle) were affixed to the walls but not
directly over any maze hole; this increases the spatial
component of the Barnes maze during training. A black
wooden escape tunnel (15 × 10 × 30 cm) was placed
beneath one hole, selected randomly for each rat but
remained constant throughout training sessions for a given
rat. The remaining 19 holes led only to a false escape box
(15 × 10 × 10 cm) which, from the platform, appeared
indistinguishable from an escape box but was too small
to be entered. False boxes removed visual cues that might
be observed through an open hole. There was a bright
illumination of 300 lux over the maze.

On the first day of the experiment, rats were moved to
a testing room and left undisturbed for 60 min. Following
this habituation period, rats were trained to find the escape
hole; they were placed in the escape box for 1 min, then
into a cylindrical opaque chamber (start box) in the centre
of the maze. With light on, the start box was removed and
rats were allowed to explore freely and find the escape box.
A maximum of 180 s to find it was allowed. Each rat was
given three trials per day, over four consecutive days. In
each trial, we recorded the time to reach the escape tunnel
and the number of wrong holes visited. A visited hole
was defined when the animal put it head into the hole.
The arena, as well as the boxes, was wiped clean using
distillated water both between each training session for a
given rat and between each rat.

Histological procedures

To determine the effect of TBI and exercise training on
neuronal damage, immediately after behavioural (spatial
learning) analysis, rats were deeply anaesthetized with
thiopental (125 mg kg−1; I.P.) and transcardially perfused
with 600 ml of NaCl 0.9% that contained heparin
(5 IU ml−1) followed by 600 mL of 4% paraformaldehyde
in 0.1 M phosphate buffer (pH 7.4). Brains were removed
and serial coronal sections of 50 μm (between −1.5 and
– 2.1 from bregma) were cut on a vibratome (model
KD400; Zhejiang Jinhua Kedi Instrumental Equipment
Co., Zhejiang, China). Sections were washed in phosphate
buffer and subjected to the Giemsa staining processing
(Iniguez et al., 1985). The staining was performed in
duplicate for each rat (i.e. two sections per animal) and
a single slide contained sections for all four groups at
35 days after TBI. Sections were mounted on gelatinized
glass slides and stained for 30 s in a commercially available
Giemsa solution (New Prov, Pinhais, PR, Brazil), washed
three times for 2 min in distilled water, dehydrated in
three graded ethanol solutions (70%, 90% and 100%),
cleared for 2 min in xylene and mounted with Cytoseal 60
(Thermo Scientific). The evaluation of the Giemsa-stained
slides was conducted with 10× magnification under a
light microscope (DFC290; Leica Microsystems, Wetzlar,
Germany) and images of the slices were taken with the
Leica Application Suite, version 3.8 (Leica Microsystems).
The nucleus of neurons was used as the counting unit.
The number of cells within the dentate hilus was assessed
at each section, and counts were averaged, resulting in a
single value for each rat.

For hepatic damage, tissue blocks were placed in
10% buffered formaldehyde solution for 48 h before
being embedded in paraffin. Liver histology was assessed
by light microscopy (BH2; Olympus, Tokyo, Japan) of
haematoxylin and eosin (H&E)-stained 4 μm sections
in a blinded fashion. Ten random fields on each slide
were assessed for necrosis by standard morphological
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criteria (loss of architecture, vacuolization, karyolysis,
increased eosinophilia) and the extent of necrosis was
semiquantitatively estimated by assigning a severity score
on a scale of 0–4 as described previously by Sigala et al.
(2004) (0, absent; 1, mild; 2, moderate; 3, severe; 4, total
necrotic destruction of the liver).

Protein determination

The protein content was colorimetrically measured using
BSA (1 mg ml−1) as a standard (Bradford, 1976).

Statistical analysis

Data are expressed as the mean ± SEM or median ± inter-
quartile range. Data analysis was conducted using one
or two-way ANOVA or non-parametric tests, such as
the Kruskal–Wallis test, depending on the experimental
design. Post hoc analyses were performed using Tukey’s
test when appropriate. P< 0.05 was considered statistically
significant.
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Figure 2. Effect of exercise training on the lactate threshold
test
Data are expressed as the mean ± SEM for n = 6. ∗P < 0.05
compared to trained group (F test for simple effect).

Results

The lactate threshold test (LT)

In the present study we showed a clear stabilization of
blood lactate concentration in trained rats compared to
the sedentary group (F1,16 = 7.09; P< 0.05) (Fig. 2). This
finding indicates exercise training increased the aerobic
resistance of the animals (Rambo et al. 2009; Souza et al.
2009; Lima et al. 2013).

Glycogen levels and LXR-α and ABCA1 receptors

Our experimental data revealed that FPI did not alter
glycogen levels in the liver (F1,20 = 0.65; P > 0.05)
(Fig. 3A), although exercise training was able to increase
its content (F1,20 = 16.96; P < 0.05) (Fig. 3A). In the pre-
sent study, we showed that mRNA expression of LXR-α
(F1,20 = 0.27; P> 0.05) (Fig. 3B) and ABCA1 (F1,20 = 0.11;
P > 0.05) (Fig. 3C) was not altered by the FPI injury. On
the other hand, exercise training increased hepatic LXR-α
(F1,20 = 26.96; P < 0.05) and ABCA1 (F1,20 = 15.68;
P< 0.05) mRNA expression levels in sham and TBI groups
24 h after neuronal injury.

Inflammatory responses

To further examine the role of pro-inflammatory enzymes
in liver 24 h after neuronal injury, iNOS and COX-2
protein expression were measured by real-time RT-PCR
and western blotting. Previous exercise training decreased
both iNOS (F3,20 = 8.09; P < 0.05) (Fig. 4A) and
COX-2 (F3,20 = 36.26; P < 0.05) (Fig. 4B) mRNA
expression and protected against FPI-induced mRNA
increases of these proteins. In the same way, the immuno-
reactivity of iNOS (F3,20 = 25.82; P < 0.05) (Fig. 4C)
and COX-2 (F3,20 = 20.71; P < 0.05) (Fig. 4D) was
reduced in the TBI-exercised group. An immunoassay
for cytokine levels also revealed that exercise training
decreased hepatic levels of TNF-α (F1,20 = 36.12; P< 0.05)
(Fig. 4E) and protected against FPI-induced IL-6 increases
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(F3,20 = 20.02; P < 0.05) (Fig. 4F) and TNF-α content
(F3,20 = 31.19; P < 0.05) (Fig. 4E). In the present study,
we revealed that pro-inflammatory responses induced by
FPI were accompanied by increased immunoreactivity of
pJNK (F3,20 = 10.50; P < 0.05) (Fig. 5A) and decreased
pIRS (F3,20 = 13.60; P < 0.05) (Fig. 5B) and pAKT
(F3,20 = 10.13; P < 0.05) (Fig. 5C) content, whereas pre-
vious exercise training protected against these deleterious
effect.

Oxidative stress and redox status markers

The results obtained in the present study reveal that
training attenuated DCFH-DA oxidation (F1,22 = 26.40;
P<0.05) (Fig. 6A) and decreased protein carbonyl content
(F1,18 = 8.67; P < 0.05) (Fig. 6B). In the same line,
increases in free –SH groups (F1,20 = 19.13; P < 0.05)
(Fig. 6C) and GSH levels (F1,16 = 25.46; P< 0.05) (Fig. 6D)
were seen after exercise training. Following FPI-induced
injury, exercise training prevented DCFH-DA oxidation
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(F3,22 = 26.40; P < 0.05) (Fig. 6A) and protein
carbonylation increases (F3,18 = 26.17; P< 0.05) (Fig. 6B),
whereas free -SH groups (F3,20 = 20.05) (P < 0.05)
(Fig. 6C) and GSH levels (F3,16 = 18.90; P< 0.05) (Fig. 6D)

were increased compared to TBI-sedentary rats. Statistical
analysis also revealed that previous exercise training
protected against FPI-induced SOD activity increases
(F3,20 = 9.26; P < 0.05) (Fig. 6F) and CAT inhibition
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(F3,20 = 6.62; P < 0.001) (Fig. 6E) when analysed 24 h
after neuronal injury.

Mitochondrial assays

Exercise training was effective against FPI-induced liver
mitochondria dysfunction, as characterized by increases
for both dehydrogenases, measured as MTT reduction
(F3,24 = 6.41; P < 0.05) (Fig. 7A), and CS activity
(F3,20 = 5.01; P < 0.05) (Fig. 7B) 24 h after neuronal
injury. Moreover, �ψdecreased after FPI (F3,20 = 7.51
P< 0.05) (Fig. 7C), whereas exercise training reverted this
effect back to baseline values.

Na+,K+-ATPase and ATP Km

Our experimental data showed that FPI decreased
Na+,K+-ATPase activity (F1,20 = 10.99; P < 0.05)

(Fig. 7D). Additionally, functional analysis of
Na+,K+-ATPase dependence for ATP revealed that
ATP Km was also altered with FPI (F1,20 = 8.19; P< 0.05)
(Fig. 7E). However, exercise training prevented both
a FPI-induced Na+,K+-ATPase decrease (F3,20 = 8.58
P< 0.05) (Fig. 7D) and an ATP Km increase (F3,20 = 5.51
P< 0.05) (Fig. 7E) 24 h after neuronal injury.

Change of metabolic characteristics and serum
cytokine levels after TBI

Statistical analyses revealed that FPI induced blood insulin
(F1,20 =17.32; P<0.05) (Fig. 9A) and glucose (F1,20 =8.90;
P < 0.05) (Fig. 9B) increases; previous exercise
training protected against hyperglycaemia. Calculation of
HOMA-2% indicated that insulin sensitivity was low in
FPI-sedentary compared to the FPI-trained group 24 h
after neuronal injury (F1,20 = 7.38; P < 0.05) (Fig. 9C).
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Table 2. Metabolic profile of sham-operated and TBI-rats

Day 1 post TBI

Parameter Baseline (n = 6–8) Sedentary group (n = 6–8) Trained group (n = 6–8)

Body weight (g)
Sham 319.9 ± 2.7 316.9 ± 2.9 322.5 ± 3.0
TBI 314.7 ± 3.1 316.8 ± 3.6 320.6 ± 2.1

Liver weight (g)
Sham 9.9 ± 0.5 10.1 ± 0.3
TBI 10.0 ± 1.6 9.7 ± 0.4

Serum IL-6 (pg ml–1)
Sham 104.24 ± 31.0 98.09 ± 28.5
TBI 225.70 ± 69.10∗ 106.18 ± 31.4#

Serum TNF-α (pg ml–1)
Sham 160.84 ± 42.1 159.39 ± 38.5
TBI 338.89 ± 89.99∗ 198.18 ± 59.4#

Serum ALT (IU mL–1)
Sham 18.13 ± 4.1 24.19 ± 7.5
TBI 22.33 ± 6.1 23.13 ± 5.6

Serum AST (IU mL–1)
Sham 102.4 ± 7.98 103.39 ± 8.50
TBI 106.3 ± 12.09 108.18 ± 11.10

Data are given as the mean ± SEM. ∗P < 0.05 sham/group. #P < 0.05 TBI/group.

As shown in Table 2, previous exercise training protected
against serum IL-6 (F3,20 = 14.15 P < 0.05) and TNF-α
(F3,20 = 16.89; P< 0.05) increases 24 h after FPI.

Liver damage markers

Statistical analyses revealed that neither FPI, nor exercise
training altered liver and body weights, as well as
serum ALT (F1,20 = 1.09; P > 0.05) (Table 2) and
AST (F1,20 = 0.58; P > 0.05) (Table 2) concentrations,
compared to the respective control groups. Equally, H&E
staining did not show tissue damage in hepatic cells
and histological assessment revealed that livers from the
different groups displayed a well-preserved architecture
24 h after FPI injury (Fig. 8).

Opening of the blood-brain barrier (BBB) followed by
neurtrophils infiltration and cerebral inflammation,
contributes to failure of Na+,K+-ATPase activity

In the present study, we showed that previous exercise
training significantly attenuated an FPI-induced increase
of plasma fluorescein extravasation (indicator of BBB
breakdown) (F3,20 = 8,50; P < 0.05) (Fig. 10A) and
protected against MPO activity increases (F3,20 = 7,04;
P < 0.05) (Fig. 10B) 24 h after neuronal injury. Exercise
training was also effective against FPI-induced IL-6
(F3,20 = 10.15) (P < 0.05) (Fig. 10C) and TNF-α content
(F3,20 = 18.06; P < 0.05) (Fig. 10D) increases, as well
as Na+,K+-ATPase activity inhibition (F3,20 = 14,74;
P< 0.05;Fig. 10E).

Exercise training protects against TBI-induced motor
impairment and spatial learning dysfunction

Motor impairment is a common TBI disability (Mota et al.
2012; da Silva Fiorin et al. 2016). Using the composite
neuroscore, we demonstrated that FPI-induced motor
impairment (F1,20 = 10.58; P < 0.05) (Fig. 10F) and
previous exercise training protected against neurological
impairment 24 h after neuronal injury. Results showed
that 6 weeks of swimming training enhanced spatial
learning per se characterized by escape latency (F1,42 = 5.10
P< 0.05) (Fig. 11B and C) and decreased number of errors
(F(1,42 = 20.21 P< 0.05) (Fig. 12B–D) in the naive group
compared to the sedentary animals. Exercise training also
protected against FPI-induced increases on escape latency
(F2,42 = 7.03 P < 0.05) (Fig. 11B and C) and number of
errors (F2,42 = 6.23 P < 0.05) (Fig. 12B–D). The open
field test revealed that neither swimming training, nor
TBI altered crossing numbers (F2,42 = 0.10; P > 0.05) or
rearing responses (F2,42 = 0.35; P> 0.05), indicating that
FPI-related impaired performance in the Barnes maze was
unrelated to motor disabilities (supplementary data).

Exercise training protects against hippocampal cell
loss after FPI

Considering secondary injury processes lead to necrotic,
apoptotic and autophagic neuronal cell death and synaptic
loss (Bigford et al. 2009), we performed histological
analyses in the hippocampus. H&E staining demonstrated
previous exercise training protected against cell loss
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in the dentate gyrus hilus after the Barnes maze test
(F3,21 = 13.25; P< 0.05) (Fig. 13A).

Discussion

The results reported in the present study confirm and
extend previous findings indicating that a single FPI

episode in the rat parietal cortex induces a major peri-
pheral inflammatory response (Moinard et al. 2008). From
a metabolic point of view, our experimental data suggest
that an early inflammatory response and oxidative stress
are implicated in the signal transduction that alters redox
status, mitochondrial function and insulin signalling in
the liver. By contrast, the stress response in this TBI model
did not induce early hepatocellular damage, although
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Figure 8. Exercise training and FPI effects on hepatocellular morphology 24 h after TBI
Histological analysis in the liver displays as: sham/sedentary group (A), TBI/sedentary (B), sham/trained (C) and
TBI/trained (D) animals demonstrated by H&E staining. [Colour figure can be viewed at wileyonlinelibrary.com]
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the ion gradient collapse provides an explanation for the
crucial role that the liver may play in secondary damage
after a neuronal injury (Anthony et al. 2012).

Recently, considerable evidence has demonstrated
that hyperglycaemia (both peak glucose and persistent
hyperglycaemia) is one of the most common secondary

complications of severe TBI (Shi et al. 2016). In line with
this view, the present study shows that blood glucose,
insulin and HOMA-2%S were significantly elevated
following acute neuronal injury in sedentary rats. The
development of hyperglycaemia after neuronal injury
was accompanied by hepatic immunoreactivity of a
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pJNK increase and pIRS and pAKT decreases. Our data
mimicked the findings of previous studies in experimental
haemorrhage and burn models and further highlight
the importance of local hepatic inflammation and ROS
generation in the pathogenesis of glucose metabolic
abnormalities in acute illnesses (Xu et al. 2008; Wang
et al. 2011). Our experimental data also reinforce that the
idea that TBI-related injuries are not limited to the CNS.
In this sense, the hepatic acute-phase response leads to
the mobilization of leukocytes, cytokines and chemokines
(Villapol et al. 2015b). These signalling molecules enter
the bloodstream and reach the cerebral circulation to
affect the inflammatory status of the brain.

In the present study, we have demonstrated that
high levels of circulating cytokines elicited by FPI affect

the brain response to injury and contribute to BBB
opening, neurtrophil infiltration and Na+,K+-ATPase
activity inhibition. These results are in line with previous
findings from our group suggesting that a single episode
of FPI affects the inflammatory status of the brain (Mota
et al. 2012), impairs performance in spatial learning and
induces cell loss in the dentate gyrus hilus (Lima et al.
2008; da Silva Fiorin et al. 2016). However, the under-
standing of secondary damage post-injury is essential for
establishing scientific-based rehabilitation following TBI.
One of the possible strategies may be the inclusion of
exercise training as a prophylactic means for TBI sequelae
management. Evidence accumulated over the years has
demonstrated that exercise training exerts a broad range
of beneficial effects on the body, including improvements
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Figure 13. Previous physical training protects hippocampal cell loss after FPI
Histological analysis (H&E staining) demonstrated previous exercise training protected against cell loss in the
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in cardiovascular function and a potential reduction in
the incidence of several neurological diseases (Radak et al.
2008). In the present study, a clear stabilization of blood
lactate concentration in the trained group during LT
confirms the assumption that training increases aerobic
resistance (Gobatto et al. 2001; Lima et al. 2009; Rambo
et al. 2009; Souza et al. 2009; Lima et al. 2013). In
addition, the results show that hepatic LXR-α and ABCA1
mRNA expression is higher in trained animals. LXRs
are ligand-activated transcription factors that play an
important role in the hepatic metabolism regulation of
lipids and carbohydrates.

Apart from being glucose sensors (Mitro et al. 2007),
LXRs also induce genes that inhibit the expression of
inflammatory mediators, such as the ABCA1 (Spillmann
et al. 2014). Because glucose is an endogenous LXR
ligand and ABCA1 inhibits the expression of inflammatory
mediators (Spillmann et al. 2014), it is plausible to propose
that the anti-inflammatory effects elicited by exercise
training involve hepatic glycogen metabolism (Hoene &
Weigert, 2010) followed by LXR-α and ABCA1 mRNA
increases (Ghanbari-Niaki et al. 2007; Kazeminasab
et al. 2013). Noteworthy, inflammatory modulation may
differ among TBI acute and delayed phases (Ziebell
& Morganti-Kossmann, 2010). Although physiological
nitric oxide (NO) production has beneficial anti-microbial
and anti-tumor effects, excessive NO produced by iNOS
mediates inflammatory signalling, causing ROS-mediated
cell damage via peroxynitrite (Huang et al. 2012).
Furthermore, lipid peroxidation initiated by peroxynitrite
releases arachidonic acid from the cell membrane, which
in turn activates COX-2 (Salvemini et al. 1995; Huang
et al. 2012). Considering that prostaglandin E2, a product
of COX-2, is one of the strongest inflammatory mediators,
it is plausible to propose the protection elicited by exercise
training may be associated to prostaglandin E2 blockade
through COX-2 downregulation. Western blot assays
have revealed that exercise training also protected against
FPI-induced increases in IL-6 and TNF-α content in the
liver. Because the hepatic pro-inflammatory cytokines
TNF-α and IL-6 are relevant mediators for the stimulation
of PGs synthesis by COX-2, our experimental data
suggest that this exercise-mediated cytokine inhibition
may account for COX-2 downregulation (Anthony et al.
2012). These data are consistent with the hypothesis
that favourable changes in the hepatic anti-inflammatory
status elicited by previous exercise training may exert a
prophylactic effect on the early inflammatory response
after severe TBI.

Liver is the main organ involved in endogenous glucose
production, which is regulated by insulin though IRS and
AKT pathways (Bugianesi et al. 2005). In this sense, the
increase of blood glucose, insulin and HOMA-2%S after
neuronal injury in the sedentary FPI group corroborates
data from obese animal and human studies indicating

that hepatic cytokine expression (TNF-α) activates intra-
cellular JNK and phosphorylate insulin receptor substrate
(IRS-1) at serine residues (Cai et al. 2005; Moschen &
Tilg, 2008). Our experimental data also suggest that acute
stress, such as TBI, may lead to hyperglycaemia, in the
absence of diabetes, and also that strategies such as exercise
training can enhance glucose control and reduce damage
as a result of hyperglycaemia to several cells (Tsuzuki et al.
2015; Shi et al. 2016). Indeed, our experimental protocol of
exercise training protected against blood glucose, insulin
and HOMA-2%S increases, as well as hepatic immuno-
reactivity of pJNK increase, and also pIRS and pAKT
decreases after neuronal injury.

Regarding the effects of TBI on liver function, it is
important to consider that neutrophils produce super-
oxide anions (O2

.−) via NADPH oxidases: O2
.− is further

dismutated by SOD into hydrogen peroxide (H2O2) and
molecular oxygen. In the presence of CAT, H2O2 is
converted into H2O and oxygen; otherwise, it can be
used as a substrate by MPO to produce hypochlorous
acid (HOCl), a highly reactive ROS that is associated
with the production of protein carbonyls (Yan et al.
1996; Handelman et al. 1998). The increases in MPO and
SOD activity combined with dampened CAT in the FPI
sedentary group may indicate that higher levels of H2O2

formed by the SOD-mediated O2
.− dismutation persist,

increasing H2O2 production. The DCFH-oxidation data
corroborate this rationale, considering that this is a
H2O2-based assay (LeBel et al. 1992). Furthermore, the
compromised CAT activity, a H2O2 decomposing enzyme,
is usually a result of excessive H2O2, as well as 4-HNE,
which forms aldehyde-protein adducts inactivating its
active site (Kostyuk et al. 2010; Lubrano et al. 2015). Under
these circumstances, the development of compensatory
responses elicited by exercise training may be effective
in attenuating FPI-induced redox status disruption,
characterized in the present study by a decrease in
GSH and -SH groups combined with increased protein
carbonylation and DCFH-DA in the liver (Salo et al.
1991; Viguie et al. 1993; Leeuwenburgh & Heinecke,
2001). As such, our experimental data agree with the
assumption that exercise training reinforces the liver
anti-oxidant system (Boveris & Navarro, 2008; Sun
et al. 2010).

In the present study, previous exercise training
was effective against FPI-induced liver mitochondria
dysfunction. It is worth noting that ROS generation
is a necessary and unavoidable consequence of aerobic
metabolism, and the rate of ROS generation in biological
tissue is closely related to oxygen consumption (Toldy
et al. 2005). Consequently, mitochondria are probably
both a source and target of oxidant agents (Boveris
& Navarro, 2008). Furthermore, the development of
compensatory responses to oxidative stress elicited by
exercise training (Salo et al. 1991; Viguie et al. 1993;

C© 2017 The Authors. The Journal of Physiology C© 2017 The Physiological Society



J Physiol 595.17 The effect of exercise on hepatic and neuronal oxidativeinflammatory 6039

Leeuwenburgh & Heinecke, 2001) is a reflection of
decreased markers of ROS generation, which trans-
lates into the maintenance of mitochondrial homeo-
stasis in FPI-trained rats. This hypothesis has been
upheld in animal studies, which indicate that a significant
adaptive response to exercise training involves a greatly
increased endurance capacity, facilitated by increases of
O2 consumption and mitochondrial biogenesis (Boveris
& Navarro, 2008; Packer et al. 2008). In the present
study, exercise training prevented the downregulation
of relevant mitochondrial functioning parameters,
such as the �ψ, as well as CS and dehydrogenases
activities.

Any cellular constituent may be a ROS target, although
selected targets are more prone to induce toxicity (Lima
et al. 2009). The Na+,K+-ATPase appears to be particularly
sensitive to ROS-induced damage, considering that
its inhibition has been associated with alterations in
membrane lipid composition, -SH groups redox and
amino acid residues induced by ROS (Jamme et al.
1995; Siems et al. 1996). Therefore, it is tempting to
propose that the presently reported FPI-induced ROS
generation and Na+,K+-ATPase activity decrease in liver
are causally related. Although the stress response of liver
did not induce early hepatocellular damage, the collapse
of ion gradient homeostasis provides an explanation
for the crucial role played by the liver in secondary
damage after neuronal injury (Anthony et al. 2012).
Indeed, the increase in the Michaelis–Menten constant
(i.e. the Km) for the main Na+,K+-ATPase substrate
in the FPI-sedentary group suggests that ATP affinity
is reduced in the liver of these animals. Importantly,
the reduced affinity of hepatic Na+,K+-ATPase for
ATP could be exacerbated by mitochondrial energy
metabolism dysfunction. This finding is particularly
important, considering the exercise training protocol
induced compensatory responses to oxidative stress and
protected against FPI-induced Na+,K+-ATPase activity
diminution. Thus, the findings of the present study
support the assumption that exercise training modulates
oxidative-inflammatory functions in the liver (Barcelos
et al. 2017) and thus delays or prevents secondary cascades
that lead to several disabilities after a TBI (Griesbach et al.
2004; Gomez-Pinilla & Kostenkova, 2008).

Furthermore, favourable changes in the hepatic
oxidative-inflammatory status elicited by previous exercise
training may exert prophylactic effects on acute hyper-
glycaemia and the cerebral inflammatory response
induced by severe TBI. It is important to note that the
influx of leukocytes to an inflammatory site is orchestrated
by a sequential upregulation of adhesion molecules on
vascular endothelium, leading post-traumatic oedema
and BBB breakdown (Baskaya et al. 1997; Unterberg
et al. 1997). Moreover, an imbalance in the ratio
of harmful ROS/RNS ratio and BBB dysfunction

after TBI causes delayed neuronal dysfunction and
death through secondary processes involving increased
excitatory amino acids levels and ionic equilibrium loss
(Lenzlinger et al. 2004; Shlosberg et al. 2010). Our
experimental data agree with this assumption when TBI
induced plasma fluorescein extravasation (an indicator
of BBB breakdown) and cerebral MPO activity increase,
whereas previous exercise training attenuated this neuro-
nal dysfunction. Exercise training was also effective
against an increase in IL-6 and TNF-α content, and
Na+,K+-ATPase activity inhibition. Considering that
alterations in the redox state of regulatory -SH groups
in selected targets, such as Na+, K+-ATPase (Morel
et al. 1998), increases cellular excitability after TBI
(Rao et al. 2008), our data reinforce the idea that
ROS-induced Na+,K+-ATPase inhibition may contribute
to FPI-induced neurological dysfunction characterized
by early neuromotor dysfunction and spatial learning
impairment (Lima et al. 2008; Mota et al. 2012; da Silva
Fiorin et al. 2016).

Recently, a considerable body of evidence has
demonstrated that oxidative inflammatory-related
cascades resulting from TBI have been implicated in
altered signal transduction in peripheral organs and the
CNS (Hall et al. 2004; Bayir et al. 2007; Lima et al. 2013).
Although a pre-injury regimen for humans may not be
the most effective treatment because the time of injury
cannot be predicted (Vaynman & Gomez-Pinilla, 2005),
the effective protection exerted by exercise training in
this model of TBI is of particular interest because it
supports the assumption that metabolic chances elicited
by exercise delay or prevent secondary cascades which
lead to long-term cell damage after TBI. Indeed, our
experimental data revealed that previous exercise training
protected from cell loss induced by TBI. Considering
that a loss in number of interneurons after experimental
TBI (Lowenstein et al. 1992; Santhakumar et al. 2000;
Grady et al. 2003; Hall et al. 2005) can be associated
with a reduction in granule cells synaptic inhibition
(Hunt et al. 2011; Pavlov et al. 2011; Gupta et al. 2012),
we suggest that exercise-induced reduction of the initial
damage limits the long-term secondary degeneration and
supports neural repair or behavioural compensation after
neuronal injury (Wannamethee & Shaper, 1992; Wang
et al. 2001; Klein et al. 2003). However, it is worth noting
that simultaneous hippocampal cell loss and spatial
memory dysfunction in this TBI model do not necessary
imply a cause–effect relationship between these events. It
is important to note that hippocampal cells are a mixed
population of mostly inhibitory interneurons and the
assay used does not allow the identification of these cells.
Consequently, our experimental data are speculative and
additional studies are necessary to clarify the involvement
of these pathways in the prophylactic effect of exercise
training after TBI.
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In conclusion, the present study describes TBI induction
of inflammation and oxidative stress of rats, which disrupt
redox status and mitochondrial function in the liver. These
responses originate not from early hepatocellular damage,
but from a collapse of the ion gradient homeostasis
followed by dysglycaemia and impaired hepatic signalling
observed in sedentary rats after neuronal injury, which
suggests that neuronal injury signals may impact on organs
away from the injury site. High levels of circulating cyto-
kines after TBI also affected brain function, characterized
in the present study by BBB opening, neutrophil
infiltration and oxidative-inflammatory increases. Neuro-
nal inflammation and oxidative stress leads to a marked
impairment of protein function, neurobehavioural
disability and long-term cell damage after TBI. Although
a pre-injury prophylactic strategy may not be the most
effective treatment for humans because the occurrence
of injury cannot be predicted, the effect of exercise on
the expression/activity of specific endogenous proteins
is particularly interesting. The findings reported in the
present study support the idea that exercise training
modulates oxidative-inflammatory functions (Barcelos
et al. 2017) and thus delays or prevents secondary cascades
that lead to several disabilities after a TBI (Griesbach
et al. 2004; Gomez-Pinilla & Kostenkova, 2008). Therefore,
approaches aiming to counteract or attenuate secondary
damage developed over a period of hours to days after a
TBI, such as exercise training, may have preventive and/or
therapeutic potential through the modulation of responses
by metabolic-related organs, such as the liver and
brain.
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