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Adaptive Encoding of Outcome Prediction by Prefrontal
Cortex Ensembles Supports Behavioral Flexibility
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The prefrontal cortex (PFC) is thought to play a critical role in behavioral flexibility by monitoring action– outcome contingencies. How
PFC ensembles represent shifts in behavior in response to changes in these contingencies remains unclear. We recorded single-unit
activity and local field potentials in the dorsomedial PFC (dmPFC) of male rats during a set-shifting task that required them to update
their behavior, among competing options, in response to changes in action– outcome contingencies. As behavior was updated, a subset
of PFC ensembles encoded the current trial outcome before the outcome was presented. This novel outcome-prediction encoding was
absent in a control task, in which actions were rewarded pseudorandomly, indicating that PFC neurons are not merely providing an
expectancy signal. In both control and set-shifting tasks, dmPFC neurons displayed postoutcome discrimination activity, indicating that
these neurons also monitor whether a behavior is successful in generating rewards. Gamma-power oscillatory activity increased before
the outcome in both tasks but did not differentiate between expected outcomes, suggesting that this measure is not related to set-shifting
behavior but reflects expectation of an outcome after action execution. These results demonstrate that PFC neurons support flexible
rule-based action selection by predicting outcomes that follow a particular action.
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Introduction
Flexible rule-based changes in action selection is critical for op-
timal adaptation to changes in the environment (Miller and Co-
hen, 2001). This process, which is often referred to as set-shifting
behavior, is modeled by tasks where organisms learn, by trial and
error, that an action– outcome contingency has changed, and

that they need to change their behavior to obtain reward or avoid
punishment. Across the mammalian species, set-shifting behav-
ior depends on the functional integrity of the prefrontal cortex
(PFC) subregions. In humans, damage to the PFC, or psychiatric
disorders that involve PFC deficits, are associated with impaired
set-shifting (Milner, 1963; Wilmsmeier et al., 2010). Lesions of
the dorsolateral or medial PFC in monkeys (Dias et al., 1996) or its
putative rat homolog, the dorsomedial PFC (dmPFC; Birrell and
Brown, 2000), also impair set-shifting performance (Ragozzino et
al., 1999; Stefani et al., 2003; Floresco et al., 2006, 2008; Darrah et al.,
2008; Dalton et al., 2011; Park et al., 2016; Park and Moghaddam,
2017).

While most PFC recordings during set-shifting behavior have
focused on rules or strategy encoding (Rich and Shapiro, 2009;
Durstewitz et al., 2010; Rodgers and DeWeese, 2014; Bissonette
and Roesch, 2015; Powell and Redish, 2016), less is known about
the relationship between reward/outcome encoding and flexible
behavior. We posited that adaptive encoding of expected rewards
is critical for set-shifting performance. Although PFC neurons
represent both received and predicted rewarding outcomes in
monkeys (Watanabe, 1996; Mansouri et al., 2006; Seo et al., 2007;
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Significance Statement

Tracking action– outcome contingencies and modifying behavior when those contingencies change is critical to behavioral flex-
ibility. We find that ensembles of dorsomedial prefrontal cortex neurons differentiate between expected outcomes when action–
outcome contingencies change. This predictive mode of signaling may be used to promote a new response strategy at the service
of behavioral flexibility.
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Wallis, 2007; Histed et al., 2009; Wallis and Kennerley, 2010;
Asaad and Eskandar, 2011; Donahue et al., 2013) and rodents
(Narayanan and Laubach, 2008; Sul et al., 2010), a relationship
between outcome-encoding neurons and flexible rule-based
shifts in behavior has not been established.

To assess whether outcome-related activity in the dmPFC pre-
dicts set-shifting behavior, we recorded single-unit activity and
local field potentials (LFPs) in the dmPFC of rats during a rule-
based set-shifting task (Darrah et al., 2008) and a control task. In
the “Rule” task, animals were rewarded after they guided their
behavior according to two previously learned rules: an instru-
mental nose poke in a specific location (Side Rule) or a lit port
(Light Rule). The rule was changed four times during each re-
cording session, requiring rats to solve the new discrimination
rule by trial and error based on the delivery or omission of re-
ward. In the “No-Rule” task, trials were pseudorandomly
rewarded and outcome delivery could not be predicted. As a
consequence, animals could not shift their performance.

PFC neurons displayed outcome-predictive activity only during
the Rule condition. This pattern emerged as animals adapted their
behavior to the new rule, suggesting a link between the outcome-
predictive activity and shift in action selection. � Power increased
during all action– outcome intervals in both tasks, suggesting that
this measure reflects a general network activation during reward
expectation but does not track behavioral flexibility.

Materials and Methods
Animals
Adult male Sprague Dawley rats weighing 300 –360 g were pair-housed
on a 12 h light/dark cycle (lights on at 7:00 P.M.). All experiments were
performed during the dark phase when the animals are most active. The
rats were placed on a mild food-restricted diet (15 g of rat chow per day)
2 days before starting behavioral experiments. All procedures were in
accordance with the University of Pittsburgh’s Institutional Animal Care
and Use Committee and were conducted in accordance with the National
Institute of Health Guide for the Care and Use of Laboratory Animals.

Experimental design
Animals were trained in the set-shifting task until they reached criterion
and showed a stable performance (see Behavioral task). Then, through
stereotaxic surgery, electrodes arrays were implanted in the medial PFC.
One week after surgery, animals were retrained in the set-shifting task to
criterion performance and recording sessions started (see Surgery and
electrophysiology procedures). After completion of experiments, ani-
mals were anesthetized and their brains removed to confirm the place-
ment of electrodes in the medial PFC (See Histology).

Behavioral task
Figure 1A depicts the behavior protocol. We designed the task to be
performed under two outcome conditions (Stefani and Moghaddam,
2006) in the same session: Rule condition (sets 1– 4), in which animals
could guide their instrumental actions alternating between the two rules
to receive a reward; and No-Rule condition (sets 5– 8), in which animals’
actions were pseudorandomly rewarded using a prefixed schedule re-
gardless of their action.

The training protocol was similar to that described previously (Darrah
et al., 2008). Rats were tested in an operant box (Coulbourn Instruments)
containing a house light, a pellet magazine that could deliver food pellets
(fortified dextrose, 45 mg; Bio-Serv) into a food trough, and three nose-
poke holes arranged horizontally on the wall opposite the food trough.

Habituation and pretraining. Rats were handled in the vivarium for
�3 d before habituation to experimental procedures. They were habitu-
ated to the operant chamber during two consecutive 20 min sessions.
During these sessions, the house light was on and reward pellets were
dispensed into the food trough at 30 s intervals, following consumption
of the previous pellet. After habituation, rats performed four consecutive
sessions of the two perceptual discrimination rules to be used in the

set-shifting task: “Light” and “Side” (see description below). The order of
presentation of the discrimination rules was counterbalanced and the
rats were reinforced with a single reward pellet for correct nose-poke
responses, according to response discrimination rule. The sessions lasted
60 min (first and second sessions) and 90 min (third and fourth sessions)
and the intertrial interval (ITI) was set at 5 s during the first two pretrain-
ing sessions and at 10 s during the last two pretraining sessions.

Rule task. After pretraining, the rats received daily training sessions on
the set-shifting task (Fig. 1A). The task required the rats to shift their
response patterns between two rules—the Light rule and the Side rule—
each session, to receive a reward pellet. Each trial began when animals
poked in the illuminated food trough. One second later, one of the three
nose-poke cue lights was illuminated (cue onset). The Light rule required
the rats to execute nose pokes into the illuminated cue hole, regardless of
its location on the left, center, or right side of the chamber. The Side rule
required animals to respond to a port in a designated spatial location
(left, center, or right), regardless of which port was illuminated. Pseudo-
randomization was used to ensure that the same cue light was never
illuminated �2 times in a row.

In every trial, only correct responses were rewarded with a food pellet.
There was a delay of 1 s between the response (instrumental poke) and
the delivery or omission of the pellet. In both trials, correct and incorrect,
the food trough was illuminated until the rats made a head entry into the
food trough to end the trial. After a 10 s ITI, the food trough light was
turned on again and the rats had to make a food trough poke to start a
new trial. A trough poke to start every trial avoided premature responses
before the cue onset.

We determined that animals shifted their behavior according to the
new discrimination rule when they achieved 10 consecutive correct
choices in a set (criterion). After reaching criterion, the response rule was
immediately changed (extradimensional shift), requiring the rat to learn
the new discrimination rule by trial and error based on the delivery or
omission of reward. The task required the rats to reach the performance
criterion four times (four sets) every session, resulting in three consecu-
tive extradimensional shifts. The task was counterbalanced with eight
possible sequences of extradimensional shifts (order and combination of
rules) that were cycled in a systematic manner (for example, center–
light–right–light; light–left–light– center; etc.). The rats were tested daily
until stable performance was reached.

No-Rule task. In one session, following four sets of the Rule task (sets
1– 4) as described above, animals were reinforced noncontingently for
four sets (sets 5– 8; Fig. 1A). Rats responded as detailed above, but re-
wards were given according to a predetermined pseudorandom schedule
(no discrimination rules). Thus, during the noncontingent reward task,
the rats performed 32 trials and received 17 rewards (15 omissions of
rewards) every set. Although there were no rule shifts during the No-Rule
task, the last 10 trials of every set were always rewarded (resembling the
criterion of 10 consecutive correct responses before the rule changes in
the Rule task). During the No-Rule task, trial outcomes did not provide
information about rule sets.

Surgery and electrophysiology procedure
Upon completion of behavioral training (stable set-shifting perfor-
mance), custom microelectrode arrays of eight polyamide-insulated
tungsten wires (50 �m) were implanted under isoflurane anesthesia in
the medial PFC ( prelimbic; 3.0 mm anteroposterior, 0.7 mm dorsolat-
eral, �4 mm dorsoventral from bregma) of rats (n � 10) as described
previously (Park et al., 2016). The electrode array was secured onto the
skull with dental cement using six screws as anchors. A silver wire was
connected to one of the screws to be used as a ground. The rats were
single-housed after electrode implantation. One week after surgery, ani-
mals were food-restricted again (15 g of rat chow per day) and were
acclimated to the recording cable in the operant box for four 30 min
sessions and retrained to criterion performance. Once set-shifting per-
formance was stable and above criterion, recording sessions started.

Single units were recorded via a unity-gain field-effect transistor head
stage and lightweight cabling, which passed through a commutator to
allow freedom of movement within the test chamber (Neuro Biological
Laboratories). Recorded single-unit activity was amplified at 1000� gain
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and analog bandpass filtered at 300 – 8000 Hz; LFPs were bandpass fil-
tered at 0.7–170 Hz. Single-unit activity was digitized at 40 kHz, and LFPs
were digitized at 40 kHz and downsampled to 1 kHz by Recorder soft-
ware (Plexon). Single-unit activity was digitally high-pass filtered at 300
Hz, and LFPs were low-pass filtered at 125 Hz. Behavioral event markers
from the operant box were sent to Recorder to mark events of interest
(trough poke to start the trial, instrumental poke, trough poke to reward/
no-reward). Single units were isolated in Offline Sorter (Plexon) using a
combination of manual and semiautomatic sorting techniques as de-
scribed previously (Sturman and Moghaddam, 2011).

Histology
After completion of the experiment, rats were anesthetized with chloral
hydrate (400 mg/kg, i.p.) and perfused with saline and 4% buffered
formalin. Brains were then removed and placed in 4% formalin.
Brains were sectioned in coronal slices, stained with cresyl violet, and
mounted to microscope slides. Electrode-tip placements were exam-
ined under a light microscope. Only rats with correct placements
within the prelimbic PFC were included in electrophysiological anal-
yses (Fig. 1B).

Analysis of electrophysiological data
Electrophysiological data were analyzed with custom-written scripts,
executed in Matlab (MathWorks), along with the Chronux toolbox
(http://chronux.org/). Multiple regression analyses were used to examine
whether firing rate of units was predicted by one of the following: (1) the
outcome of the previous and current trials (Outcome t-2, Outcome t-1,
Outcome t, where t is current trial); (2) the set rule (Light/Side) and the
spatial location (right/center/left); or (3) the interaction between set rule and
spatial location. Regression coefficients generating p values �0.05 were
considered significant. The analysis used all trials. We used 250 ms
windows advancing in 50 ms steps for the �1 to 1 s duration around
the trough poke to start the trial and for the �1 to 2 s around the
instrumental action. To be considered outcome selective, a unit had
to display a significant response in �4 of 5 bins (50 ms bin) for each
of the 250 ms intervals in the following time windows: from 0 to 0.5 s
(outcome-predictive) and from 1.25 to 1.75 s (outcome-responsive),
time locked to the instrumental poke. � 2 Tests were used to compare
the proportion of units correlated with current outcomes under the
two outcome conditions (Rule and No-Rule tasks) and during spe-
cific time windows (i.e., from 0 to 0.5 s and from 1.25 to 1.75 s, locked

Figure 1. Set-shifting protocol, electrode placement, and a summary of behavioral data obtained during one recording session. A, Animals were trained to perform three shifts (4 sets) between
two rules: illumination (Light Rule) versus spatial location (Side Rule) at all sessions. After 10 s ITI, the light of the food trough turned on and animals were required to make a trough poke to start
a new trial. Once cued, animals could poke into one of the three holes (left, center, or right), one of which was lit. During Light Rule sets, poking into the lit port (correct response) led to the delivery
of a pellet (reward) with a 1 s delay. Poking into an unlit port (incorrect response) led to no reward. During Side Rule sets, the correct response depended on the spatial location (right in this
illustration, but it could be left or center), regardless of which port was illuminated. During the No-Rule condition (shaded), pellets were delivered pseudorandomly regardless of the chosen port.
After the instrumental poke, animals were required to make a trough poke to get the reward (in case of rewarded choice) and finish the trial to start the ITI. The rule changed without an explicit cue
after 10 consecutive correct responses (criterion) and animals had to adapt to the new rule by trial and error. Dashed arrows indicate that time is not fixed. B, Representation of electrode
placement in the dmPFC (prelimbic area). C, Bars (mean � SEM; n � 10) show the probability of correct responses for every set (4 sets) during the set-shifting task. There were fewer
correct responses in the early trials after the rule changed than in the late trials before reaching criterion (two-way ANOVA, F(1,72) � 8.28, p � 0.01). D, Plot graphs (mean � SEM;
n � 10) show the probability of poking into lit ports during the two outcome conditions: the Rule condition, in which rewards depended on animals’ choices; and the No-Rule condition
(shaded), in which the delivery of rewards was not contingent on their actions. Animals changed their choices (increase poking probability), according to the set rule (indicated under the
graph), during the Rule condition (two-way ANOVA, Light sets: F(1,36) � 5.46, p � 0.025; Side sets: F(1,36) � 5.36, p � 0.026), but not during the No-Rule condition (two-way ANOVA,
5– 8 sets: F(1,72) � 1.04, p � 0.311). E, Bars (mean � SEM; n � 10) show that the number of total trials during the task (before reaching criterion) and the latency for instrumental
actions did not change in Rule versus No-Rule conditions.
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to the instrumental poke). The same selectiv-
ity criteria and time windows were used to
identify units selective for the set rule and
spatial location, and their interaction.

The area under the receiver operating char-
acteristic (ROC) curve was computed to assess
discrimination between rewarded and unre-
warded outcomes during the Rule and No-
Rule tasks, and to compare discrimination
during the early and late trials of the Rule task
set. The ROC curve was also calculated to assess
discrimination between light and side, right
and no-right, center and no-center; and left
and no-left. The area under the ROC (auROC)
curve was bounded by 0 and 1, with more
extreme ROC values indicative of greater
discrimination, and 0.5 indicative of no dis-
crimination, between conditions. auROC was
obtained in 250 ms windows advanced in 50 ms
steps. auROC curve of selective units was aver-
aged and compared between the Rule and the
No-Rule tasks. The auROC curve also was used
to compare the selectivity of units during the
early trials of the set (after the rule changed)
and the late trials of the set (before criterion).
The first/last 5 or 10 trials of every set were used
to perform this analysis (5 or 10 depending on
the number of trials of the set). Because some
sets had �10 trials before criterion, there was
some overlap (�15%) between the early and
the late trials. Paired Student’s t tests were used
to find statistical significances in auROC curve
population comparisons. A bootstrap analysis
was performed to test whether ROC values of
the Rule trials compared with the No-Rule tri-
als, and early trials compared with late trials,
were different by chance. For each unit, we
shuffled the outcome for each trial and recal-
culated ROC areas 1000 times. Every time,
shuffled ROC areas for the selective units dur-
ing the Rule/No-Rule task, or early/late trials,
were compared (paired t test).

Raw LFP signals from every trial were aligned
to the instrumental action. Trials with clipping
artifacts and trials with LFP values higher and
lower than �2.5 times the SD of the mean of
the total signal were excluded. The power spec-
trum of every trial was calculated by fast Fou-
rier transform using the Chronux function
“mtspecgramc”. This was done using a 500 ms
moving window in 10 ms steps from �1 to 2 s
locked to the instrumental poke. A multitaper
approach was used because it improves spec-
trogram estimates when dealing with noninfi-
nite time series data (Mitra and Pesaran, 1999).
Each frequency bin (row) in the power spec-
trum was Z-score normalized to the average
spectral power during a baseline period (a 3 s
window of the ITI ending 1 s before the trough
poke to start the trial). Rewarded and unre-
warded trials were grouped in every animal to
evaluate the effects of trial outcomes on the LFP
power spectrum. Likewise, the early/late trials
(see above) of every set were averaged to seek dif-
ferences in the LFP power spectrum.

Statistical analyses
Behavioral performance data were analyzed with one-way and two-way
ANOVAs (early/late trials � sets) and paired Student’s t test (Rule vs

No-Rule). Single-unit activity data were analyzed with � 2’s and paired
Student’s t test to identify differences in the proportion of neurons
and ROC values, respectively (early vs late trials and Rule vs No-
Rule). LFP data were analyzed with two-way ANOVAs (Rule/No-
Rule � early/late trials or rewarded/nonrewarded trials). p � 0.05 was

Figure 2. PFC single units change their activity and predict current trial outcomes during set-shifting performance. A, Heat plot
represents the baseline-normalized firing rate for each unit (n�97). Each row is the activity of an individual unit in 50 ms time bins
aligned to corresponding task events and sorted from lowest to highest average normalized firing rate. B, Bars represent the time
course of unit’s activation and inhibition. The percentage of units was categorized as activated or inhibited over time based on
whether their averaged activity by 250 ms time windows was significantly different from baseline activity. C, Time course showing
the proportion of PFC units whose activity was significantly correlated to current outcome (t) and the previous two outcomes (t-1
and t-2) during set-shifting performance. A significantly higher proportion of units encoded current, but not previous, trial out-
comes, both before (�(2)

2 � 9.89; p � 0.01, average across time bins from 0 to 0.5 s) and after (�(2)
2 � 41.94; p � 0.001, average

across time bins from 1.25 to 1.75 s) the outcome. Arrows and thick lines indicate the timing of task events.
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considered the cutoff for statistical significance. Data are represented
as mean � SEM.

Results
Behavioral performance
Animals showed a stable performance in the set-shifting task after
training. The total number of trials and errors during the last six
consecutive recording sessions were as follows: 159 � 15 trials
and 48 � 6 errors; 167 � 19 trials and 49 � 8 errors; 143 � 10
trials and 38 � 3 errors; 187 � 16 trials and 55 � 7 errors; 176 �
30 trials and 50 � 7 errors; 167 � 15 trials and 50 � 6 errors (F(1,5) �
0.86, p � 0.512, one-way ANOVA for total trials; n � 10 animals).
Behavioral similarities and differences between Rule and No-
Rule conditions are depicted in Figure 1. During the Rule
condition, rule-based behavioral guidance was evident as the
probability of correct responses increased from early to late trials
within each set (Fig. 1C; F(1,72) � 8.28, p � 0.005, two-way
ANOVA, n � 10). Animals systematically changed their choice as
a function of the rule set. Accordingly the probability of choosing
the illuminated port increased or decreased across trials in the
Light versus Side rule sets, respectively (Fig. 1D; Light sets: F(1,36) �
5.46, p � 0.025; Side sets: F(1,36) � 5.36, p � 0.026, two-way
ANOVA). In the No-Rule condition, however, the probability of
poking the illuminated ports did not significantly change across
trials (Fig. 1D; 5–8 sets: F(1,72) � 1.04, p � 0.311, two-way ANOVA).
Thus, animals guided their behavior based on the task rule when
outcomes were contingent upon action selection in the Rule
condition.

The number of trials and the latency to execute an instrumen-
tal action and retrieve rewards did not differ in Rule versus No-
Rule conditions (Fig. 1E). Animals performed 127 � 14 trials
(77 � 9 rewarded correct; 50 � 6 nonrewarded incorrect) before
reaching criterion during the Rule condition; and 128 trials (68
rewarded and 60 nonrewarded) during the No-Rule condition.
Reward delivery did not significantly change the latencies to
make instrumental pokes (Rule: latency after rewarded trials,
2.76 � 0.12 s; latency after nonrewarded trials, 2.66 � 0.10 s,
t(9) � 0.90, p � 0.389; No-Rule: latency after rewarded trials,
2.85 � 0.16 s; latency after nonrewarded trials, 2.79 � 0.11 s,
t(9) � 0.42, p � 0.681; paired t test). The latency to poke in the
food trough after nonrewarded responses was significantly longer
than after rewarded responses in both conditions (Rule: latency
after rewarded, 3.15 � 0.25 s; latency after nonrewarded, 8.37 �
0.88 s, t(9) � 6.76, p � 0.000; No-Rule: latency after rewarded,
2.69 � 0.18 s; latency after nonrewarded, 8.45 � 0.90 s, t(9) �
6.89, p � 0.000; paired t test).

Single-unit activity
PFC neurons predict and signal trial outcomes
Figure 2A shows the baseline-normalized (Z scores) firing rate of
all single units (n � 97, two sessions, 10 rats; units per rat: 26, 12,
13, 11, 8, 7, 6, 5, 5, 4) time-locked to the initial poke to start the
trial and the instrumental poke during the Rule condition. Many
units were activated and inhibited at the time of the instrumental
action and at the time of the outcome, when animals received
feedback for their actions by delivery or omission of reward (Fig.
2B). A multiple regression analysis was performed to identify
units that encoded the previous and/or current response out-
come, i.e., units that significantly modulated their activity as a
function of the response outcome in the previous and/or current
trials. A significantly greater proportion of units encoded the
current trial outcome during the interval between the action and
the outcome (preoutcome period; �(2)

2 � 9.89; p � 0.01, averaged

across time bins from 0 to 0.5 s), and after the outcome (postout-
come period; �(2)

2 � 41.94; p � 0.001, averaged across time bins
from 1.25 to 1.75 s), compared with the proportions of units
encoding previous trial outcomes during the same intervals (Fig.
2C). The units that encode current trial outcomes during the
preoutcome period are referred to as outcome-predictive units.
The units that encode current trial outcomes during the postout-
come period are referred to as outcome-responsive units. There
were 24 of 97 (25%) outcome-predictive units and 48 of 97 (49%)
outcome-responsive units according to selectivity criteria (see
Material and Methods). In addition, we performed multiple re-
gression analyses to identify selective units that encoded the set
rule (Light vs Side), the spatial location (Right, Center, and Left)
and the interaction set rule � spatial location. These data are
summarized in Table 1.

To investigate whether predictive encoding and responsive
encoding of the current outcome emerges selectively during rule-
guided actions, we recorded neuronal activity during the Rule
and the No-Rule conditions in the same session. The average
baseline firing rate did not differ between the two conditions
(Rule, 7.6 � 1.3 Hz; No-Rule, 7.4 � 1.3 Hz; 42 units). The heat
plots of the overall response and the proportion of units respond-
ing to current outcomes during the Rule and No-Rule conditions
are shown in Figure 3A–C. The outcome-predictive activity for
rewarding and nonrewarding trials observed in the Rule condition
was changed in the No-Rule condition, whereas the outcome-
responsive activity was similar between the two conditions. The
proportion of outcome-predictive units in the Rule condition
was significantly greater than that of the No-Rule condition
(�(1)

2 � 5.12; p � 0.025, average of time bins from 0 to 0.5 s; Fig.
3C). In contrast, the proportion of outcome-responsive units was
not different between the two conditions (�(1)

2 � 0.04; p � 0.50,
average of time bins from 1.25 to 1.75 s). There were 13 of 42
(31%) outcome-predictive units and 22 of 42 (52%) outcome-
responsive units during the Rule condition according to selectiv-
ity criteria (see Material and Methods). These results indicate that
significantly more PFC units represented impending outcomes
when the reward was contingent on the animals’ action, but not
when actions were randomly reinforced.

To quantify each unit’s discrimination of the current response
outcome, we computed the auROC curves from distributions of
firing rates in rewarded versus unrewarded trials (Wallis and

Table 1. The number and percentage of medial PFC single selected units encoding
each task variable during the set-shifting task; instrumental poke (0 – 0.5 s) and
outcome (1.25–1.75 s)

Instrumental poke Outcome

Current outcome (t) 24 (25%) 48 (49%)
Most recent previous outcome (t-1) 10 (10%) 12 (12%)
Second most recent previous outcome (t-2) 4 (4%) 5 (5%)
Set Rule 12 (12%) 18 (19%)
Right 17 (17%) 18 (19%)
Center 14 (14%) 12 (12%)
Left 20 (21%) 21 (22%)
Rule � Right

Side–Right 17 (18%) 14 (14%)
Light–Right 12 (12%) 10 (10%)

Rule � Center
Side–Center 19 (20%) 10 (10%)
Light–Center 12 (12%) 17 (18%)

Rule � Left
Side–Left 12 (12%) 12 (12%)
Light–Left 9 (9%) 9 (9%)
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Miller, 2003). The discriminability of the impending outcome
was significantly modulated by the presence versus absence of the
action– outcome contingency. As shown in Figure 4A, the ROC
area for the selective units was significantly higher during the
preoutcome period in the Rule compared with the No-Rule con-
dition (t(12) � 7.29, p � 0.000, paired t test, average of time bins
from 0 to 0.5 s), but not during the postoutcome period (t(21) �
0.61, p � 0.540, paired t test, average of time bins from 1.25 to
1.75 s). The bootstrapped false-positive rate was � � 0.005. These
results are consistent with the higher proportion of outcome-
predictive units during the Rule condition (Fig. 3C) and extend
those findings to show a higher discrimination to predict the
response outcome in the presence of the rule defining the action–
outcome relationship. Figure 4B,C shows one example neuron in
which the outcome-predictive activity (spikes/s) for rewarding
and nonrewarding trials observed in the Rule condition was changed
in the No-Rule condition, whereas the outcome-responsive activity
was similar between the two conditions. Figure 4D,E shows the
net difference in the firing rate between rewarded and nonre-
warded trials for every selective unit during the Rule and No-Rule
conditions. The difference in the firing rate (average of all selec-
tive units) between rewarded and nonrewarded trials was signif-
icantly higher in the Rule compared with the No-Rule condition
during the preoutcome period (13 units; t(12) � 2.78, p � 0.016,
paired t test; Fig. 4D, inset), but not during the postoutcome

period (22 units; t(21) � 0.04, p � 0.964, paired t test; Fig. 4E,
inset).

Outcome-predictive activity in the PFC anticipates
behavioral shifts
The above results suggested that the outcome-predictive encod-
ing in the PFC may reflect the switch to a different response
strategy. To further examine this relationship, we tested whether
outcome-predictive activity emerged as the animals achieved the
rule shift across trials within each set. We found that the majority
of outcome-predictive units showed enhanced discriminability
in the late trials, before criterion was reached, as opposed to early
trials, after the action– outcome contingency had been reset (Fig.
5A,B). The outcome-predictive selectivity was significantly greater
in late trials compared with early trials (t(23) � 3.61, p � 0.001,
paired t test, averaged across time bins from 0 to 0.5 s; Fig. 5B).
The bootstrapped false-positive rate was � � 0.021. This effect
seems to be consistent looking at rats individually (Table 2). The
outcome-responsive selectivity did not differ between early ver-
sus late trials (t(47) � 0.53, p � 0.596, paired t test, averaged across
time bins from 1.25 to 1.75 s).

We also tested whether the discriminability of units encoding
for the set rule and the spatial location change in the late trials
compared with that in the early trials. As shown in Table 3, there
were no significant differences in the mean ROC values calcu-

Figure 3. PFC single-unit firing rate is modulated by outcome conditions. A, B, Heat plots represent the baseline-normalized firing rate for each unit (n � 42) during the two outcome conditions,
Rule (A) and No-Rule (B). Each row is the activity of an individual unit in 50 ms time bins aligned to corresponding task events and sorted from lowest to highest average normalized firing rate. C, Time
course showing the proportion of PFC units whose activity was significantly related to current (t) trial outcomes comparing Rule and No-Rule conditions. There were considerably more units
anticipating the current trial outcome during the Rule compared with the No-Rule condition (�(1)

2 � 5.12; p � 0.025, average across time bins from 0 to 0.5 s).
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lated for these variables. These results sug-
gest that the outcome-predictive activity
reflects the PFC neuronal representation
of the new action– outcome contingency,
since it arises as animals adapt their be-
havior to the set rule across trials.

LFP activity
The power of low-�-band oscillations
(30 –50 Hz) increased during the 1 s inter-
val between the action and the outcome
(Fig. 6A). There was no difference in the
low-� power (30 –50 Hz) between Rule
and No-Rule conditions (F(1,20) � 2.24,
p � 0.149, two-way ANOVA). Also, the �
power (30 –50 Hz) was not significantly
different between rewarded versus nonre-
warded trials (Fig. 6B; F(1,20) � 0.09, p �
0.762, two-way ANOVA) or early versus
late trials (Fig. 6C; F(1,20) � 0.07, p �
0.794, two-way ANOVA) in both condi-
tions. These data suggest that low-� power
in the medial PFC may reflect task engage-
ment, but not shifting behavior.

Discussion
Tracking action– outcome contingencies
and modifying behavior when those con-
tingencies change is critical to behavioral
flexibility. We find that dmPFC neurons
differentiate between expected outcomes
when action–outcome contingencies change.
This mode of outcome prediction sig-
naling may be used to promote the ex-
ploitation of a new response strategy and
ultimately facilitate behavioral flexibility.

Set-shifting performance and
outcome-related activity in the PFC
To better understand how outcome rep-
resentation by dmPFC neurons related to
behavioral shifts, we used an operant
set-shifting task in which (1) there was no
external cue to signal rule changes because
adaptation to the rule set depended on
trial and error based on the delivery and
omission of rewards; and (2) rats per-
formed several shifts back and forth
between two perceptual dimensions in the
same recording session. Consistent with
previous work (Watanabe, 1996; Man-
souri et al., 2006; Seo et al., 2007; Wallis,
2007; Narayanan and Laubach, 2008;
Histed et al., 2009; Sul et al., 2010; Wallis
and Kennerley, 2010; Asaad and Eskan-

Figure 4. Outcome anticipation-related activity of PFC single units is modulated by the outcome condition. A, Time course
showing units’ selectivity for current trial outcomes during the Rule condition compared with the No-Rule condition. Plots repre-
sent (mean � SEM) the auROC curve of the population of selective units significantly correlated to current trial outcomes during
the Rule condition. PFC units showed a greater selectivity to anticipate trial outcomes when these depended on animals’ actions
(Rule condition, paired t test, t(12) � 7.29, p � 0.000, average across time bins from 0 to 0.5 s). The time axis is split to better
represent the different number of selective units before (13 of 42 units) and after (22 of 42 units) the outcome. B, C, An example of
a prefrontal single unit during the Rule (B) and the No-Rule condition (C). Units’ activity anticipates current trial outcomes during
the Rule, but not during the No-Rule, condition. Thick and dotted line plots represent the mean firing rates (spikes/s) of rewarded
and nonrewarded trials, respectively. Thin line plots represent the corresponding �SEM. Vertical lines indicate the instrumental
poke and outcome time events. D, E, Net difference in the firing rate (spikes/s) between rewarded and nonrewarded trials for every
selective unit during the Rule compared with the No-Rule condition, before (D; average from 0 to 0.5 s; 13 units) and after

4

(E; average from 1.25 to 1.75 s; 22 units) the outcome. Insets
show that the difference in the firing rate (average of selective
units) between rewarded and nonrewarded trials is signifi-
cantly higher in the Rule compared with the No-Rule condition
before (t(12) � 2.78, p � 0.016, paired t test), but not after,
the outcome.
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dar, 2011; Donahue et al., 2013), we found that, during perfor-
mance of the set-shifting task, dmPFC neurons encoded information
about current outcome, i.e., signaling reward delivery or omis-
sion, as well as impending outcomes.

We next addressed whether outcome encoding is related to
behavioral shifts due to changes in action– outcome contingen-
cies. This was addressed in two ways. First, we compared
outcome-related activity in the dmPFC during the early trials of
the set, after the rule was changed, to the late trials of the set,
before animals changed their behavior (reached criterion). PFC
neurons predicted outcomes more accurately during the late tri-
als of the set than during the early trials of the set, suggesting that
they anticipate the shift. Second, we recorded during a control
task—No-Rule condition—in which actions resulted in random
delivery of rewards. Behavioral performance adapted to the set
rule during the Rule condition but did not change during the
No-Rule condition. The proportion of neurons that anticipated
future trial outcomes was significantly higher during the Rule
condition, when animals adapted their behavior to the rules, than
during the No-Rule condition. Moreover, according to ROC
analysis, the discrimination of neurons to predict trial outcomes
was significantly more accurate during the Rule compared with

Figure 5. The selectivity of PFC neurons to anticipate trial outcomes is modulated by animals’ adaptation to the set rule. A, Graphs represent the time course of current trial-outcome selectivity
during set-shifting performance (Rule task) comparing the early trials after the shift (top) to the late trials before reaching criterion (middle). Heat plots represent the ROC area of the population of
selective units significantly correlated to the current outcome by grouping the early trials and late trials of sets. Each row is the ROC area of a single unit sorted from lowest to highest ROC values.
B, Temporal profile of the averaged ROC area (mean � SEM) of the population of units represented in the heat plots. The selectivity to anticipate current trial outcomes was greater during the late
trials of the set compared with the early trials (paired t test, t(23) � 3.61, p � 0.001, average of time bins from 0 to 0.5 s). The time axis is split to better represent the different number of selective
units before (24 of 97 units) and after (48 of 97 units) the outcome. Dashed vertical lines indicate the time of the instrumental poke and outcome events.

Table 2. Selected outcome-predictive units and mean auROC curve (mean � SEM)
per rat during the set-shifting task; instrumental poke (0 – 0.5 s), comparing early
and late trials of the sets

Rat (units)

Instrumental poke

Early trials Late trials

Ad31 (7) 0.56 � 0.03 0.59 � 0.05
Ad32 (2) 0.53 � 0.03 0.59 � 0.01
Ad33 (8) 0.53 � 0.02 0.64 � 0.04
Ad34 (2) 0.60 � 0.07 0.59 � 0.08
Ad35 (1) 0.51 0.65
Ad36 (2) 0.61 � 0.06 0.69 � 0.06
Ad38 (1) 0.61 0.70
Ad39 (1) 0.47 0.70
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the No-Rule condition. Importantly, outcome-responsive activity did
not differ between rewarded and unrewarded conditions. Collectively,
these results indicate that outcome-predictive, but not outcome-
responsive, activity in the dmPFC is associated with animals updating
their response strategy according to changes in set rules.

How is the predictive activity generated in the dmPFC? Previ-
ous studies have shown that neurons in another PFC region, the

orbitofrontal cortex, encode upcoming rewards (or their proba-
bility) when these rewards are associated with external cues pre-
dicting them (Watanabe, 1996; Stalnaker et al., 2007; Wallis,
2007; Simmons and Richmond, 2008; van Duuren et al., 2009).
This is unlikely to be the case here because in our task animals did
not have external cues associated with trial outcomes (reward or
omission of reward) and were exposed to all competing options

Table 3. Mean auROC curve (mean � SEM) for all the selected units encoding each task variable during the set-shifting task; instrumental poke (0 – 0.5 s) and outcome
(1.25–1.75 s) time events, comparing early and late trials of the sets

Instrumental poke Outcome

Early trials Late trials Early trials Late trials

Current outcome (t) 0.55 � 0.01 0.63 � 0.02a 0.65 � 0.01 0.64 � 0.01
Most recent previous outcome (t-1) 0.58 � 0.02 0.57 � 0.02 0.56 � 0.02 0.58 � 0.02
Second most recent previous outcome (t-2) 0.57 � 0.01 0.56 � 0.03 0.58 � 0.02 0.49 � 0.04
Set rule 0.57 � 0.02 0.58 � 0.02 0.60 � 0.02 0.57 � 0.02
Right 0.58 � 0.03 0.55 � 0.01 0.60 � 0.02 0.59 � 0.02
Center 0.57 � 0.02 0.55 � 0.02 0.56 � 0.02 0.54 � 0.01
Left 0.57 � 0.01 0.58 � 0.01 0.58 � 0.01 0.58 � 0.01
ap � 0.001, paired Student’s t test.

Figure 6. Changes in LFP oscillation power during set-shifting performance. A, Heat plots represent the time course of normalized LFP power locked to the instrumental poke during both outcome
conditions, Rule and No-Rule. B, C, Plots represent the time course of normalized LFP power (averaged across 30 –50 Hz frequency bands; area inside the white square) during both conditions in
rewarded compared with nonrewarded trials (B) and early trials after the shift compared with late trials before criterion (C). Low-� power increases between the action and the outcome in both
outcome conditions but it is not significantly modulated by the outcome of current trials or trial order. Shaded area represents the SEM. Dashed vertical lines indicate the time of the instrumental poke
and outcome events.
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in every trial. Instead, outcome-predictive activity in the PFC was
more likely related to internally generated information guided by
the memory of recent behavior choices and resulting outcomes.
These would involve such constructs as working memory and/or
accumulated confidence (reduced uncertainty) for action selec-
tion (Kepecs et al., 2008; Mainen and Kepecs, 2009; Karlsson et
al., 2012). Along the same lines, the PFC can encode information
about previous outcomes and goals not directly related to the
performance of the task, which may ultimately lead to the imple-
mentation of new behavioral strategies (Genovesio et al., 2014;
Donahue and Lee, 2015; Schuck et al., 2015). In this context, it
can be hypothesized that the absence of anticipatory activity in
the PFC promotes searching behavior (exploration), whereas
generation of this activity promotes repetition of successful be-
havior (exploitation), thus facilitating behavioral shifts. The out-
come prediction-related activity would, therefore, be part of a
more complex prefrontal circuit involved in the top-down regu-
lation of behavioral flexibility, in which other areas of the brain,
such as the striatum, hippocampus, thalamus, brainstem (dopa-
mine and noradrenaline projecting neurons), and lateral habe-
nula are also involved (Aston-Jones and Cohen, 2005; Floresco et
al., 2006, 2009; Ragozzino, 2007; Bissonette et al., 2013; Janitzky
et al., 2015; Kawai et al., 2015).

Unlike outcome-predictive activity, the outcome-responsive
activity in the dmPFC did not differentiate between Rule and
No-Rule conditions or early/late trials of the set. In fact, there
were no differences on how outcome-responsive neurons dis-
criminate reward delivery during either outcome conditions or
trial order. These results suggest that the outcome-responsive
signal is not associated with rule changes. This may be expected
with our set-shifting task because a single trial (rewarded or non-
rewarded) did not necessarily mean that the rule had changed.

�-Band oscillations are not related to behavioral updating
An increase in LFP activity was observed selectively in the �-band
range between action execution and outcome delivery. This sig-
nal, however, did not differentiate between the type of expected
outcomes (reward or no reward) nor did it differ based on the
currently valid rule. Previous studies in the PFCs of monkeys
have shown changes in LFP oscillations associated with abstract
rule representation (Buschman et al., 2012) and feedback signals
(Quilodran et al., 2008; Rothé et al., 2011) during behavioral
adaptation. A recent mouse study also suggested that � rhythms
in the PFC are related to cognitive inflexibility (Cho et al., 2015).
Our data, however, indicate that � oscillations are not directly
related to set-shifting behavior but reflect expectation of an out-
come after action execution.

� Oscillations in the PFC are associated with attention and
stimulus detection (Benchenane et al., 2011). Performing the set-
shifting task on a trial-by-trial basis requires maintaining the
association between choices and outcomes during both rewarded
and unrewarded trials. The increase in medial PFC � oscillations
found in the present study may be critical for local circuit pro-
cessing of the selected actions linking them to their outcomes
across multiple trials. In line with this possibility, previous studies
have shown increases of � oscillations (from 45 to 60 Hz) in the
PFC associated with instrumental learning (Yu et al., 2012) and
independent of correct and incorrect choices during the learning
of a discrimination task (van Wingerden et al., 2010).

In conclusion, dmPFC ensembles use outcome prediction as a
signal to promote shifting to a behavior that is currently success-
ful at generating reward. This signal is independent of � oscilla-
tory activity, which selectively represents outcome expectation

independent of previous or currently valid action– outcome
contingencies.
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