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Abstract

Neuroprosthetic devices promise to allow paralyzed patients to perform the necessary functions of 

everyday life. However, to allow patients to use such tools it is necessary to decode their intent 

from neural signals such as electromyograms (EMGs). Because these signals are noisy, state of the 

art decoders integrate information over time. One systematic way of doing this is by taking into 

account the natural evolution of the state of the body—by using a so-called trajectory model. Here 

we use two insights about movements to enhance our trajectory model: (1) at any given time, there 

is a small set of likely movement targets, potentially identified by gaze; (2) reaches are produced 

at varying speeds. We decoded natural reaching movements using EMGs of muscles that might be 

available from an individual with spinal cord injury. Target estimates found from tracking eye 

movements were incorporated into the trajectory model, while a mixture model accounted for the 

inherent uncertainty in these estimates. Warping the trajectory model in time using a continuous 

estimate of the reach speed enabled accurate decoding of faster reaches. We found that the choice 

of richer trajectory models, such as those incorporating target or speed, improves decoding 

particularly when there is a small number of EMGs available.

1. Introduction

If a person has lost the use of his or her arms due to paralysis, it may be desirable to enable 

communication through interactions with a computer (Kim et al 2008) or to restore some 

degree of movement using functional electrical stimulation (FES) (Kilgore et al 2008, 

Bryden et al 2005) or a robotic device (Wiegner et al 1996). To this end, one of the most 

challenging problems is the determination of user intent (Wolpaw and McFarland 2004, 

Kilgore and Kirsch 2004). A neural machine interface (NMI) is often used to estimate user 

intent from the physiological signals that remain under voluntary control. For example, brain 

machine interfaces employing ensemble recordings of the activities of single neurons in 

motor and pre-motor cortical areas have been used to control the movement of robotic arms 

with multiple degrees of freedom (Velliste et al 2008, Pohlmeyer et al 2009). Less invasive 

signal sources are more commonly used in clinical practice, and similar decoding methods 

can be applied to various types of signals.
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Amongst individuals with high tetraplegia, one of the most impaired target populations, 

there is large variation in the available control signals. In most previously implemented 

systems, pre-programmed arm movements are initiated using switching mechanisms 

through, for example, contralateral shoulder movements (Smith et al 1996), respiration 

(Hoshimiya et al 1989) or voice (Nathan and Ohry 1990). For a system that gives the user 

more flexibility of control, discrete information about potential reach targets may be 

available from knowledge of object locations or tracking eye movements. Alternatively, 

residual movements and neural signals can provide continuous information about a desired 

trajectory. Implanted devices in the brain promise ‘effortless’ user control but are not yet 

practical for use in most patients (but see Braingate trial (Hochberg et al 2006)), making 

voluntary movements or electromyograms (EMGs) from voluntarily controlled muscles the 

most viable continuous signal sources. Unfortunately, in the most severe cases this results in 

a very limited signal set. Under these conditions, the control of whole arm reaching devices 

is a challenging problem and requires enormous effort from the user (Kilgore and Kirsch 

2004). Because each patient is unique, in this work we have aimed to build a general 

decoder that can incorporate any type of signal source.

Neural signals are invariably noisy, and the noise statistics often differ depending on the 

specific signal source. To deal with this problem, many state of the art approaches use 

recursive Bayesian estimation methods to predict the intended state of the device (e.g. hand 

dynamics) from the user’s control signals. This involves defining a trajectory model 
describing the state’s probabilistic evolution over time, and an observation model, which is 

the probabilistic mapping between the state and the user’s neural control signals, or 

observations. This is a popular approach for NMIs; it offers a principled way of formalizing 

our uncertainty about signals and has resulted in improvements over other signal processing 

techniques (Hochberg et al 2006, Wu et al 2006).

The trajectory model defines our prior assumptions about the nature of the movement to be 

decoded by modelling the desired evolution of the relevant state. The Kalman filter (KF) 

(Kalman 1960) belongs to the class of linear-Gaussian priors, where both trajectory and 

observation model are linear with additive Gaussian noise. One such trajectory model that is 

often used in movement decoding is the random-walk model, where the hand moves a small 

amount from one time-step to the next without a directional bias (Wu et al 2006). However, 

the trajectory model may also represent constraints on the system due to the limb mechanics 

and the environmental context of the reach (Yu et al 2007). If the available neural 

information is limited we may especially require a trajectory model with more predictive 

power. A number of researchers have proposed using available information about probable 

targets to take advantage of the directional nature of reaching (Yu et al 2007, Mulliken et al 
2008, Srinivasan et al 2006, Corbett et al 2010). This would allow us to strengthen our 

assumptions about the reaching movement, improving performance while reducing the 

burden on the user.

Prior knowledge of the probable reach targets can tell us a lot about the desired trajectory, 

but such information is generally noisy. One possible source is neural activity in the dorsal 

pre-motor cortex that provides information about the intended target prior to movement 

(Mulliken et al 2008, Hatsopoulos et al 2004). Estimates of the reach target may be found 

Corbett et al. Page 2

J Neural Eng. Author manuscript; available in PMC 2017 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



noninvasively by tracking eye movements—people almost always look at a target before 

reaching for it (Johansson et al 2001). However, since an individual may saccade to multiple 

locations prior to a reach, we obtain a probabilistic distribution of potential targets. In this 

work we seek an approach that can handle such target uncertainty while allowing reaches 

throughout a large, continuous workspace.

Another important characteristic of human reaching, which has not been addressed by 

standard trajectory models, is that people may want to move at different speeds. Models with 

linear dynamics only allow for deviation from the average through the noise term, which 

makes them poor at describing the natural variation of movement speeds during real-world 

tasks. Explicitly incorporating movement speed into the trajectory model should lead to 

better movement estimates.

Here we present an algorithm that uses a mixture of extended Kalman filters (EKFs) to 

combine our insights related to the variation of movement speed and the availability of 

probabilistic target knowledge to strengthen our trajectory model. Each of the mixture 

components allows the speed of the movement to vary continuously over time. We tested 

how well we could use EMGs and eye movements to decode hand position of humans 

performing a three-dimensional large-workspace reaching task. We find that using a 

trajectory model that allows for probabilistic target information and variation of speed leads 

to dramatic improvements in decoding quality, particularly where there is a small amount of 

neural information available as would be the case for a high-level spinal cord injury (SCI).

2. Methods

2.1. Decoding algorithms

2.1.1. Models for incorporating target information—Most state estimation 

algorithms for neural decoding have assumed a linear trajectory model with Gaussian noise 

(Wu et al 2006). The KF (figure 1(a)) provides the optimal solution in this case. The state of 

the arm x, evolves linearly over time while integrating Gaussian noise:

(1)

where A is the state transition matrix, zt ∈ ℝp represents the arm position, w is the process 

noise with p(w) ~ N(0, Q), and Q is the state covariance matrix. When used to describe 

reaches to a number of targets spanning the workspace this model effectively describes a 

random drift of the hand. Specifically, the model captures the fact that small, smooth 

movements are more probable than large movements, but no particular movement direction 

is more probable than another at any individual time-step. This model is therefore incapable 

of capturing the acceleration profile that is characteristic of natural arm reaches. Invariably, 

fast velocities will be underestimated and there will be unwanted drift close to the target.

In many decoding applications we may have knowledge of the target that the subject wants 

to move towards. When modelling a stereotypical reach to a single target, the KF is 

extremely effective at capturing the dynamics. Yu et al took advantage of this fact in their 
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mixture of trajectory models (MTM) algorithm, where they defined a different trajectory 

model for each of a small set of fixed, pre-defined targets. They then used a probabilistic 

mixture over potential targets, resulting in dramatic improvements in decoding accuracy (Yu 

et al 2007). However, the strength of this model is in capturing stereotypical reach profiles, 

potentially limiting its generalizability to new regions of the workspace.

A single trajectory model that can incorporate targets from anywhere within a continuous 

workspace may be expected to perform better when asked to generalize to novel targets. To 

achieve this we can assume that the effect of the target on the dynamics is linear, and thereby 

retain the simple form of the KF. Following the literature (Mulliken et al 2008, Kemere et al 
2004), we realized this by adding the target to the state space (KFT):

(2)

where zTt ∈ ℝg is the vector of target positions, with dimensionality less than or equal to 

that of zt. The target estimate is initialized at the beginning of the reach. The effect of the 

target on the dynamics may now be described, such that the trajectory model will describe a 

reach to a specific target. The state transition matrix, A, is of the form

(3)

with Ip as the p-dimensional identity matrix, 0p × p as a p × p matrix of zeros, and Δt as the 

sample time. Thus, the position states depend only on the previous positions and velocities, 

the velocities depend on the previous velocities and accelerations, while the target states, zT, 

remain constant in the trajectory model. The αP, αV, αA and αT terms, which are matrices 

representing the effects of the previous position, velocity, acceleration and target states on 

the current acceleration, may be learned directly from the data (see section 2.3.2). The 

inclusion of the αT terms gives the trajectory model a point of attraction, allowing 

acceleration when the target is distant and deceleration when it is close.

In a real-world decoding situation, there will undoubtedly be uncertainty associated with the 

target estimates. For example, with gaze-based target estimates, people may saccade to other 

locations in addition to the target in the period preceding a reach. Here we address the 

situation where we have a small number of potential target locations indexed by n,  for 

which we have obtained a prior distribution, P (zTt). As is the case in the MTM, we used a 

mixture model to consider each of the possible targets. We condition the posterior 

probability for the state on the N possible targets:

(4)
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Using Bayes’ rule, this equation becomes

(5)

Essentially, we perform the KF recursion for each possible target, and our solution is a 

weighted sum of the resultant trajectories, . The weights are proportional to 

both the prior probability for the target, , and the likelihood of the neural data given 

that target . P(y1…t) is independent of the target and therefore does not need to 

be calculated; instead it is used as a scaling factor to ensure that the weights sum to 1. In this 

mixture of KFTs (mKFT, figure 1(c)), the weight for the trajectory corresponding to each 

potential target will be initialized to the prior estimate for the target and converge to the most 

probable of these trajectories as the neural information is obtained over the course of the 

reach.

The MTM (figure 1(b)) mixture model is implemented in a similar manner (Yu et al 2007). 

However, in this case there are multiple trajectory models, Am, each describing reaches to a 

specific target, m, and the form of each trajectory model is the same as the KF in equation 

(1) where the target is not included in the state vector:

(6)

As noted above, this trajectory model effectively captures the dynamics of a reach to a single 

target and thus the mixture uses the most probable trajectory models to generate an accurate 

reach. To implement the MTM for M potential targets equation (5) becomes

(7)

where P(xt|y1…t, m) represents the resultant trajectory using the model Am, P(y1…t|m) is the 

likelihood of the neural data for that model and P(m) is the prior probability for the 

associated target. In summary, while both approaches use a mixture model to account for 

multiple potential targets, the mKFT uses one trajectory model to incorporate targets from 

anywhere in the continuous workspace, whereas the MTM has a different trajectory model 

for each of a discrete set of targets.

2.1.2. Time-warping—If a person wants to move more slowly or quickly than normal, the 

trajectory dynamics will be warped—stretched or compressed in time. This natural speed 

variability cannot be accounted for by a linear trajectory model. Here we aim to develop our 

trajectory model to incorporate the average speed, allowing for this variability. We model the 

intended average movement speed (S); we append its logarithm to the state vector, ensuring 

that it remains positive at all times:
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(8)

We generated a time-warped trajectory model (TWTM) by noting that if the average rate of 

a trajectory is to be scaled by a factor S, the position at time t will equal that of the original 

trajectory at time S × t. Differentiating, the velocity will be multiplied by S, and the 

acceleration by S2. For simplicity, the trajectory noise is assumed to be additive and 

Gaussian, and the model is assumed to be stationary:

(9)

where

(10)

Since the position and velocity states are completely specified from the previous positions, 

velocities and accelerations, only the α terms used to predict the acceleration states need to 

be estimated to build the state transition function, f. These terms, estimated from the data 

(section 2.3.2), remain constant and are scaled as a nonlinear function of zs that acts to 

multiply the acceleration by S2. To achieve this, αp and αT are scaled by S2, αV is scaled by 

S (as  will have effectively already been scaled by S through the recursive nature of the 

filter), and αA is left unchanged as  will have also been scaled appropriately. The a 
priori estimate of the speed state, zs, will be unchanged from the estimate at the previous 

time-step; any deviations from average in the speed state therefore will be entirely due to the 

neural observation data, which allows the estimate to change over the course of the reach. 

No information about the speed of the reach is required in advance.

We realize this nonlinear trajectory model using an EKF, which linearizes the dynamics 

around the best estimate of the state at each time-step (Simon 2006). The state a priori 
estimate is found as the function f of the previous state posterior estimate:

(11)

In the EKF, the Jacobian matrix of partial derivatives of f, Ft−1, must be calculated with 

respect to the previous state posterior estimate at each time-step, remembering that S = ezs:
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(12)

This allows the a priori error covariance estimate,  to be projected from the previous 

time-step:

(13)

The observation update is then performed as in the standard KF. With this approach we 

implement our nonlinear trajectory model while adding only small computational overhead 

to the KF recursions. To account for uncertainty in the target estimates, we performed a 

mixture of TWTMs (mTWTM, figure 1(d)), in exactly the same way as the mKFT above.

2.2. Experimental methods

To evaluate the effectiveness of the algorithms as general-purpose decoding approaches, we 

measured unconstrained reaching movements from able-bodied subjects while recording 

neural signals that would be available at different levels of SCI. Five subjects performed 

reaches within a large workspace at varying speeds, representing a wide range of trajectory 

dynamics. We recorded arm kinematics, EMGs, head position and gaze direction as they 

reached to 16 light emitting diode (LED) targets situated in two planes located at the edge of 

the reachable workspace (figure 2(a)). Subjects provided informed, written consent; and the 

protocol was approved by Northwestern University’s Institutional Review Board.

2.2.1. Data collection—EMG signals were recorded at 2400 Hz from the brachioradialis; 

biceps; triceps (long head and lateral head); anterior, posterior and middle deltoids; 

pectoralis major (clavicular head); and upper trapezius muscles. The EMG signals were 

amplified and band-pass filtered between 10 and 1000 Hz using a Bortec AMT-8 (Bortec 

Biomedical Ltd, Canada), and subsequently anti-aliased filtered using fifth-order Bessel 

filters with a cut-off frequency of 500 Hz. Hand, wrist, shoulder and head positions were 

tracked at 60 Hz using an Optotrak motion analysis system (Northern Digital, Inc, Canada). 

Joint angles were calculated from the shoulder and wrist marker data using digitized bony 

landmarks which defined a coordinate system for the upper limb as detailed by Wu et al 
(2005). We simultaneously recorded eye movements with an EYETRAC-6 head mounted 

eye tracker (Applied Science Laboratories, Bedford, MA). Signals were synchronized using 

a common trigger.
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2.2.2. Protocols—Subjects were comfortably seated and restrained with lap and shoulder 

straps as they made the reaching movements. Reaches were performed in 2.5 min blocks at 

one of three self-selected speeds: slow, normal or fast. The subject was informed of the 

appropriate speed before beginning each block of reaches, and the order of speeds was 

randomized. For each reach the target LED was lit for 1 s prior to an auditory cue for 

initiation, at which time the subject would reach to the target at the appropriate speed. When 

the LED was switched off, the subject would return to a resting position. Slow, normal and 

fast reaches were allotted 3, 1.5 and 1 s respectively, but subjects were free to determine the 

exact speed. Therefore the slow, normal and fast blocks contained 16, 23 and 27 reaches 

respectively. Each subject performed at least 8 slow, 7 normal and 6 fast blocks, resulting in 

between 450 and 500 reaches in total.

2.3. Analysis

We used individual reaches towards the LED targets to train and test the KF, mKFT, MTM 

and mTWTM. Reaches that were visibly jerky, contained incomplete motion capture data or 

motion artefacts in the EMG were excluded from the analyses. For each subject, 100 reaches 

were randomly selected for testing the algorithms and those remaining (between 300 and 

390 reaches) were used to train the models. Each decoding algorithm used the finger and 

joint angle positions, velocities and accelerations in the state vector.

2.3.1. Observation models—As the motion data were sampled at 60 Hz, the observation 

of the state at each time-step was extracted from the corresponding 16.7 ms window of the 

EMG. We extracted two features from each EMG channel; we used the RMS value and also 

the number of zero crossings, which is a measure of the frequency content of the signal that 

has been shown to be a useful feature in prosthetic control (Hudgins et al 1993, Tkach et al 
2010). The square root of both of these features was taken for the observations; we found 

that this resulted in more Gaussian-like distributions. In all cases the observation model was 

considered to be linear, with Gaussian noise

(14)

where yt is the EMG at time t, C is the observation model, and υt is the Gaussian noise with 

p(υ) ∼ N(0, R), and R is the observation covariance matrix.

To explore the influence of the availability of EMG on decoder performance, we evaluated 

the algorithms with three different observation models. The models included different 

subsets of the EMG channels corresponding to muscle groups that simulated residual muscle 

activity typically available after C6, C5 and C4 level SCIs (figure 2(b)). At the C4 level we 

used just the upper trapezius, which is the most realistic representation of the signals 

available to the high tetraplegia population. To simulate a C5 level injury we added the three 

deltoids, biceps, pectoralis major and the brachioradialis. For the C6 case we also added the 

triceps long and lateral heads.

2.3.2. Training the models—For the KF and the KFT the parameters A, C, Q and R were 

estimated from training data of reaches to all targets using the maximum likelihood solution 
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(Wu et al 2006, Ghahramani and Hinton 1996). In the case of the KFT, the final recorded 

position of the finger was appended to the state vector for training, taking the place of the 

target estimate. For the MTM, different A and Q were estimated for each target, while the 

observation model was the same for all mixture components and was constructed from all of 

the training reaches. To test their ability to generalize to novel targets the KF, mKFT and 

MTM were also tested using leave-one-out cross-validation, where the algorithms were 

trained on reaches to all targets except for the one being tested.

The filter parameters for the time-warped model were trained using the expectation 

maximization (EM) framework, using training reaches to all targets (Ghahramani and 

Hinton 1996). As the initialization for the variables may be important in EKF learning, S 
was initialized with the ground truth average reach speeds for each movement relative to the 

average speed across all movements. The state transition parameters α were estimated using 

nonlinear least-squares regression, while C, Q and R were estimated linearly for the new 

system, using the maximum likelihood solution (M-step). For the E-step we used a standard 

extended Kalman smoother. We thus found the expected values for the states given the 

current filter parameters. For this computation, and when testing the algorithm, zs was 

initialized to its average value across all reaches while the remaining states were initialized 

to their true values. The smoothed estimate for zs was then used, along with the true values 

for the other states, to re-estimate the filter parameters in the M-step as before. We alternated 

between E and M steps until the log likelihood converged (which it did in all cases). 

Following the training procedure, the diagonal of the state covariance matrix Q 
corresponding to zs was set to the variance of the smoothed zs over all reaches, according to 

how much this state should be allowed to change during prediction. This allowed the 

estimate of zs to develop over the course of the reach due to the evidence provided by the 

observations, better capturing the dynamics of reaches at different speeds.

2.3.3 Incorporating gaze information—We used the gaze data to provide target 

estimates for the relevant algorithms. We examined the gaze data in the 1 s period preceding 

each reaching movement—a time interval over which three saccades are typically made. As 

the targets were located on two planes, we obtained gaze locations for each reach by 

projecting the subject’s gaze in the relevant time interval onto those planes. To identify 

potential targets for the mKFT and mTWTM we did not require any knowledge of the target 

LED positions. While the target locations (finger positions at the end of each reach) were 

known and used in the training data when the models were being estimated, this information 

was not required during testing as target positions could be estimated anywhere on the two 

planes, independent of finger position. This is in contrast to the MTM, where the target 

locations were required in testing to select the potential trajectory models to include.

For the mKFT and mTWTM we selected three primary gaze locations from specific time-

points in the corresponding 1 s interval; the first, middle and final samples were chosen. All 

other gaze locations were assigned to a group according to which of the primary locations 

was closest. The mean and variance of each of these three groups were then used to initialize 

the target estimate in a corresponding mixture component. The priors for the three targets 

were assigned proportional to the number of samples in their corresponding group. We thus 

added three-dimensional target estimates to the state space of each mKFT and mTWTM 
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component. This approach ensured, with a high probability, that the correct target would be 

accounted for in the mixture.

To implement the MTM of Yu et al, the mixture was performed over the trajectory models 

designed for each of the possible LED targets. Priors for the MTM were found by assigning 

each gaze location to its closest two LEDs. The priors for each trajectory model was then set 

proportional to the number of gaze locations assigned to the corresponding LED, divided by 

its distance from the mean of those gaze locations. A number of different procedures for 

assigning priors to the MTM were tested and the one presented here gave the best results.

2.3.4. Algorithm evaluation—We evaluated the decoding approaches by comparing their 

predictions of the finger position in the test reaches, using the EMG and the gaze data. 

Algorithm accuracy was quantified using the multiple R2 (Ljung and Ljung 1987), which is 

a measure of accuracy that incorporates the entire reaching movement. Intuitively, the 

multiple R2 combines the errors across all three dimensions, weighing the performance in 

each dimension in proportion to its variance. However, because all targets were in front of 

the subject, a substantial component of this R2 was related to the outward component of the 

reach common to all targets. We thus also calculated the target variance accounted for 

(VAF), which quantified the error at the final time of the reach, by scaling the squared error 

at that time by the variance in the LED target positions:

(15)

where pLED are the LED locations in space, and i indexes the dimensions X, Y and Z. 

Accuracies of the mKFT, MTM and KF were compared using an analysis of variance 

(ANOVA) with algorithm and simulated injury level as fixed effects and each reach as a 

random effect. When evaluating the effect of time-warping, reach speed was also included as 

a fixed effect, and the mTWTM, mKFT and KF were the algorithms compared. Tukey tests 

were performed for post-hoc comparisons, and all statistical comparisons used a significance 

level of α = 0.05. To visualize how the accuracy varies over time under each condition, we 

also quantified the percentage error as a function of the time-course of the reach. This was 

calculated by normalizing the root-mean-squared error at the relevant time point by the 

distance moved in the reach, and averaging across reaches.

3. Results

We tested how well movements can be decoded from EMGs using data recorded from 

healthy subjects reaching for an array of targets (figure 2, see methods). To understand 

which aspects of the different algorithms (figure 1) allow effective, functionally relevant 

decoding we contrasted their performance under various conditions, emulating realistic 

neuroprosthetic applications as much as possible. We began by evaluating the MTM and 

mKFT—two methods for incorporating the gaze-based target information into the trajectory 

model—and comparing them to the non-directional KF which uses EMG alone. By varying 

the quantity of EMG, as we simulated different levels of SCI, we could examine the reliance 
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of the different approaches on the strength of the observation model; similarly, by testing 

how well the algorithms generalize to novel targets we could identify the extent of their 

reliance on the training data. Finally, we looked at the effect of time-warping at the different 

reach speeds, again considering the influence of the quantity of neural data.

3.1. Target models

We found that incorporating the gaze-based target information led to dramatic improvements 

in decoding, at all of the simulated injury levels. Both the MTM and the mKFT produced 

more accurate predictions than the generic KF. This is illustrated in the example reach 

(figure 3), where the KF at C4 does well in the vertical (Z) direction, but its predictions in 

the lateral (Y) and outward (X) directions are inaccurate. This is perhaps unsurprising as the 

upper trapezius is mostly active in producing upward movements of the arm. In this 

example, the mKFT and MTM performed well at all simulated injury levels. While the 

mKFT diverges from the trajectory somewhat in the Y direction, the trajectories converge 

again as they approach the target. By quantifying the average error over the time-course of 

the reach trajectories we could clearly see where the errors accumulated for each of the 

decoders (figure 4(a)). For both of the models incorporating target information the error 

levelled off about half way through the reach as the predicted trajectory was pulled towards 

the target, limiting the accumulation of error.

The neural information available to the decoders will generally affect their performance, and 

this influence will be stronger for decoders whose trajectory models are less informative 

about the reach structure. For all three algorithms, the performance at C5 was almost 

identical to that at C6, where the triceps EMGs were included in the observation vector for 

the latter but not the former (figures 3–5). There was no significant difference between them 

in R2 or target VAF (both p > 0.98, figure 5). However, to simulate the C4 level only the 

upper trapezius EMG was used, resulting in significantly lower accuracy than the other two 

levels for both the R2 and target VAF (all p < 0.0001, figure 5). It has to be emphasized that 

this was decoding of three-dimensional trajectories from a single muscle—a truly difficult 

task. This effect of simulated injury level was particularly evident in the KF, the algorithm 

with the strongest reliance on its observation model, where at C4 the error continued to 

accumulate over the course of the entire reach trajectory (figure 4). In comparison, the MTM 

and mKFT were relatively consistent across injury levels.

We evaluated the approaches both with a fully specified training set and one requiring 

generalization to novel targets. Overall, the algorithms incorporating target information were 

significantly better than the KF for all performance measures (all p < 0.0001). When training 

was performed on reaches to all targets (figure 5(a)), we found no statistically significant 

difference between the MTM and mKFT (p = 0.09, 0.98 for R2 and target VAF, 

respectively). However, when leave-one-out cross-validation was used to test how well the 

algorithms generalized to novel targets, the performance of the MTM dropped well below 

that of the mKFT (both p < 0.0001), which remained relatively consistent (figure 5(b)). In 

fact, the MTM performance was similar to that of the KF at the C5 and C6 injury levels 

(figures 4(b) and 5(b)); however, while less than the mKFT, the MTM still provided a large 

improvement over the KF at C4. Due to accurate target information from eye-tracking, the 
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mKFT performed well, while the MTM was unable to effectively use this information 

without a fully specified training set.

3.2. Time-warping

The effects of time-warping were examined by comparing the algorithm that does model 

speed (mTWTM) with an algorithm that does not (mKFT). The MTM was not included in 

this analysis as its performance was shown above to be similar to that of the mKFT when all 

targets were included in the training set, and less effective when predicting reaches to targets 

not included in training. As the mKFT and mTWTM use the same approach to incorporating 

target information, all differences between them can be attributed to time-warping. The 

behaviour of these two algorithms is illustrated by example reaches at the three speeds 

(figure 6). At the normal speed, where the trajectory is close to the ‘average’ we would 

expect little time-warping to occur and therefore we saw little difference in performance 

between the two algorithms (figure 6(b)). The effectiveness of the time-warping is clearly 

illustrated in the fast example, where the mTWTM closely follows the reach trajectory and 

the mKFT lags behind, underestimating the speed and failing to reach the target (figure 

6(c)). In the slow example, the speed of the reach is slightly overestimated by the mKFT 

(figure 6(a)). Overall, we found that the time-warped model out-performed the mKFT in 

both R2 and target VAF (both p < 0.01, figure 8).

All algorithms performed best for reaches of average speed. The KF was additionally 

included in the group comparisons to demonstrate the effect of speed on the naive algorithm. 

The error profiles at the normal speed (figure 7(b)) demonstrated similar patterns in the 

mKFT and KF to those seen above, where reaches of all speeds were included in the 

analysis (figure 4(a)). However, the errors seen here were lower as the reaches at normal 

speed were reconstructed more accurately than those at the other speeds, by all algorithms 

and at all simulated injury levels (all p < 0.0001, figure 8). The error profiles of the 

mTWTM and the mKFT appear almost identical at normal speed, indicating that little time-

warping occurred. Indeed, there was no significant difference in R2 or target VAF between 

the mTWTM and mKFT (both p > 0.99, figure 8(b)).

Some interesting interactions between the reach speed and the quantity of EMG were 

observed in the error profiles for the decoders when the speed deviated from normal (figure 

7). It was at the fast speed that the time-warping proved to be most useful. At the C5 and C6 

levels, the error profiles of the mTWTM appeared very similar to those for the normal-speed 

reaches. In contrast, the mKFT and the KF continued to accumulate error when the 

mTWTM had levelled off (figure 7(c)). The error did decrease towards the end of the reach, 

however, particularly in the case of the mKFT as the reach approached the target. At the C4 

level errors were much higher in all cases, with those of the mKFT and mTWTM decreasing 

towards the end of the reach. The time-warped model outperformed the others at all 

simulated injury levels in both R2 and target VAF (both p < 0.001, figure 8(c)).

The mKFT performed better than expected for the slow reaches. While the trajectory 

dynamics still deviated from average, there was more neural information integrated over the 

course of the slow reaches, allowing better performance. The accuracy of the mKFT for the 

slow reaches was significantly higher than at the fast in both R2 and target VAF (both p < 
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0.01). While time-warping did not provide much advantage at this speed, there was insight 

to be gained by comparing the error profiles of the models. For all injury levels, the error of 

the mTWTM was lowest at the beginning of the reach, as the mKFT initially overestimated 

the speed (figure 7(a)). However, at C5 and C6, while the error of the mTWTM levelled off 

about half way through the reach the mKFT error profile dipped below that of the mTWTM 

as it approached the target. At C4, when both algorithms were more reliant on the trajectory 

model, this decrease in error was seen in both cases and the error profile of the mTWTM 

remained lower. Over all injury levels, the mTWTM was slightly more accurate than the 

mKFT for the slow reaches (figure 8(a)). This was statistically significant in the target VAF 

(p < 0.0001), but not in the R2 (p = 0.053). Modelling speed primarily helped for fast 

movements where neither integrating neural information nor biasing towards averages were 

successful strategies.

4. Discussion

We designed a trajectory model for NMIs by incorporating two features that prominently 

influence the trajectory dynamics of the natural reach: the movement speed and the target 

location. The model deals well with uncertainty about the target location and can generalize 

to new parts of the workspace. Intuitively, we found that capturing the characteristics of 

movement in our trajectory model is most useful in the absence of a rich set of neural 

signals. Additionally, faster reaches in particular were improved by allowing for speed 

variation through time-warping.

For the severely impaired, it is highly unlikely that a single signal source will suffice to 

provide adequate control of a neuroprosthesis, particularly if invasiveness is to be 

minimized. This has led to the development of a number of hybrid brain–computer 

interfaces (BCIs) (Pfurtscheller et al 2010, Millán et al 2010). For example, Leeb et al 
(2011) recently improved the performance of a BCI by combining electroencephalographic 

(EEG) activity with EMG. In this work the two signal sources were both used to classify 

hand movements and their results were then fused. In contrast, our approach provides a 

framework to fuse signal sources with distinct roles: combining target and trajectory 

information. Batista et al (2008) also improved performance of a cortical decoder by 

monitoring eye position. Because gaze direction influences the neural data, they found that 

their decoding of targets on a screen was improved by using different neural mappings 

depending on the eye position. However, they did not explicitly use the gaze data to estimate 

the target, and they did not attempt to decode reach trajectories.

Eye gaze is an extremely useful signal source for obtaining target estimates; people naturally 

look at objects before reaching for them giving us a huge amount of information about their 

intentions. However, it is a problematic input signal when used in isolation (Jacob and Karn 

2003). It can be challenging to determine which eye movements are intended as control 

signals, and it is critical that saccades do not generate unintended movements of an assistive 

device. It is therefore evident that gaze information is most useful when combined with other 

voluntary control signals to account for its inherent uncertainty. While we have not explicitly 

addressed the issue here, the mixture model will converge to the most probable trajectory 

even when multiple targets have been foveated. Yu et al (2007) demonstrated this with the 
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MTM, which was highly effective with eight trajectories in the mixture. It appears that gaze 

information can allow precise decoding even in the context of very few available EMG 

signals.

Clearly, trajectory decoding can be dramatically improved when information about the target 

is available. The literature provides a few different approaches for incorporating the target 

into the trajectory model. As demonstrated, the MTM is highly effective when there is a set 

of known targets (Yu et al 2007). Srinivasan et al augmented the state equation to optimally 

account for a target state at some known time in the future (Srinivasan et al 2006), and they 

also extended this work to consider dynamic goals (Srinivasan and Brown 2007). The 

requirement that the target time be known is somewhat problematic, although Kulkarni and 

Paninski suggested using a mixture model to account for uncertainty in this parameter 

(Kulkarni and Paninski 2007). Incorporating the target into the state space, as demonstrated 

in this work, is a natural way to augment the trajectory model without any knowledge of 

final time, while retaining the simple form of the KF (Kemere et al 2004). Mulliken et al 
(2008) have demonstrated the effectiveness of this method in closed loop control by 

simultaneously decoding both the trajectory and target states from posterior parietal cortical 

neurons of monkeys. The mixture model framework as presented here could enhance this 

approach to account for the rich target information available when there are multiple 

potential target locations.

The advantages of nonlinear time-warping demonstrated in this work could be equally 

obtained using mixtures over many targets and speeds. While mixtures could incorporate 

different models for slow and fast movements and any number of potential targets, this 

strategy will generally require many mixture components. Such an approach would require a 

lot more training data, as we have shown that it does not generalize well. In contrast, we 

warp the trajectory through a hidden state that we continuously estimate based on the 

evidence of the neural data. Wu et al similarly allowed the trajectory model to be influenced 

by an added hidden state that was estimated from cortical data, which could represent any 

unobserved influences relevant to the system. They assumed the effect of this state to be 

linear, thereby retaining the simplicity of the KF, and their model could thus be estimated 

from the straightforward EM framework (Wu et al 2009). Similar switching approaches have 

also been employed to account for the nonlinear or non-stationary mappings between the 

kinematics and EMGs (Artemiadis and Kyriakopoulos 2011), or neural firing rates (Wu et al 
2004). However, we found that, with our neural data set, the advantages of time-warping are 

small in comparison to the advantages of using target information.

We believe that the issues that we have addressed here may be applied to a wide range of 

NMI applications. In most cases, a probabilistic distribution for a small number of action 

candidates may be expected—after all there are usually only a small number of actions that 

make sense in a given environment. Virtually all movements are executed with varying 

speeds; time-warping may in fact prove to be more useful for applications with higher 

speed-dependence such as lower-limb prosthetics. Furthermore, the Bayesian framework 

enables simple extensions to different signal sources such as electrode grid recordings and 

EEG. Particularly for patients with severe impairments and limited control sources available, 
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the choice of a strong trajectory model should improve the functionality of a neuroprosthetic 

while reducing their cognitive burden.
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Figure 1. 
Graphical representation of the algorithm approaches: (a) the generic Kalman filter (KF); (b) 

mixture of trajectory models (MTM) (Yu et al 2007); (c) mixture of Kalman filters with 

targets (mKFT); (d) mixture of time-warped trajectory models (mTWTM).
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Figure 2. 
(a) Experimental setup and (b) recorded EMGs used to simulate the neural data available at 

injury levels C6, C5 and C4.
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Figure 3. 
Actual and predicted finger position by (a) KF, (b) MTM and (c) mKFT for a sample reach 

at the three simulated injury levels. In this example, R2 for C6, C5 and C4 respectively were: 

(a) all 0.98; (b) 0.99, 0.99, 0.98 and (c) 0.91, 0.89, 0.83. The target VAFs were: (a) 0.96, 

0.97, 0.96; (b) 0.96, 0.97, 0.90; (c) 0.81, 0.72, 0.14.
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Figure 4. 
Average prediction errors over the time-course of the reach. (a) Training on all targets; (b) 

leave-one-out target cross-validation.
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Figure 5. 
Quantification of the influence of algorithm choice on the precision of predictions: group 

means and standard errors. (a) Training on all targets; (b) leave-one-out target cross-

validation.
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Figure 6. 
Predicted finger position by the mKFT and mTWTM for sample reaches at (a) slow; (b) 

normal and (c) fast speeds at the simulated C4 injury level. In this example, R2 for the 

mKFT and mTWTM respectively were: (a) 0.89, 0.96; (b) 0.99, 0.97 and (c) 0.86, 0.98. The 

target VAFs were: (a) 0.92, 0.97; (b) 0.98, 0.99 and (c) 0.85, 0.9.
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Figure 7. 
Average prediction errors over the time-course of the reach for the three algorithms, at (a) 

slow; (b) normal and (c) fast speeds.
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Figure 8. 
Prediction accuracy quantification of group means and standard errors for the algorithms for 

different injury levels at (a) slow; (b) normal; and (c) fast speeds.
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