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Summary

Metabolomics promises a holistic phenotypic characterization of biological responses to toxicants. 

This technology is based on advanced chemical analytical tools with reasonable throughput, 

including mass-spectroscopy and NMR. Quality assurance, however – from experimental design, 

sample preparation, metabolite identification, to bioinformatics data-mining – is urgently needed 

to assure both quality of metabolomics data and reproducibility of biological models. In contrast to 

microarray-based transcriptomics, where consensus on quality assurance and reporting standards 

has been fostered over the last two decades, quality assurance of metabolomics is only now 

emerging. Regulatory use in safety sciences, and even proper scientific use of these technologies, 
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demand quality assurance. In an effort to promote this discussion, an expert workshop discussed 

the quality assurance needs of metabolomics.

The goals for this workshop were 1) to consider the challenges associated with metabolomics as 

an emerging science, with an emphasis on its application in toxicology and 2) to identify the key 

issues to be addressed in order to establish and implement quality assurance procedures in 

metabolomics-based toxicology. Consensus has still to be achieved regarding best practices to 

make sure sound, useful, and relevant information is derived from these new tools.
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1 Introduction

Recent developments in safety testing regulations have initiated global changes in risk 

assessment. Emerging techniques like omics technologies could make toxicity testing more 

efficient in terms of time, cost, mechanistic understanding, and relevance to humans. Many 

challenges, however, need to be addressed to ensure robust and informative results sufficient 

for solid decision-making. Even though some omics technologies have been used for more 

than a decade, there is still ongoing discussion about the reproducibility of experiments and 

the comparability of results at different sites and on different platforms.

In Baltimore, Maryland in November 2013, the Johns Hopkins Center for Alternatives to 

Animal Testing (CAAT) organized a “Quality Assurance of Metabolomics” workshop with 

members of the NIH Research Project “Human Toxome” consortium (Bouhifd et al., 2014, 

2015) together with invited experts from academia, industry, and regulatory agencies. This 

report highlights aspects of the presentations and discussions that took place at the 

workshop. It should be noted that this is not a consensus report, i.e., not every aspect of the 

report represents the view of all coauthors or their organizations.

Recent publications from the National Research Council, the US EPA’s (Environmental 

Protection Agency) computational toxicology research programs, along with the European 

REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) and other 

cosmetics legislation, are among the drivers of the current landscape changes in risk 

assessment and toxicity testing (Hartung, 2010, 2011). At the center of this unique advance 

is the conviction that emerging sciences and techniques, such as omics technologies, high-

throughput screening, and computational toxicology, could make toxicity testing more 

efficient in terms of time, cost, animal use, and relevance to human mechanisms (Leist et al., 

2008; Hartung, 2009). This conceptual framework offers many opportunities for modern 

toxicology, but many challenges need to be addressed to ensure sufficiently robust and 

informative results. The omics technologies, in particular, contribute to our understanding of 

toxicity mechanisms and, although some have been extensively used for more than a decade 

(e.g., microarrays), the reproducibility of experiments and the comparability of results at 

different sites and on different platforms is still subject to ongoing debate. Consensus has yet 

to be achieved concerning best practices in many critical topics, such as the experimental 
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design and protocols for sample preparation and handling, data processing, statistical 

analysis, and interpretation. One major challenge is how to ensure that sound, useful and 

relevant information is derived from these new tools. Quality assurance is the first response. 

The diversity of the technological platforms, complexity of biological systems, and variety 

of analytical and computational methods make it critical to adopt measures and procedures 

for ensuring the quality of the data.

Metabolomics, an interdisciplinary science that combines analytical chemistry, biochemistry, 

statistics, and bioinformatics, is one of the most promising omics tools in the post-genome 

era. It is primarily the comparative analysis of the endogenous metabolites present in any 

biological system at a given physiological state. Metabolomics also includes aspects of 

patho-biochemistry, systems biology, and molecular diagnostics when applied to toxicology 

(Griffiths et al., 2010). Its approaches have been applied in clinical settings and have been 

increasingly expanded to other fields (such as toxicology), because they have the ability to 

provide information that allows to better understand the mechanisms of toxicity (Craig et al., 

2006; Heijne et al., 2005; Ruepp et al., 2002; Schnackenberg et al., 2006, 2009; Montoya et 

al., 2014). From an analytical perspective, the goal of metabolomics in toxicology studies is 

to “achieve a comprehensive measurement of the metabolome and how it changes in 
response to stressors, with biological payoff being an illumination of the relationship 
between the perturbations and affected biochemical pathways” (Robertson and Lindon, 

2005). Toxicological applications have been detailed in many publications (Ramirez et al., 

2013; Bouhifd et al., 2013; Robertson, 2005). In early 2000, metabolomics was suggested 

for the first time as a new technique for rapid toxicity screening (Robertson and Bulera, 

2000), was used in academic research (to predict liver and kidney toxicity in vivo) Lindon et 

al., 2005)), and also in industry to elucidate toxicological modes of action allowing for early 

safety decisions and lowering the cost through reduced animal studies (van Ravenzwaay et 

al., 2012). In vitro applications are emerging and have been driven by two major factors: 1) 

the call for a better understanding of biochemical changes induced by a toxic insult in a 

defined and controllable experimental system and 2) the increasing requirement to move 

towards the use of human-relevant, non-animal alternatives (Ramirez et al., 2013). In vitro 
measurements of intracellular metabolites have allowed for organ-specific in vitro toxicity 

testing, e.g., neurotoxicity (van Vliet et al., 2008), renal toxicity (Ellis et al., 2011), 

hepatotoxicity (Ruiz-Aracama et al., 2011), mitochondrial toxicity (Balcke et al., 2011), and 

lung toxicity (Vulimiri et al., 2009).

Undoubtedly, the promise of metabolomics in various scientific disciplines, including in 
vitro toxicology, is recognized. Nevertheless, many obstacles must be addressed before the 

discipline can achieve its full potential. Besides the challenges inherent to any toxicological 

study, we discussed the issues specific to metabolomics with an emphasis on in vitro 
applications. These included quality assurance practices in academia and regulatory agencies 

and also aspects of conducting metabolomics studies in industrial settings.

2 Quality assurance in toxicology studies

Quality assurance is fundamental to all good scientific practice. The maintenance of high 

standards is essential for ensuring the reproducibility, reliability, credibility, acceptance, and 
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proper application of the results generated. The challenges and limitations of models and test 

methods in toxicology have been recognized and discussed (Hartung, 2009, 2011, 2013). 

Currently, toxicological risk assessments rely mainly on in vivo animal experimentation that 

is often expensive and follows test guidelines that are usually a few decades old. (However, 

by adding omics measurements to such studies, the information content and therefore 

scientific quality of such in vivo studies can be significantly increased). The throughput is 

low, preventing many substances from being adequately assessed (Grandjean and Landrigan, 

2006; Judson et al., 2009). Selecting a test species that will best predict the human response 

is also challenging. On the other hand, in vitro toxicology studies depend significantly on 

cell models that differ in many aspects from normal physiology, making them difficult to 

reproduce in culture (Hartung, 2007a). Besides these intrinsic challenges, the discipline 

suffers from a lack of standards in methods and model standardization, and inefficient 

documentation and reporting.

Despite these problems, guidance has been developed that acknowledges the inherent 

variation of in vitro test systems and promotes standardization. Good Cell Culture Practice 

(GCCP) sets the minimum standards for any in vitro work involving cell and tissue cultures 

(Hartung et al., 2002). It aims to reduce uncertainty in the development and application of in 
vitro procedures by encouraging the establishment of principles for greater international 

harmonization, standardization, and rational implementation of laboratory practices, quality 

control systems, safety procedures, and reporting (Coecke et al., 2005). This guidance is 

comparable to the OECD Principles of Good Laboratory Practice (GLP) (OECD, 2004) (the 

two have actually cross-fertilized each other), which cannot normally be fully implemented 

in basic research because of cost and lack of flexibility. The requirement that all personnel 

need to be fully trained before executing tests, in particular, cannot be met in an academic 

setting, where much of the work is done by students. However, through some simple actions 

based on GLP principles, a higher level of quality can be achieved even in academic 

research.

Quality assurance of in vitro methods could be further reinforced by the principles of 

validation. The term ‘validation’ is used differently in different contexts. All fields of 

science and engineering technically validate methods with regard to the internal performance 

parameters of a method. Formal validation was introduced for the acceptance of regulatory 

test methods to help agencies decide on the implementation of new tools, especially those 

replacing animal experiments. Predictivity, usually in comparison to the traditional (animal) 

test method, is also validated in addition to the internal performance characteristics 

(reliability). Guidelines were primarily developed by three organizations: the Organisation 

for Economic Cooperation and Development (OECD) (OECD, 2005), the European Centre 

for the Validation of Alternative Methods (ECVAM) (Hartung et al., 2004), and the 

Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM). 

Criteria to be addressed in a validation exercise include: test definition (including purpose, 

need, and scientific basis), relevance of the test method, repeatability and reproducibility, 

inter-laboratory transferability, predictive capacity, and applicability domain. Questions arise 

about whether the validation process, as it has been formalized over the last two decades, 

might meet the challenges of emerging methods and technologies (such as omics), especially 

in toxicity testing (Hartung, 2007b; Leist et al., 2012).

Bouhifd et al. Page 4

ALTEX. Author manuscript; available in PMC 2017 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A pragmatic approach would adapt some of the principles and criteria listed above for 

ensuring some degree of quality that could lay the ground for a quality assurance system in 

toxicometabolomics studies. In other words, toxicometabolomics needs quality-controlled 

model systems, and simply adding an omics endpoint does not make a test better.

3 Toxicometabolomics quality assurance

The comprehensive analysis of small molecules and their changes in response to stressors is 

a challenging exercise. The success of a toxicometabolomics study often depends on 

multiple experimental, analytical, and computational steps. A typical workflow used in 

metabolomics studies is outlined in Table 1. This process involves many steps, starting from 

the actual study design, which depends on the adopted metabolomic approach. Indeed, many 

approaches are currently used in metabolomics studies ranging from fingerprinting to non-

targeted profiling to targeted analysis (Robertson et al., 2011). The study design involves the 

selection of the test system (e.g., animal model, in vitro cell culture), the type of the stressor, 

and the route of exposure. The choice of the biological matrix is also important; typical 

matrices analyzed include blood, serum, and urine, as well as intra- and extra-cellular 

extracts. The extraction method has to be specifically developed and optimized for each 

matrix before sample preparation and analysis. Once the metabolite data are generated, they 

are handled in order to prepare and reduce analytical instrument raw data (e.g., MS 

chromatograms) to data matrices for further analysis. This typically involves the execution 

of a series of tasks ranging from low-level processing (background correction, feature 

detection, normalization, alignment, etc.) to higher level processing consisting of various 

tools and methods for interpretation and visualization of the pre-processed data.

In his presentation during the workshop, Dr Donald Robertson stated, “In the past fifteen 
years, I have been involved in approximately 500 metabolomic studies. Of those studies that 
failed, more than 90% of the failures could be attributed to errors in study design, study 
conduct, sample collection, or sample preparation. Relatively few failed due to analytical 
reasons.” Furthermore, the American Society for Mass Spectrometry (ASMS) survey of 

about 600 participants at its 2009 conference (American Society for Mass Spectrometry, 

2009) clearly showed that the analytical element was considered of less concern than the 

interpretation of metabolomics data and its biological significance. We will summarize 

below the main elements of a metabolomics study in toxicology and related quality 

measures.

4 Study design

The suitable design of scientific studies is the first necessary condition to ensure robust and 

trustworthy conclusions. By definition, experimental design is the process of planning data 

gathering in order to meet predefined objectives and answer the research question of interest 

as clearly as possible. Experimental design takes into account specific considerations for the 

experiment type (e.g., treatment vs. control), experimental variables (e.g., dose response, 

time dependence), experiment controls, and acceptance criteria. The number of replicates 

considered in the study is a critical determinant of the quality of the experiment. There is no 

“magic” number relative to the number of replicates needed, since this will depend on the 
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multiple sources of variability in the experiment. The Metabolomics Standards Initiative 

(MSI) (Sumner et al., 2007) suggests a minimum of three to five replicates, with a 

preference of biological replication (i.e., repetitive analyses of different samples obtained 

under the same experimental conditions) over technical replication (repetitive analyses of the 

same sample). It is a good practice, however, to conduct a preliminary pilot study to evaluate 

the data variation under the specific conditions and to perform a power analysis to guide the 

determination of the optimal number of replicates. Traditional power analysis would 

calculate the number of replicates based on the expected effect strength, the significance 

level aimed for, and the variability of the measurement in the model. This is not as easy for 

metabolomics, as effect strengths are typically small, multiple parallel measurements have to 

be accounted for (false discovery rate corrections), and the very different variability for 

different metabolites impair such calculations. Therefore, extensive evaluation of (control) 

variability over time is needed to a) ensure reproducibility and robustness, and therefore 

reliability of the measurements and b) enable the identification of biologically significant 

results. For the latter, statistically significant changes occurring in an experiment can be 

compared to the historical control data and variability of the respective metabolite (van 

Ravenzwaay et al., in press). In addition, the use of quality control (QC) samples is 

recommended and has been increasingly adopted (Dunn et al., 2012). These are usually 

representative of all the samples being analyzed in the study to represent a “mean” of all 

analyzed metabolites (Gika et al., 2007). A QC sample in the context of metabolomics could 

be obtained by pooling all samples in the study or by using additional control groups and 

pooling the samples derived from these control groups. Aliquots of a unique “pooled” QC 

sample, applied for an entire study at regular intervals, can help determine variations of all 

processes involved in terms of data acquisition (e.g., retention time and abundance) and also 

in data pre-processing (e.g., feature extraction). Furthermore, blank samples, which are 

analyte-free and prepared exactly as the test samples, give an idea of the overall levels of 

contamination and carryover. An additional quality measure in the experimental design is 

randomization of the sample analysis sequence. This procedure minimizes the bias 

introduced when preparing and analyzing replicate samples jointly. According to our own 

experience, QC samples account for about 30% and up to 50% of the total number of 

injections in an LC-MS run.

5 Sampling and extraction

Differences in methods to collect, prepare, store, and otherwise handle samples are 

important sources of bias in life sciences in general and have been a major problem in 

biomarker detection as, for example, noted by Teahan et al. (2006), where allegedly 

promising results were sometimes difficult to reproduce and validate. Diverse biological 

systems, such as microorganisms, plants, biofluids or mammalian cells, are studied in 

metabolomics, making it challenging to devise a unique method or guideline for sample 

collection and preparation.

There are rather general good practices and examples, such as those included in the NCI best 

practices for biospecimen resources (National Cancer Institute, 2011). Although the 

guideline is primarily intended for human specimens, it provides technical and operational 

best practices to ensure levels of consistency and standardization. It also identifies a variety 
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of factors that may affect biospecimen quality and thus research results. Recommendations 

include, where possible, the use of validated methods, training of technical staff, inclusion of 

appropriate quality control and reference samples, randomization, and standardized methods 

for documenting. Guidelines for the use of biofluids in proteomics studies (Rai et al., 2005) 

are also applicable to metabolomics. They evaluate a number of pre-analytical variables that 

can potentially impact the outcome. These include, among others, the sample type, the 

collection system, the processing methods, and storage parameters. During the workshop, Dr 

Hennicke Kamp reported that standardization of all steps, from collecting the sample from a 

biological system through sample preparation and metabolite extraction is essential to 

obtaining robust and reliable metabolome data. The large diversity of physico-chemical 

properties of the metabolome poses an additional challenge. Chemical compounds analyzed 

differ in molecular weight, polarity, boiling and melting point, functional groups, etc. 

Moreover, these compounds are present in concentrations that span orders of magnitude 

within the same sample (Maier et al., 2010).

Metabolomics involves, therefore, the analysis of a heterogeneous chemical space and across 

a broad dynamic range, which makes considerations for standardization of protocols 

challenging. An efficient method would allow the adequate recovery of the largest number of 

metabolites from samples while preventing the exclusion of compounds due to their physical 

or chemical properties (Winder et al., 2008). While it is obvious that no unique analytical 

method can fulfill these requirements, consistent quenching, extraction protocols, as well as 

adequate sample storage would limit variability in metabolite extraction and analysis (Zhou 

et al., 2012). Documentation in the form of Standard Operating Procedures (SOPs), 

optimized for the specific metabolomic application, should be detailed enough to allow an 

unambiguous and reproducible execution of the procedure (Bouhifd et al., 2013).

6 Metabolomics data complexity

A fundamental characteristic of metabolomics is the huge diversity of chemicals involved. 

Unlike a genome, which involves only four bases, and the proteome with its twenty amino 

acids, the metabolome consists of at least a few thousand chemicals (Wishart, 2011). The 

various chemical and physical properties of these molecules would require a combination of 

analytical technologies to obtain good coverage. Historically, the analytical tools of choice 

in metabolomics have been NMR and MS. The latter is combined with a chromatographic 

separation technique such as liquid chromatography (LC) or gas chromatography (GC). The 

characteristics, advantages, limitations, and differences between the technologies and 

platforms have been extensively described in several review articles and will not be 

addressed here (Kaddurah-Daouk et al., 2008; Robertson, 2005; Dunn and Ellis, 2005).

Despite the recent technology advances, no single analytical platform is a perfect tool for 

metabolomics, with all having advantages and limitations, although LC-MS now appears to 

be the preferred technology in many studies. Besides the biological variability described 

earlier, metabolomics data can suffer from analytical variability. This includes mainly drifts 

in retention times, altered instrument sensitivity, and – very rarely – drifts in measured mass 

to charge ratio (m/z) values. Although the technologies involved are complex, it is well 

accepted in the community that the analytical process is not the main limitation.
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One of the biggest challenges in metabolomics remains metabolite identification. An 

accurate identification of the chemicals involved in any particular study is necessary to 

derive meaningful biological information. It is now a very common practice to generate 

metabolomic datasets comprising thousands of “features,” but their identification is certainly 

not straightforward. A mass spectrometry measurement typically results in a list of entities 

represented by mass-to-charge (m/z) ratio, retention time (RT), and intensity. These 

parameters might be informative but do not provide a direct chemical annotation of the 

entity in question. One needs first to convert the raw analytical data to metabolites (namely 

chemicals).

The accuracy and confidence in this conversion (identification, in other words) vary widely 

because of the complexity of the process and its dependence on the analytical platform and 

robustness of the methods applied, as well as the databases and resources used (Creek et al., 

2014). Indeed, this process should discriminate not only between metabolites with different 

masses, but also those with the same nominal mass but different molecular formula and 

monoisotopic mass, and also metabolites with the same nominal and monoisotopic masses 

but different chemical structures. In addition, a single metabolite can form multiple different 

ion types (in the case of electrospray ionization, for example) such as sodium and potassium 

adducts, along with the standard protonated form (Dunn et al., 2013). Diverse strategies have 

been adopted with different levels of confidence. These confidence levels were divided into 

four categories by a dedicated working group of the Metabolomics Standards Initiative 

(MSI) and the following definitions were proposed (Sumner et al., 2007):

1. Confidently identified compounds where at least two orthogonal properties (e.g., 

m/z, RT, fragmentation mass spectrum) of the candidate metabolite are verified 

with an authentic reference standard under the same analytical conditions;

2. Putatively annotated compounds where the physicochemical properties are 

compared to chemical library without reference to authentic standards;

3. Putatively characterized compound classes based upon characteristic 

physicochemical properties of a chemical class of compounds (e.g., lipids), or by 

spectral similarity to known compounds of a chemical class, and;

4. Unknown compounds which are unidentified and unclassified metabolites that 

can still be differentiated using spectral data.

Although the exact basis for what constitutes valid metabolite identification could be 

debated, a major contribution of the MSI is the detailed formulation of the reporting needs of 

the identification procedure and its performance. Different strategies could be adopted, but 

metabolites are typically characterized on the basis of accurate mass, retention time, and 

tandem mass spectrometry (MS/MS) data. First, m/z values are searched in metabolite 

databases (peak annotation). When a hit is returned within the expected error of the mass 

spectrometer, the annotation is still putative and sometimes needs manual curation. To 

increase the level of confidence as described above, an authentic reference standard is used, 

and retention time and/or MS/MS data is generated in the same analytical conditions and 

compared to that from the biological sample (Patti et al., 2012). Following this description, 
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two important elements emerge regarding quality assurance – namely, metabolite databases 

and reference standards.

Databases (DBs) are sources of chemical information in the form of web-based or locally 

hosted services, and fulfill many objectives. They are of different types and contain diverse 

information such as metabolic pathway information, compound-specific information, 

spectral information, disease/physiology information, or organism-specific metabolomic 

information (Wishart et al., 2009). Although these resources are increasingly helpful, some 

limitations still exist. DBs have different coverages, and although they might be partly 

complementary, missing metabolite identifiers and ambiguous names for metabolites affect 

the comparison (Stobbe et al., 2011). Considerable manual intervention and curation is 

required to unify the DBs, prompting a need for standardization of the metabolite names and 

identifiers. This effort is challenging since it needs not only expert knowledge but also some 

degree of automation.

7 Metabolomics in a systems biology context

Systems biology has been defined as the “study of the mechanisms underlying complex 
biological processes as integrated systems of many diverse, interacting components. It 
involves (1) a collection of large sets of experimental data (by high-throughput technologies 
and/or by mining the literature of molecular biology and biochemistry); (2) proposal of 
mathematical models that might account for at least some significant aspects of this data set; 
(3) accurate computer solution of the mathematical equations to obtain numerical 
predictions; and (4) assessment of the quality of the model by comparing numerical 
simulations with the experimental data” (Ferrario et al., 2014). Metabolomics is a key tool 

for producing such large datasets and lends itself especially to the characterization of 

phenotypic changes in a systems toxicology approach (Hartung et al., 2012). The major 

advantage of toxicology compared to other disciplines is that we have the “disease agent” at 

hand, i.e., we can experimentally induce and monitor pathogenesis and are not restricted to 

comparison of healthy versus diseased tissue and biofluids. The mathematical models of 

metabolism, however, will have to reflect the dynamics of the networked systems and will 

likely depend on the measurement of metabolite fluxes. This topic will open up further 

aspects of quality assurance beyond what was discussed in this workshop. The Human 

Toxome project is pioneering some of this (Bouhifd et al., 2015) and not surprisingly 

prompted the need for discussion about quality assurance via this workshop.

8 Future directions: Need for collaborative activities

The discussions of this workshop showed that a combination of expert consensus – for 

example, reporting standards and good practices – and experimental assessments (e.g., ring 

trials between laboratories) is needed. The importance of both analytical and biological 

validation was emphasized. Validation in a broad sense demonstrates suitability for an 

intended purpose or “fitness for purpose.” To simplify, we may distinguish two main 

components: reliability (robustness/quality/confidence) and relevance (usefulness/biological 

utility). These two elements, if satisfied, will ensure reproducible and meaningful research. 
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Such discussions took place for transcriptomics a decade ago (for example, the first 

transatlantic consensus workshop on validation of transcriptomics (Corvi et al., 2006)).

The present workshop was prompted by the ongoing Human Toxome project (Bouhifd et al., 

2013, 2014). This project aims for the identification of pathways of toxicity (Kleensang et 

al., 2014) by using a multi-omics approach (Hartung and McBride, 2011). For the purpose 

of this project, it will be necessary to assess especially whether intracellular metabolomics, 

i.e., the metabolomic analyses of cell extracts, are sufficiently robust to allow reliable and 

consistent identification of specific changes in newly produced or altered metabolites in 

response to a known toxicant stimulus. This is a prerequisite for unambiguous identification 

of the underlying molecular mechanisms or pathways of toxicity. The overall strategy would 

consist of generating standardized biological samples and assessing within-run, within-lab, 

and between-lab reproducibility of metabolomics analysis. Unfortunately, such quality 

assurance studies lack appeal for most funding bodies, but they have the potential not only to 

move forward a given project but to further the proper use of an entire technology.
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Tab. 1

Typical metabolomics workflow

Study design Problem formulation
Experimental condition definition
Toxicant treatment (time, route, formulation, etc.)

Sample preparation Harvesting/sampling/preparing/storage
Metabolite extraction

Data generation Measurement (e.g., LC-MS)
Data processing
Feature selection

Confirmation Metabolite identification
Metabolite quantification

Conclusions (biological relevance) Modeling
Data interpretation
Hypothesis generation and/or verification
Reporting
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