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Summary

DNA methylation levels of certain CpG sites are thought to reflect the pace of human aging. Here, 

we developed a robust predictor of mouse biological age based on 90 CpG sites derived from 

partial blood DNA methylation profiles. The resulting clock correctly determines the age of mouse 

cohorts, detects the longevity effects of calorie restriction and gene knockouts, and reports 

rejuvenation of fibroblast-derived iPSCs. The data show that mammalian DNA methylomes are 

characterized by CpG sites that may represent the organism’s biological age. They are scattered 

across the genome, are distinct in human and mouse, and their methylation gradually changes with 

age. The clock derived from these sites represents a biomarker of aging and can be used to 

determine the biological age of organisms and evaluate interventions that alter the rate of aging.
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Introduction

Organisms age at different rates, which are influenced by genotype, environment, and 

stochastic processes. Dietary, pharmacological and genetic interventions offer an opportunity 

to adjust these rates and examine, model, and ultimately regulate the process of aging in 

laboratory animals and, potentially, in humans. However, identifying such interventions is 

currently both time-consuming and cost-prohibitive. An accurate estimator of the biological 

age of organisms subject to an intervention, as compared to their chronological age, can 

resolve this problem and find many applications in biomedical science. Although no reliable 

molecular methods are currently available that could determine the biological age of model 

organisms, estimates of aging rates were recently developed for humans based on DNA 

methylation (DNAm) profiles (Hannum et al., 2013; Horvath, 2013; Weidner et al., 2014).

DNAm has pivotal roles in regulation of transcriptional programs and systematically varies 

as a function of age (Day et al., 2013; Jones, 2012; Jones et al., 2015; Maegawa et al., 2010; 

Schultz et al., 2015; Smith and Meissner, 2013; Zampieri et al., 2015). These changes start 

during embryogenesis and continue throughout the lifespan, affecting chromatin states, 

lineage specialization, gene expression, genome stability and self-renewal of stem cells 

(Beerman and Rossi, 2014; Benayoun et al., 2015; Consortium et al., 2015; Guo et al., 2014; 

Stelzer et al., 2015; Sun et al., 2014; Taiwo et al., 2013). The human DNAm clock model 

can predict certain health outcomes, such as increased future mortality (Chen et al., 2016; 

Christiansen et al., 2016; Horvath et al., 2015a; Marioni et al., 2015). In addition, 

accelerated DNAm aging was observed in patients with HIV infection and Down syndrome, 

and slower DNAm changes were reported for cerebellum aging (Horvath and Levine, 2015; 

Horvath et al., 2015b, 2015c). In this work, we sought to develop and employ a DNAm 

clock in the house mouse (Mus musculus), the main biological model of human aging and 

disease. The clock based on mouse blood DNA methylome was prepared and applied to test 

longevity interventions.
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Results and Discussion

To assess global changes in the DNA methylome, we subjected whole blood DNA of 141 

male C57BL/6 mice (16 age groups, ranging from 3- to 35-month-old animals) to a modified 

version of reduced representation bisulfite sequencing (RRBS) (Fig. 1A, Table 1). Among 

3.9–13.0 million CpG sites detected in individual samples (Tables S1 and S2, related to 

Table 1), greater than 1.9 million sites were present in all samples (Fig. S1A, related to Fig. 

1A and Table 1). These sites represented more than 8% of the mouse DNA methylome and 

mapped to 99% of UCSC RefGenes, 88% annotated CpG islands, 55% CpG island shores, 

41% promoters, and 10% predicted enhancers (Fig. S1B). Overall, this RRBS procedure 

resulted in significant coverage of the mouse blood DNA methylome (Fig. S1A–C) (Boyle et 

al., 2012) and allowed us to assess its changes as a function of age.

To characterize the resulting DNA methylome, we extracted the leading age-dependent 

DNAm signature using non-negative matrix factorization and estimated the behavior of 

average DNAm with age. This revealed a global pattern of hypomethylation slowly 

developing with age, akin to that observed in humans (Hannum et al., 2013; Horvath, 2013). 

Following development, the leading DNAm signature gradually decreased (R2 = 0.545, 

bisquare robust linear fit) with age changing by ~5% (p = 1.1 · 10−4, two-sample t-test) 

between 4 and 35 months of age (Fig. 1B). The weights of different CpG sites in the leading 

signature suggested that the pattern of hypomethylation is determined by the dynamics of 

methylation levels on the whole DNA methylome.

To examine feasibility of the resulting partial DNA methylomes for describing the age of 

mice, we randomly divided 141 C57BL/6 mice into two subsets of 70 and 71 animals 

(Subsets 1 and 2). DNAm clocks were then constructed separately for Subsets 1 and 2 using 

elastic net regression with 10-fold cross-validation. The clock built using Subset 1 was then 

validated on the DNA methylation data from Subset 2 (Fig. 1C) and vice versa (Fig. 1D), 

revealing high correspondence between the methylation scores calculated using both 

Subsets. Precision of the clocks built using Subsets 1/2 and tested on Subsets 2/1 generally 

decreased with age (Fig. S2A related to Fig. 1C,D): in early life (<10 months) the 

chronological age corresponded to the DNA methylation age with precision 1–3 months, 

whereas the precision dropped to 5–7 months for the oldest mice. However, the relative 

precision of the clock, defined as the ratio of the clock error to the chronological age 

somewhat increased (Fig. S2B, related to Fig. 1C,D).

The Subset 1 clock was determined by the weighted average methylation on 61 different 

CpG sites, and the Subset 2 clock by methylation on 77 CpG sites (Fig. 1E). Interestingly, 

18 sites were common to both clocks (Fig. 1F), and the values of their contributing weights 

were close. A relatively small overlap between the clocks built using Subsets 1 and 2 cannot 

be explained by a poor similarity of samples (Fig. S1D related to Fig. 1C,D). Instead, we 

suggest this is due to the fact that DNA methylation levels of many CpG sites are correlated 

with each other, and elastic net regularization picks relatively small subsets of these 

correlated sites (Fig. S1E related to Fig. 1C,D). We also examined the previously built 

human DNA methylation clocks (Hannum et al., 2013; Horvath, 2013) and observed several 

common CpG sites (3 sites for the 89 site clock; 2 for the 71 site clock), even though these 
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clocks were built using different tissues. The data thus show that mouse and likely other 

mammalian genomes are characterized by certain CpG sites that may represent the age of 

organisms.

To develop a more precise mouse DNA methylation clock, we constructed a class of elastic 

net regression clocks based on the whole dataset representing 141 C57BL/6 mice. Among 

the clocks corresponding to different values of regularization parameter, we chose the model 

(further designated as mDNAm clock) that minimized both cross-validation error and the 

chance of overfitting (Fig. 2A). We further recalculated the DNAm score into the 

methylation age, AgeMet (Fig. 2B). On the training set, the estimated AgeMet of C57BL/6 

mice coincided with the chronological age of the samples (R2 = 0.9971, p = 10−21) with the 

mean square difference between the mDNAm age and the chronological age of 16 days. To 

determine an out-of-sample lower bound estimate on the precision of the clock, we again 

used Subsets 1 and 2 (Fig. 1C,D). This estimation resulted in the lower out-of-sample bound 

on the precision of the clock R2 = 0.9008. High accuracy of the model may be attributed to 

the use of a single mouse strain and identical environmental conditions, although these 

factors may also introduce a source of bias. There is also a potential for confounding as a 

result of changes of blood cell composition as a function of age (Marioni et al., 2015).

The mDNAm clock was defined by a weighted average DNA methylation over 90 CpG sites 

(Fig. 2C, Fig. S1F, related to Fig. 2C). The methylation state of these sites changed 

gradually, decelerating with age, with both hypomethylated and hypermethylated sites 

approaching more intermediate DNA methylation values (Fig. 2C, S1F). The sites 

contributed unequally to the mDNAm clock (Table S3 related to Fig. 2C) and formed several 

distinct clusters (~30) associated with genes Hsf4, Kcns2, Map10, Tns2, Wnt3a and Zscan2. 

17 out of 18 CpG sites common to Subset 1 and 2 clocks were also present among 90 CpG 

sites of the mDNAm clock (Fig. 2D). Most of these 17 CpG sites were located within introns 

of Ciita, Cd200r4, Rasgef1c, Wnt3a, and Zscan2, and several were clustered. CpG sites in 

introns of particular genes often play a role of their secondary enhancers (Blattler et al., 

2014), and we note that several identified genes are involved in development, differentiation 

and tissue morphogenesis, consistent with a program-like behavior (Gladyshev, 2013). The 

CpG sites contributing to the mDNAm clock were distributed across the chromosomes (Fig. 

2E) and did not match the sites observed in human clocks (Hannum et al., 2013; Horvath, 

2013). In addition, the pace of human and mouse clocks differed considerably, reflecting 

difference in the rates of aging in humans and mice.

We further tested if the mDNAm clock can detect the effects of interventions that are known 

to increase lifespan and delay age-dependent phenotypic changes, and thus plausibly serve 

as an index of the biological age of mice rather than their chronological age. Estimation of 

Agemet for calorie restricted C57BL/6 males (4 age groups, dietary intervention started at 14 

weeks for all mice, Table 1) revealed on average 20% lower AgeMet than their chronological 

age (Fig. 3A), consistent with the effect of calorie restriction on lifespan in this strain 

(Turturro et al., 1999). The lower biological age of calorie restricted mice was highly 

significant in the tested age groups (Fig. 3A, one-sided two-sample t-test for ΔAgeMet in the 

combined age groups, p ≈ 7.17 · 10−12); however, the effect was less pronounced in younger 

animals (10 month-old mice) and was not observed in a separate experiment where 4 month-
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old mice were subjected to calorie restriction for 2 months (Fig. S3A related to Fig. 3A, p = 

0.601 for the t-test of the control and calorie restricted group DNA methylation ages 

belonging to different distributions). This observation is congruent with the finding that 

severe weight loss in humans following bariatric surgery was not accompanied by a 

reduction of DNAm age (Horvath et al., 2014)). Thus, the pattern of DNA methylation 

indicative of the difference between biological and chronological age appears to develop 

gradually, suggesting a cumulative function.

We also examined genetic interventions of longevity. Full-body growth hormone receptor 

knockout (GHR KO) (Coschigano et al., 2003) showed a robust reduction in AgeMet as 

compared to control (one-sided two-sample t-test, p = 5.6 · 10−5, Fig. 3B). Application of 

the mDNAm clock to Snell dwarf mice and their respective wild-type control ((DW/J × 

C3H/HEJ)/F2) showed on average 50% lower age (one-sided two-sample t-test p = 0.0243) 

of Snell dwarf mice (Fig. 3C), consistent with 42% mean survival extension in this longevity 

model (Flurkey et al., 2001). Although the clock was developed using samples of male mice, 

we found that it also correctly predicted the age of female mice (Fig. S3B–E related to Fig. 

3).

We further analyzed additional genetic backgrounds. The difference between AgeMet of 

B6D2F1 mice and their chronological age was not statistically significant (one-sided two-

sample t-test, p = 0.0510, Fig. 3D). The AgeMet of calorie restricted B6D2F1 mice was 20% 

lower than that of the corresponding ad libitum mice (one-sided two-sample t-test, p = 1.0 · 

10−5, Fig. 3E). We also analyzed the AgeMet of 20- and 35-day-old C57BL/6 mice, which 

were the ages not covered by the clock, and the model correctly estimated the age of these 

mice (Fig. 3A).

Finally, we collected kidney and lung fibroblasts from 10-week-old C57BL/6 mice, 

maintained/aged them in culture and prepared 6 independent iPSC lines from them (Fig. S4 

related to STAR Methods, "Primary fibroblasts and generation of mouse iPSCs", 

"Characterization of mouse iPSCs"). The calculated AgeMet of kidney and lung fibroblasts 

was 295 ± 3 days and 323 ± 3 days, respectively, whereas all iPSCs were less than 1 month 

old (kidney: 14 ± 0.3 days; lung: 22 ± 1.2 days) (Fig. 3F). Although estimation of the exact 

age of fibroblasts and iPSCs may be influenced by the fact that the clock was developed 

based on mouse blood, the data shows that the iPSC procedure modifies mDNAm to 

resemble that seen in younger blood. A similar effect was previously observed in human 

studies (Horvath, 2013).

We think that identification of a relatively small set of CpG sites forming the clock is 

possible because of a very large number of observables (CpG sites) produced by the RRBS 

procedure and then subjected to elastic net regression, which extracts a combination of sites 

responsible for a given age-dependent pattern of behavior. Thus, presumably, accurate 

molecular clocks measuring biological age of a sample may also be developed based on 

other high-throughput approaches, such as metabolite profiling and RNAseq. The structure 

of the mDNAm clock may also change when the clock is developed across mouse tissues as 

was previously observed for the DNA methylation clocks in humans (Hannum et al., 2013; 

Horvath, 2013). We also suggest that researchers utilizing the clock use experimental and 
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control groups for determining the difference between chronological and biological age as 

the RRBS procedure is not fully standardized. For example, a discrepancy of ~2 months 

between the chronological and estimated biological age of the GHR KO and Snell controls 

(Fig. 3B,C) can in principle be attributed to a lower precision on the methylation clock out-

of-sample and/or a difference in genetic background. It should be expected that whole 

genome bisulfate sequencing data may further add to the power and resolution of the DNA 

methylation clocks due to a further increase in the number of age-dependent observables.

To conclude, we constructed a robust epigenetic clock based on the age-dependent behavior 

of blood DNA methylomes of C57BL/6 mice. The clock can estimate the age of cohorts of 

C57BL/6 mice, characterize the change in biological age in other mouse models, and 

evaluate the effects of genetic and pharmacological/dietary interventions on average 

lifespan. More broadly, we found that there are certain CpG sites in mammals, which are 

scattered across the genome, differ across species, and can form the biological clock. These 

sites can differentiate chronological and biological ages of organisms in a cumulative 

manner and represent a biomarker of aging. It may be expected that a related set of CpG 

sites may form a multi-tissue clock, similar to what was observed in humans (Horvath, 

2013). We suggest that the mDNAm clock will find many applications in biomedical 

science, especially in areas where mouse models may be associated with changes in 

healthspan and lifespan.

STAR Methods

Contact for Reagent and Resource Sharing

Further information and requests for reagents should be directed to and will be fulfilled by 

the Lead Contact, Vadim Gladyshev (vgladyshev@rics.bwh.harvard.edu).

Method details

Mouse models—All mice used in this study, with the exception of Snell dwarf, GHR KO 

models and 3–5-week-old C57BL/6 mice, were obtained from the NIA Age Rodent Colony 

(Table 1). The oldest mice obtained from NIA were 32 months; to obtain mice 34 and 35 

months of age, 32-month old mice were aged at Brigham & Women's Hospital for 2 and 3 

months, respectively. Three of the six 35-month-old samples were from a different facility 

and denoted with an “R” (Table S1 related to Table 1). With the exception of mice at the 34 

and 35 month time points, blood from all mice used for the clock was collected within 2 

weeks of arrival from NIA. Snell dwarf and GHR KO models and their controls were housed 

at the University of Michigan. The 3–5-week-old C57BL/6 mice were bred at Brigham and 

Women's Hospital (BWH), Harvard Medical School, from parents obtained from NIA. 

Calorie restriction started at 14 weeks of age and continued until the time, when the animals 

were sacrificed. For all other animals, food was provided ad libitum. Blood was isolated 

from the inferior vena cavae, with the exception of 3–5-week-old mice and Snell dwarf and 

GHR KO mice (and their corresponding controls), in which blood was isolated directly from 

heart. The blood was immediately mixed with EDTA, and 100 µl was placed in 400 µl of 

lysis buffer (Zymo). In the case of Snell dwarf and GHR KO mice, including the 
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corresponding controls, 100 µl EDTA mixed blood was placed in 100 µl of DNA/RNA 

Shield™ (2× concentrate) (Zymo).

Genomic DNA purification—DNA from samples in lysis buffer was purified by using 

Quick-gDNA™ Blood MiniPrep kit (Zymo) using manufacturer’s instructions. DNA from 

samples in DNA/RNA 2× concentrate was purified by using Quick-DNA™ Universal kit 

(Zymo). DNA was eluted from columns in 100 µl of 10 mM Tris-HCl buffer, pH 8.0. Then, 

2 µl of RNase A (Life Technologies) was added to each sample. Samples were incubated at 

room temperature for 2 min, and DNA was prepared by using Genomic DNA Clean & 

Concentrator™-10 (Zymo). DNA was eluted in 25 µl of TE buffer (10 mM Tris-HCl, 0.1 

mM EDTA, pH 8.0) and quantified using a Qubit 2.0 (Life Technologies).

RRBS—Reduced Representation Bisulfite Sequencing (RRBS) was performed as 

previously reported with few modifications (Boyle et al., 2012; Gu et al., 2011). MspI 

digestions were set up by adding 100 ng of DNA sample to 1 µl of MspI (20 U/µl) (New 

England Biolabs), 3 µl of 10× NEB buffer 2 (New England Biolabs), and nuclease-free water 

to obtain a reaction volume of 30 µl. Reactions were incubated at 37°C for 17 h. Then, 1 µl 

of Klenow fragment (3’–5’ exo-) (New England Biolabs) and 1 µl of dNTP mixture 

containing 10 mM dATP, 1 mM dCTP, and 1 mM dGTP were added to each sample for 

DNA end repair and A-tailing. The reactions were performed in a thermocycler without a 

heated lid. The program was set to 30°C for 20 min, 37°C for 20 min and 65°C for 20 min. 

Subsequently, ligation reactions were set up by adding 4.8 µl of T4 Ligation buffer, 1.6 µl of 

T4 DNA Ligase (New England Biolabs), and 3.2 of µl TruSeq Nano DNA LT adapter from 

Illumina that was diluted 1:20, and 6.4 µl of nuclease-free water to the DNA samples. We 

used 6–7 different indexed adaptors per library. The reactions were incubated at 16°C for 16 

h.

After ligation, 1.2× SPRI bead clean-up was performed on the samples by adding 52 µl of 

water and 120 µl of Agencourt AMPure XP magnetic beads (Beckman Coulter). The 

mixture was pipetted 10 times and incubated at room temperature for 5 min. The samples 

were centrifuged and placed in 96-side magnet for 10 min. All liquid was removed without 

disturbing the bead pellets. Three washes were performed by adding 200 µl 80% ethanol to 

each sample still in the magnet, letting the samples sit at room temperature for 30 sec, and 

removing ethanol without disturbing the beads. After the final wash, beads were dried at 

room temperature for 15–20 min. The samples were removed from the magnet and 40 µl of 

10 mM Tris-HCl buffer was added to elute the DNA. Beads were then re-suspended and 

samples were placed on the magnet for 10 min incubation at room temperature. Finally, the 

supernatant containing the eluted DNA was removed from the beads without disturbing 

them.

The purified DNA was quantified by qPCR using the Kapa Complete Universal Kit (KAPA 

Biosystems) following the manufacturer's instructions. Samples were pooled in libraries of 6 

to 7. Subsequently, the libraries underwent bisulfite conversion using the EZ DNA 

Methylation-Gold™ Kit (Zymo) and eluted in 40 µl of buffer provided by the kit.
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The bisulfite-converted samples were amplified by setting up 200 µl reactions consisting of 

30 µl of library sample, 4 µl of Pfu Turbo Cx Hotstart DNA Polymerase, 2.5 U/µl (Agilent), 

20 µl of 10× buffer (Agilent), 2 µl of dNTP mix (25 mM each, 100 mM total), 32 µl of 

Illumina TruSeq primer mix (2.5 µM each, 5.0 µM total), and 112 µl of nuclease-free water. 

The 200 µl reactions were then divided into aliquots of 50 µl and ran on a thermocycler as 

follows: Step 1: 95°C for 2 min; Step 2: for the least amount of cycles required for final 

amplification at 95°C for 30 sec, 65°C for 30 sec, and 72°C for 60 sec; Step 3: 72° for 7 

min; Step 4: hold at 4°C. To determine the least amount of cycles needed, 10 µl test 

reactions (1 µl of library sample, 0.2 µl of Pfu Turbo Cx Hotstart DNA Polymerase, 2.5 U/µl 

(Agilent), 1 µl of 10× buffer (Agilent), 0.1 µl of dNTP mix (25 mM each, 100 mM total), 1.6 

µl of Illumina TruSeq primer mix (2.5 µM each, 5.0 µM total), and 6.1 of µl nuclease-free 

water) were performed using 9, 11, and 13 cycles. After the final PCR amplification, each 

individual sample was pooled into a 1.5 ml tube. A 1.2× SPRI bead clean-up was performed 

on the samples by adding 240 µl of Agencourt AMPure XP magnetic beads (Beckman 

Coulter, Inc.). The mixture was pipetted 10 times and incubated at room temperature for 5 

min. Then, the samples were centrifuged and placed on a magnetic rack for 10 min. All 

liquid was removed without disturbing the bead pellets. Two washes were performed by 

adding 1 ml of 80% ethanol still in the magnet, letting the sample sit at room temperature for 

30 sec, and removing ethanol from the sample without disturbing the beads. After the final 

wash, beads were dried at room temperature for 15–20 min. The samples were removed 

from the magnet and 40 µl of 10mM Tris-HCl buffer was added to each sample to elute the 

DNA. Beads were re-suspended and samples were placed on the magnet for 10 min at room 

temperature. Finally, the supernatant containing the eluted DNA was removed from the 

beads without disturbing them. Libraries were sequenced on the Illumina HiSeq 2500 

platform using 75 paired-end sequencing with v4 reagents. Since RRBS libraries generate 

low complexity libraries, the samples were spiked with ~10% phiX.

Equipment required for the construction of RRBS libraries included a qPCR machine, 

thermal cycler, NanoDrop spectrophotometer or Qubit fluorimeter with associated reagents, 

a DynaMag-2 magnet (Life Technologies), Bioanalyzer with associated reagents or 

TapeStation with High Sensitivity D1000 ScreenTapes (Agilent Technologies), and a 

DyanMag 96-side magnet (Life Technologies).

Primary fibroblasts and generation of mouse iPSCs—Primary fibroblasts were 

prepared from lungs and kidneys of 10-week-old C57BL/6 male mice. Cells were 

maintained in DMEM supplemented with 10% fetal bovine serum (FBS), 1% non-essential 

amino acids, 2 mM glutamine and antibiotics. Lentiviral vectors 4F2A and M2rtTA 

(Addgene plasmids #20321 and #20342) were used to reprogram fibroblasts (Carey et al., 

2009). 48 h after transfection of HEK293T cells, supernatants containing viral particles were 

harvested, filtered, and directly used for transduction of fibroblasts. Infected fibroblasts were 

seeded onto a feeder layer in ESC medium in the presence of 2 mg/ml doxycycline (DMEM 

supplemented with 15% FBS, 2 × 106 units leukemia inhibitory factor, 0.1 mM β-

mercaptoethanol, 1% nonessential amino acids, 2 mM glutamine and antibiotics (Buganim 

et al., 2014). On day 10, iPSC colonies were picked, dissociated by trypsin digestion, and 

plated into new culture dishes. These iPSCs were subcultured every 2–3 days. All cells were 
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maintained in a humidified incubator at 37°C and 5% CO2. Testing for mycoplasma was 

routinely performed.

Characterization of mouse iPSCs—Alkaline phosphatase staining was performed 

using the Alkaline Phosphatase Staining Kit (Stemgent) according to manufacturer’s 

instructions. For fluorescence immunocytochemistry, iPSCs were cultured on mitotically 

inactivated MEFs for 2–3 days and fixed using PBS containing 4% PFA (Sigma) for 15 min 

at room temperature. After rinsing with PBS, fixed cells were blocked and permeabilised for 

1 h in PBS containing 10% (v/v) goat serum (Sigma) in 0.1% Triton X-100-PBS. Primary 

antibodies were as follows: OCT4 (Santa Cruz Biotech), SOX2 (Millipore), NANOG 

(Millipore), and SSEA-1 (Santa Cruz Biotech), which were diluted 1:100 in blocking 

solution. Fixed cells were incubated with the primary antibody solution overnight at 4°C. 

After washing out the primary antibody solution, fixed cells were incubated with secondary 

antibodies (labeled with Alexa-488, 1:200, Jackson ImmunoResearch) for 1 h at room 

temperature. Nuclei were counterstained using 1 µg/ml Hoechst 33342 (Life Technologies). 

All fluorescence imaging was conducted using an LSM 700 confocal microscope (Zeiss).

Generation of embryoid bodies and analysis—Colonies growing on MEFs were 

detached using 0.05% trypsin and grown as a suspension culture on low adherent plates 

using ESC medium without LIF. After 1 week of suspension growth, cells were transferred 

to 12- or 24-well plates coated with 0.1% gelatin and grown in DMEM supplemented with 

20% FBS. Embryoid bodies were grown for 1–2 weeks prior to fixation and 

immunofluorescence staining. Cultures were fixed and stained as described above using the 

following antibodies: AFP (1:200, Santa Cruz Biotech), GATA4 (1:200, Santa Cruz 

Biotech), α-actinin (1:200, Sigma), GFAP (1:500, Dako), and TUJ-1(1:500, Covance).

Quantification and Statistical Analysis

Analysis of sequence reads—Mouse genome assembly GRCm38.p2 and its annotation 

were downloaded from NCBI (ftp.ncbi.nih.gov). Locations of CpG islands for mm10 

(Genome Reference Consortium Mouse Build 38) were obtained from UCSC (http://

hgdownload.soe.ucsc.edu, released on 07-Mar-2012). CpG island shores were defined as 

regions 2 kp upstream and downstream of islands. Ensemble annotated features (release 82, 

ftp.ensemble.org) were utilized for the purpose of identification of promoters. Location of 

enhancers was based on a list of previously predicted enhancers (Yue et al., 2014). The 

quality of high throughput sequence libraries was verified using “FastQC v.0.10.1” package 

(www.bioinformatics.babraham.ac.uk/projects/fastqc/). Adapter removal and quality 

trimming were performed using Trim Galore! v.0.4.0. The TrimGalore tool 

(www.bioinformatics.babraham.ac.uk/projects/trim_galore/) was used with settings 

optimized for RRBS. Methylation sites were detected using Bismark v.0.14.5 according to 

the program’s manual. During post-processing, the identified methylation sites present in 

samples were extracted using R procedures and custom Perl scripts and used for further 

analyses.

Estimating the leading methylation signature and its age-dependent pattern—
The leading methylation signature MSctotal was estimated by performing the dimensionality 
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reduction (Antoulas and Sorensen, 2001) of the whole blood partial DNA methylomes of 

141 C57BL/6 mice as follows:

• all DNA methylomes/samples were combined into a single (N × M) dataset X, 

where N is the number of samples and M is the number of CpG sites, covered in 

each single observation (≈1.9M), keeping the rows of the matrix X 
chronologically ordered,

• the non-negative matrix factorization of the dataset X was performed:

(1)

(Applying non-negative matrix factorization to DNA methylomes as observables of interest 

(methylation levels) are always manifestly non-negative, and the methylation signatures 

should encode this.)

• the dimensionality reduction of the dataset X was performed, the result of the 

procedure approximating X by a rank 1 matrix

(2)

(The "low-rank" approximation above is valid in the sense of ratio of the Frobenius norms of 

the matrices X and X(red) being of the order 1. Namely, for the dataset of 141 DNA 

methylomes of C57BL/6 mice it was found that , where ‖X‖ denotes 

the Frobenius norm of a matrix X.)

• the age-dependent methylation signature MSctotal was defined as

(3)

• the weights, which different CpG sites contribute to the leading age-dependent 

signature, were defined according to the prescription

(4)

We found a very large number of sites contributing to the leading age-dependent signature 

represented in Figure 1B. While no sites had weights larger than 1.4 · 10−3, ~194,000 CpG 

sites had weights larger than 1.3 · 10−3, ~450,000 CpG sites weights larger than 1.2 · 10−3, 

and ~570,000 CpG sites weights larger than 1.0 · 10−3, confirming that the age-related 

hypomethylation pattern is a characteristics of the mouse DNA methylome as a whole. The 

non-negative matrix factorization was performed in MATLAB using nnmf command.

Petkovich et al. Page 10

Cell Metab. Author manuscript; available in PMC 2018 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To avoid possible confusion, it has to be noted that the procedure described here is different 

from the principal component analysis (PCA) in an important respect: the first leading 

NNMF component of the data does not encode the variance of the data and instead roughly 

corresponds to the mean of the data. The mean of the data was not subtracted before 

performing non-negative matrix factorization of the data; the latter was performed to check 

whether a good low-rank approximation of the data matrix is possible and to find such an 

approximation.

Controlling for batch effect—In order to minimize the possible batch effect on the 

behavior of age-dependent methylation signatures, all samples used to construct the 

mDNAm clock (144 C57Bl/6 males) were divided into 5 groups (sequenced by individual 

flow cells, Table S2 related to Table 1), with each group including samples from mice of 

different ages - from 3 to 36 months. Each flow cell had 8 sequencing lanes (columns in 

Table S6), and all sequencing lanes in any of the flow cells had samples representing 

different age groups. Other considered confounding variables were the adapter numbers and 

library numbers (Table S2). The values of other confounding variables (such as a researcher 

preparing samples) were the same for all samples used to build the clock and could not 

contribute to a possible batch effect. The adapter numbers were uncorrelated with the age 

group (correlation coefficient 0.0398, p = 0.6394) and accounting for the corresponding 

confounding variable did not contribute to the clock structure. By construction, library 

numbers had a high correlation with the flow cell number (correlation coefficient 0.9405, p 
= 10−67) and thus together were reduced to a single independent confounding variable. 

Although samples of different ages were randomized, there was ~30% redundant anti-

correlation between the age-group and the flow cell number, so the possibility of the batch 

effect due to this correlation was studied further, and its significance was estimated as 

follows.

First, the PCA analysis of the data matrix Xij was performed. It was found that the leading 

PCA component (PCA1) explains about 6% of the total variance in the data, the second one 

(PCA2) contributes slightly more than 5% to the total variance, the 3rd - about 3%, etc. (Fig. 

S2C, related to Fig. 1B). The contribution of the first PCA component was then subtracted 

from the data, and the age-dependent behavior of the MSctotal score constructed using the 

remaining part of the data was found to be unchanged (Fig. S2D, related to Fig. 1B).

Second, the batch effect analysis analogous to the one described in (Johnson et al., 2007) 

was performed. Namely, the linear model establishing the correlation between DNA 

methylation data, the batch (flow cell) number and the age was constructed, assuming both 

additive batch contribution and the dependence of the error variance on the batch number. 

Again, it was found that the batch effect in the obtained data is negligible (Fig. S2E related 

to Fig. 1B).

Finally, a linear mixed-effects model (Age = β · M + Z · b + ε, where ε is the observation 

error vector) was constructed with methylation data as the fixed-effects variables M and flow 

cell numbers, adapter numbers and library numbers as random-effects (confounding) 

variables Z. The vector of weights β was then compared with a similar vector βbare 

constructed using a liner model Age = βbare · M + ε not taking into account the effect of 
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confounding variables. It was found that the vectors β and βbare correlated perfectly with 

each other (correlation coefficient 0.999, ~ 10−97, Fig. S2F).

Constructing the elastic net regression clock and estimating the methylation 
age of samples—The elastic net regression clock describing a systematic age-dependent 

change in whole blood partial DNA methylomes of C57BL/6 males was defined as a vector 

w of weights of CpG sites contributing to the clock. The clock DNAm score at the 

chronological age of the sample t was then given by

(5)

where Mi(Age) is the DNAm level on a CpG site i contributing to the clock, estimated at the 

chronological age Age.

The vector w characterizing the clock was constructed as follows.

1. The m = 141 DNA methylome samples were combined into a single N × M 
matrix X, where the index M corresponds to the total number (≈ 1.9 M) of CpG 

sites of the overlap between different samples.

2. Numerical minimization of the target function

(where N is the number of observations and n is the number of predictors) with 

different values of the Tikhonov regularization parameter λ was then performed 

with 20-fold cross-validation of the identified minimum. As usual, an k-fold 

cross-validation represented a random separation of the original dataset into k 
subsets, with k − 1 subsets used to train the clock and the remaining subset to 

validate it; the procedure was then repeated k times, the results of elastic net 

regression were averaged out over k repeats, and the deviation error D (cross-

validation deviance) was estimated (Fig. 2A).

3. The cross-validation deviance (as well as the mean square error in its estimation) 

was evaluated for every scanned value of λ, and the value of λ = λmin(D) 

corresponding to the minimum of cross-validation deviance was identified, Fig. 

2A.

4. To minimize the possibility of overfitting without much loss of predictability the 

value of λ = λ1σ = 33.1269 corresponding to a 1σ deviation from λ = λmin(D) 

was chosen. The age estimation by the clock was performed as follows. Behavior 

of the DNAm score on the chronological age was approximated (R2 = 0.9958) by 

the power law
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(6)

where a = 0.1666 ± 0.1024, b = 0.4185 ± 0.0767 and c = −1.712 ± 0.3010. The 

constants a, b, c were found by performing the mean square regression of the 

DNAm scores of the actual samples calculated using the Eq. (5) to the power law 

(6) (a non-linear least squares fit was performed using trust-region-reflective 

algorithm employed in Matlab).

The AgeMet of the samples was then calculated by inverting the functional dependence (6) as

(7)

where Δ(MSc) is the estimation error for the DNA methylation score.

It was found that the methylation clock corresponding to the minimum deviance is 

determined by methylation levels on 108 CpG sites (Fig. 2A), while the more robust (subject 

to lesser overfitting) clock corresponding to the choice λ = λ1σ is determined by 

methylation levels on 90 CpG sites homogeneously distributed across the genome (Fig. 2E). 

The elastic regression clock was constructed in MATLAB using the command lassoglm 

(MethylationLevels, ChronologicalAge, 'poisson', 'CV', 20, 'Alpha', 0.5), where the third 

argument implied a Poisson distribution of non-systematic variation of responses, the fourth 

argument - 20-fold cross-validation and the 6th argument enforced the form of the target 

function described above. The choice of α, which we used, corresponds to the equal weights 

of lasso (pure L1) and ridge (pure L2) optimizations. The lassoglm command uses the 

coordinate descent algorithm (Friedman et al., 2010); in our case, the default value 10−4 for 

the convergence threshold was used.

Statistical analysis of data represented on Figures 1–3—Application of standard t-

tests for estimation of the effects of longevity interventions on the methylation age was 

validated by the distributions of methylation levels on individual CpG sites, which exhibited 

a distinct quasi-Gaussian peak. As the mDNAm clock is defined as a linear combination of 

methylation levels on n ≫ 1 sites, the stochastic variable defining the value of mDNAm age, 

subject to the central limit theorem, is normally distributed with non-zero mean.

Figure 1: (B) Dots represent individual samples, solid dots connected by a line - mean for a 

cohort of particular age, and blue shaded region - s.d. (C) Error bars are s.d. of the DNAm 

score from the mean over the cohort of particular age.

Figure 2: (B) Dots correspond to individual samples, the dark red solid line - to mean 

mDNAm age for cohort with a particular chronological age, and shared region - to the 

behavior of s.d.
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Figure 3: For all box plots the center line is the median, the box boundaries are 25% and 

75% percentile, and whiskers extend to the extreme data points, which are not considered as 

outliers. Outliers are plotted as individual points. (B) GHR KO: 9 males and 6 females 

combined into a single dataset, WT: 8 males and 3 females combined into a single dataset. 

(C) SD: 6 males and 4 females combined into a single dataset, WT: 7 males and 5 females 

combined into a single dataset. (D) For B6D2F1 strain, the latter included 20- and 27-

month-old male mice (5 in each cohort), for C57BL/6 strain – 20-, 22-, 26- and 28- month-

old mice (9 males in each cohort except the one aged 26 months, which included 10 mice). 

(E) The CR cohorts included 20- and 27-month-old male mice (5 in each cohort), while the 

AL cohorts – 21- and 27-month-old mice (7 and 5 males in the corresponding cohort). (F) 

Fibroblasts were collected from 3 C57BL/6 males.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. DNA methylation patterns predict the age of mice
(A) Overview of mouse models used in the study. Blue circles show samples used to build 

the clock, and triangles models analyzed with the clock. Numbers indicate the number of 

animals or cell cultures for each genotype and cohort; see also Table S1.

(B) Behavior of the leading age-dependent DNAm signature for 141 C57BL/6 males with 

age.

(C) Behavior of the Subset 1 clock (blue). Orange dots correspond to samples from Subset 2. 

Goodness of fit R2 = 0.959, p = 1.16 · 10−49.

(D) Behavior of the Subset 2 clock (orange). Blue dots represent samples from Subset 1. 

Goodness of fit R2 = 0.959, p = 6.26 · 10−49.
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(E) Weights and genome locations of CpG sites contributing to Subset 1 (blue) and Subset 2 

(orange) clocks. Black dots below the graph point to 18 CpG sites common to both clocks.

(F) Number of CpG sites contributing to Subset 1 and 2 clocks. The probability to find 

common 18 sites in two random sets derived from 1.9 million sites is ~10−108.
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Figure 2. Development of the mDNAm clock
(A) Selection of the optimally robust mDNAm clock. The clock corresponding to the 

minimum cross-validation deviation error is a weighted average of DNAm levels of 109 

CpG sites. The optimally robust clock is a weighted average of DNAm levels of 90 CpG 

sites.

(B) Estimation of the mDNAm age of C57BL/6 control males.

(C) Trajectories of methylation levels of the 90 CpG sites that form the clock. Age-related 

increases in DNAm are shown in red, and decreases in blue. Solid dark blue and red lines 
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correspond to the signal averaged over the CpG sites with methylation levels decreasing or 

increasing with age, respectively.

(D) The overlap between the CpG sites contributing to the 90-site mDNAm clock (red 

circle), Subset 1 (lower left) and Subset 2 (lower right) clocks. Gene list on the right shows 

genes that include 17 CpG sites common to all clocks.

(E) Distribution and weights of 90 CpG sites defining the clock along the genome. Positions 

of the contributing CpG sites within the genome are shown. CpGs were located within the 

bodies of particular genes, introns and untranslated regions, as well as in intergentic regions. 

Most mouse chromosomes (except 3, 17, X and Y) contain at least one CpG site 

contributing to the clock. The color scheme shows the indicated sequence/function elements 

within which the sites reside.
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Figure 3. Applications of the mDNAm clock
(A) Application of the mDNAm clock (light blue) to calorie restricted (CR) C57BL/6 males 

(red). Light blue blobs not connected to the clock correspond to 20- and 35-day old samples, 

each cohort including 6 mice (not used to construct the clock).

(B) Whole-body growth hormone receptor knockout (GHR KO) and WT ((C57BL/6J × 

BALB/cByJ)/F2) mice. The chronological age of GHR KO mice was 5.9 ± 0.3 months, and 

of WT mice 5.9 ± 0.4 months.

(C) Snell dwarf (SD) and control (WT; ((DW/J × C3H/HEJ)/F2) mice. The chronological 

age of both SD and WT mice was 5.9 ± 0.4 months.
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(D) Comparing mDNAm ages of B6D2F1 and C57BL/6 mice. The differences ΔAgemet 

between chronological and mDNAm ages were calculated for cohorts of B6D2F1 and 

C57BL/6 mice.

(E) Comparing mDNAm ages of B6D2F1 control (AL) strain and the same calorie restricted 

(CR) strain. The differences ΔAgemet between chronological and mDNAm ages were 

calculated for AL and CR cohorts.

(F) Mouse lung and kidney fibroblasts and fibroblast-derived iPSCs. Fibroblasts were 

collected from C57BL/6 mice and grown in culture. iPSCs were then generated from them. 

Blue and green marks on the right of the bars represent individual samples.

Petkovich et al. Page 22

Cell Metab. Author manuscript; available in PMC 2018 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Petkovich et al. Page 23

Table 1
Characteristics of samples used in the study

List of the strains, genotypes, sources, ages, and sexes of mice used in this study. NIH, National Institute on 

Aging; BWH, Brigham and Women’s Hospital; U of Michigan, University of Michigan.

Strain/Treatment Source Age (months) Sex Number of samples

C57BL/6 NIA/BWH 0.67 Male 6

C57BL/6 NIA/BWH 1.17 Male 6

C57BL/6 NIA 3 Male 9

C57BL/6 NIA 4 Male 9

C57BL/6 NIA 6 Male 9

C57BL/6 NIA 8 Male 9

C57BL/6 NIA 10 Male 9

C57BL/6 NIA 12 Male 10

C57BL/6 NIA 16 Male 9

C57BL/6 NIA 20 Male 9

C57BL/6 NIA 22 Male 9

C57BL/6 NIA 24 Male 9

C57BL/6 NIA 26 Male 10

C57BL/6 NIA 28 Male 9

C57BL/6 NIA 30 Male 9

C57BL/6 NIA 32 Male 7

C57BL/6 NIA 34 Male 9

C57BL/6 NIA 35 Male 6

C57BL/6 (Calorie Restriction) NIA 10 Male 5

C57BL/6 (Calorie Restriction) NIA 18 Male 5

C57BL/6 (Calorie Restriction) NIA 23 Male 5

C57BL/6 (Calorie Restriction) NIA 27 Male 5

B6D2F1 NIA 20 Male 5

B6D2F1 NIA 27 Male 5

B6D2F1 (Calorie Restriction) NIA 21 Male 7

B6D2F1 (Calorie Restriction) NIA 27 Male 5

Snell Dwarf U of Michigan 5 Male 2

Snell Dwarf U of Michigan 6 Male 4

Snell Dwarf U of Michigan 6 Female 4

Snell Dwarf Control U of Michigan 5 Male 2

Snell Dwarf Control U of Michigan 6 Male 5

Snell Dwarf Control U of Michigan 6 Female 5

GHRKO U of Michigan 6 Male 9

GHRKO U of Michigan 6 Female 6

GHR WT U of Michigan 6 Male 8
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Strain/Treatment Source Age (months) Sex Number of samples

GHR WT U of Michigan 6 Female 3
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

OCT-4 antibody (C-10) Santa Cruz Biotech Cat#sc-5279; RRID :AB_628051

SOX2 antibody Millipore Cat#AB5603; RRID :AB_2286686

NANOG antibody Millipore Cat#AB5731; RRID :AB_2267042

SSEA-1 antibody Santa Cruz Biotech Cat#sc-21702; RRID :AB_626918

AFP antibody (C-19) Santa Cruz Biotech Cat#sc-8108; RRID :AB_633815

GATA4 antibody (C-20) Santa Cruz Biotech Cat#sc-1237; RRID :AB_2108747

Anti-α-Actinin (Sarcomeric) antibody Sigma Cat#A7732; RRID :AB_2221571

GFAPantibody Dako Cat#Z0334; RRID :AB_10013382

TUJ-1 antibody Covance Cat#MMS-435P; RRID :AB_2313773

Alexa Fluor® 488 AffiniPure Goat 
Anti-Rabbit IgG (H+L)

Jackson ImmunoResearch Cat#111-545-144; RRID :AB_2338052

Alexa Fluor® 488 AffiniPure Goat 
Anti-Mouse IgG (H+L)

Jackson ImmunoResearch Cat#115-545-003; RRID :AB_2338840

Alexa Fluor® 488 AffiniPure Mouse 
Anti-Goat IgG (H+L)

Jackson ImmunoResearch Cat#205-545-108; RRID :AB_2339072

Bacterial and Virus Strains

Biological Samples

Chemicals, Peptides, and Recombinant Proteins

MspI(20,000 units/ml) New England Biolabs Cat#R0106S

10× NEB buffer 2 New England Biolabs Cat#B7002S

Klenow Fragment (3'→5' exo-) New England Biolabs Cat#M0212L

T4 DNA Ligase (2,000,000 units/ml) New England Biolabs Cat#M0202M

AgencourtAMPure XP - 60 ml Beckman Coulter Cat#A63881

Pfu Turbo CxHotstart DNA 
Polymerase (500 units)

Agilent Cat#600412

DNA/RNA Shield (2× Concentrate) Zymo Research Cat#R1200-25

Hoechst 33342 Life Technologies Cat#H3570

Critical Commercial Assays

Quick-gDNA™ Blood MiniPrep kit Zymo Research Cat#D3072

Quick-DNA™ Universal kit Zymo Research Cat#D4069

Genomic DNA Clean & 
Concentrator™-10

ZymoReserach Cat#D4011

Kapa Complete Universal Kit KAPA Biosystems Cat#KK4824
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REAGENT or RESOURCE SOURCE IDENTIFIER

EZ DNA Methylation-Gold™ Kit Zymo Research Cat#D5006

Primers from TruSeq Nano LT Kits 
(Sets A and B)

Illumina Cat#15041757 and 15041759

Alkaline Phosphatase Staining Kit Stemgent Cat#00-0055

Deposited Data

Raw and analyzed data This paper GEO: GSE80672

Mouse reference genome NCBI build 
38, GRCm38.p2

Genome Reference Consortium http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/mouse/

Location of CpG islands for mouse 
reference genome

UCSC http://hgdownload.soe.ycsc.edu

Emsemble annotated mouse genome 
features, release 82

Ensembl http://useast.ensembl.org/Mus)musculus/Info/Index

Location of predicted enhancers in 
mouse genome

Yue et al., 2014 N/A

Experimental Models: Cell Lines

Primary fibroblasts from kidney of 
C57BL/6 male mice

This paper N/A

Primary fibroblasts from Lung of 
C57BL/6 male mice

This paper N/A

Mouse iPSCs from kidney fibroblasts This paper N/A

Mouse iPSCs from Lung fibroblasts This paper N/A

HEK293T cells ATCC CRL-3216

Experimental Models: Organisms/Strains

Mouse: C57BL/6 Aging Mouse Colony from 
National Institute on Aging

N/A

Mouse: B6D2F1 Aging Mouse Colony from 
National Institute on Aging

N/A

Mouse: GHR KO ((C57BL/6J × 
BALB/cByJ)/F2

Laboratory of Richard 
Miller(Coschigano et al., 2003)

N/A

Mouse: Snell dwarf ((DW/J × C3H/
HEJ)/F2)

Laboratory of Richard 
Miller(Flurkey et al., 2001)

N/A

Oligonucleotides

Primer: Illumina TruSeqprimer 
Forward: 
AATGATACGGCGACCACCGAGAT

This paper N/A

Primer: Illumina TruSeqprimer 
Reverse: 
CAAGCAGAAGACGGCATACGA

This paper N/A

Recombinant DNA

Plasmid: TetO-FUW-OSKM Carey et al., 2009 Addgene Plasmid #20321

Plasmid: FUW-M2rtTA Hockemeyer et al., 2008 Addgene Plasmid #20342

Software and Algorithms
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REAGENT or RESOURCE SOURCE IDENTIFIER

Testing quality of high throughput 
sequence libraries: FastQC v.0.10.1

N/A http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Adapter removing and quality 
trimming: Trim Galore! v.0.4.0

N/A http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/

Detection of methylation sites: 
Bismark v.0.14.5

N/A http://http://www.bioinformatics.babraham.ac.uk/projects/bismark/

Dimensionality reduction by singular 
value decomposition: Matlab

Antoulas and Sorensen (2001) https://www.mathworks.com/help/matlab/ref/svds.html

Elastic net regression: Matlab Friedman et al. (2010) https://www.mathworks.com/help/stats/lassoglm.html

Other
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