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Abstract

Pedigrees contain information about the genealogical relationships among individuals and

are of fundamental importance in many areas of genetic studies. However, pedigrees are

often unknown and must be inferred from genetic data. Despite the importance of pedigree

inference, existing methods are limited to inferring only close relationships or analyzing a

small number of individuals or loci. We present a simulated annealing method for estimating

pedigrees in large samples of otherwise seemingly unrelated individuals using genome-

wide SNP data. The method supports complex pedigree structures such as polygamous

families, multi-generational families, and pedigrees in which many of the member individuals

are missing. Computational speed is greatly enhanced by the use of a composite likelihood

function which approximates the full likelihood. We validate our method on simulated data

and show that it can infer distant relatives more accurately than existing methods. Further-

more, we illustrate the utility of the method on a sample of Greenlandic Inuit.

Author summary

Pedigrees contain information about the genealogical relationships among individuals.

This information can be used in many areas of genetic studies such as disease association

studies, conservation efforts, and for inferences about the demographic history and social

structure of a population. Despite their importance, pedigrees are often unknown and

must be estimated from genetic information. However, pedigree inference remains a diffi-

cult problem due to the high cost of likelihood computation and the enormous number of

possible pedigrees that must be considered. These difficulties limit existing methods in

their ability to infer pedigrees when the sample size or the number of markers is large, or

when the sample contains only distant relatives. In this report, we present a method that

circumvents these computational challenges in order to infer pedigrees of complex struc-

ture for a large number of individuals. Using simulations, we find that the method can

infer distant relatives much more accurately than existing methods. Furthermore, we

show that even pairwise inferences of relatedness can be improved substantially by consid-

eration of the pedigree structure with other related individuals in the sample.
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Introduction

Pedigree information is used in many areas of genetic analysis, including discovery of disease-

related markers in co-segregation analysis and family-based association studies [1], pedigree-

informed haplotype and genotype imputation [2], and in estimating variance components for

quantitative traits (e.g. heritability) [3]. At the population level, pedigrees can elucidate the

social organization and behavior of a group, such as mating patterns and variance in reproduc-

tive success among individuals [4]. Furthermore, pedigree information can be used to infer

population parameters such as migration rates between subpopulations at very recent time

scales. Most population genetic inference methods are based on coalescence theory, which

models the genealogical relationships among samples of genetic data at a time scale of N gener-

ations, where N is the effective population size. However, standard coalescence models, such

as Kingman’s coalescent [5–7] ignore pedigree structure. Simulation studies have shown that

the coalescent is a poor approximation of the genealogical process over short time frames

(< log2N generations, where N is the population size), potentially leading to inaccurate infer-

ences at these time scales [8, 9]. Therefore using the pedigree, which contains more detailed

information about the genealogical history of the samples, should provide more power in

inferring population parameters for the very recent past.

Considerations of pedigree structure is becoming increasing relevant as the size of popula-

tion genetic samples increases, as these samples may have an increasing probability of includ-

ing cryptic relatives. The likelihood of seeing cryptic relatives in population samples depends

on the sample size, effective population size, and breeding structure. For example, Moltke [10]

found that due to the small population size in Greenland, even a relatively small sample size of

584 Inuits contained many close relatives, and about half of the samples had to be removed to

form an unrelated set. Other examples include the HapMap Phase III data in which Pemberton

[11] found 166 pairs of cryptic close relatives (i.e. third degree relatives or closer) among the

sample population of about 1400; and the San Antonio Family Studies in which Sun [12]

found 4 cryptic relative pairs among 154 putatively unrelated samples. Performing association

studies on samples harboring cryptic relatedness may result in spurious associations [13]. In

such cases, pedigree information can be used to remove related samples or explicitly model

relatedness to increase the power of association studies [14].

Pedigree information is undoubtedly valuable. In many cases, however, pedigrees are not

directly observable and must be inferred from genetic data, which is the topic of this paper.

However, we note that using estimated pedigrees as a replacement for known pedigrees may

not be an optimal procedure in many cases, if the statistical uncertainty in the estimation of

the pedigree is ignored. For example, the consequences of using estimated pedigrees in linkage

analyses are largely unknown and we warn against the use of such methods without further

studies of their properties.

Although numerous pedigree inference methods have been developed to date, most are lim-

ited to inferring very close relationships or require a prior knowledge of the sample structure.

Many existing methods support only single- or two-generation samples. The single-generation

methods are sibship inference algorithms which partition the sampled individuals into sibship

clusters [15–18]. The parentage inference methods for two generations find the best parent-

offspring combinations from a set of offspring and candidate parents [19–21]. Several methods

that can support more than two generations have been developed [22–28]. But they are either

limited in the number of markers that can be analyzed [23, 28]; do not support polygamous

pedigrees [26, 27]; assume a complete sample (i.e. every member in the pedigree is sampled)

[24, 25, 29]; or assume all sampled individuals belong to a single generation [26, 27]. The state-

of-the-art method, PRIMUS [30], is the most flexible of the existing methods; it accommodates
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missing data and is able to infer multi-generational, polygamous pedigrees. Although PRIMUS

is a notable improvement from other methods, its accuracy decreases significantly as the num-

ber of missing individuals increases. This is problematic as we expect samples to contain only

a small fraction of pedigree members unless the sample represents a large portion of the total

population or is specifically designed to include close family members. Extending the work of

PRIMUS, PADRE [31] connects PRIMUS-reconstructed family networks to estimate distant

relatives. However, PADRE estimates only the degree of relationship between the founders

connecting the family networks, which is not equivalent to estimating the pedigree.

The difficulty in pedigree inference comes from three sources. First, the number of possible

pedigrees is enormous even for a small sample size [32, 33], making naive enumeration of ped-

igrees in search for the best one infeasible. Second, computing the likelihood of a pedigree is

very expensive. Algorithms for computing the likelihood of a pedigree are either exponential

in the number of loci [34], or in the number of individuals [35], which makes the likelihood

computation of large pedigrees at many loci prohibitively slow. Finally, inference of pedigree

relationships from genetic relationships, measured by the proportion of the genome shared by

identical-by-descent (IBD), has high uncertainty. As the pedigree relationship between two

individuals becomes more distant, the coefficient of variation and the magnitude of skew in

genome sharing become larger [36]. For example, the distribution of genome sharing between

second cousins overlaps significantly with that of third cousins, making these two pedigree

relationships difficult to distinguish based on pairwise genome sharing alone.

In this report, we present CLAPPER (Composite Likelihood Approach to Pedigree Recon-

struction), a method that estimates the unknown pedigree from the genotype data of a sample

of individuals. Note that our parameter of interest is the pedigree, which is not equivalent to

the set of all pairwise relationships. In fact, pairwise relationships do not necessarily define a

unique pedigree. Our new inference method addresses the drawbacks of the existing methods.

More specifically, our method can utilize many markers genome-wide, support multi-genera-

tional pedigrees (up to 5 generations) and polygamous reproduction, and allows many missing

individuals in the sample. We assume that all individuals are outbred and that the pedigrees do

not create cycles, except in the case of full-sibs. To increase computation efficiency, we use a

composite likelihood to approximate the full likelihood based on pairwise likelihoods, and use

simulated annealing as a heuristic optimization algorithm for maximizing the composite likeli-

hood. We validate our method on simulated data and show that it outperforms existing meth-

ods for inferring distant relatives. Furthermore, we demonstrate our method’s application to

real data on a sample of Greenlandic Inuit.

Materials and methods

Composite likelihood

CLAPPER is based on the idea of forming a composite likelihood function based on marginal

likelihood functions calculated for pairs of individuals. While even pairwise likelihoods are

slow to calculate for full genomic data, they can be tabulated and stored in computer memory.

It is thereby possible to estimate pedigrees, based on a composite likelihood function, by only

calculating the likelihood function between pairs of individuals once. This makes our method

potentially applicable to large data sets containing thousands of individuals. As we will later

discuss, using some heuristics, the method may even be applicable to large GWAS data sets.

We define a pedigree as undirected graphs where a node represents an individual and an

edge represents a parent-offspring relationship (S1 Text). Each individual has a sex and is asso-

ciated with 0, 1 or 2 edges connecting the individual to its parents, which must be of different

sexes if the individuals has two identified parents. An individual in the pedigree may or may
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not be represented in the sample, but if individual i is represented in the sample it is associated

with genotype vector, Xi. For each pedigree, the set of k sampled individuals is denoted by H,

and the composite likelihood for such a pedigree is defined as

CLðHÞ ¼

PðXiÞ; if k ¼ 1

Q
ði;jÞ2HPðXi;XjjRi;jÞ
Q

i2HPðXiÞ
k� 2

; otherwise

8
>><

>>:

ð1Þ

where Ri,j is the relationship between i and j induced by the pedigree. For a pedigree consisting

of one individual, the likelihood is simply the probability of the individual’s observed geno-

types. For k> 1 the composite likelihood is obtained as the product of marginal pairwise likeli-

hoods. However, to obtain a more natural scaling of the composite likelihood we note that the

probability of the data for each individual has been calculated k − 1 times and we therefore

divide the composite likelihood function with the marginal likelihood of each individual k − 2

times. This has several desirable properties such as convergence of the composite likelihood to

the true likelihood as the relatedness among individuals goes to zero. Another way to think of

this composite likelihood function is in terms of products of conditional likelihoods. We can

factor the full likelihood as

PðX1; � � � ;XkjHÞ ¼ PðX1ÞPðX2jX1;HÞ � � � PðXkjX1; � � � ;Xk� 1;HÞ:

Since computing the conditional likelihoods P(Xi|X1, � � �, Xi−1, H) is difficult, we approximate

them with

PðXiÞ
Yi� 1

j¼1

PðXijXj;HÞ
PðXiÞ

:

That is, we multiply the marginal probability of our current observation P(Xi) by the likelihood

ratio
PðXi jXj;HÞ

PðXiÞ
for each previous observation Xj. If the previous observation informs our current

observation, then
PðXi jXj;HÞ

PðXiÞ
6¼ 1, so the likelihood of the current observation increases or

decreases accordingly. Using this approximation, we arrive at Eq (1). Note that P(Xi|H) = P(Xi)

since P(Xi) is simply the likelihood of observing the genotypes Xi, which is independent of the

pedigree, H.

The pairwise likelihood P(Xi, Xj|Ri,j) can be computed efficiently using the Hidden Markov

Model (HMM) approximation by [37], which is used in this study. However, we note that any

other definition of the pairwise likelihood function could have been used. For a set of possible

outbred relationships in a 5-generation pedigree (See S1 Table), the pairwise likelihood for

each pair (i, j) is precomputed and stored in memory. The total pre-computation time for
n

2

 !

pairs of individuals, s types of relationships, and L loci, therefore, is O(n2sL). Since the compos-

ite likelihood of a pedigree is a simple function of the pairwise and marginal likelihoods, it can

be computed fast by accessing the precomputed values stored in memory. The full composite

likelihood for a set of local pedigrees is then computed by taking the product of the composite

likelihood for each local pedigree.

It is worthwhile to note alternative ways to construct a composite likelihood. Another, per-

haps more intuitive, formulation that also ensures that the composite likelihood converges to

the true likelihood as the relatedness among individuals goes to zero, is

Y

i6¼j

PðXi;XjÞ
1

n� 1; ð2Þ
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which scales the product of pairwise likelihoods by 1

n� 1
to account for the multiple counting of

each sample. However, as we will discuss in the Results section, this formulation leads to a

worse approximation of the full likelihood function.

Simulated annealing

Because the number of possible pedigrees grows very rapidly with sample size, an exhaustive

search for the most likely pedigree is infeasible for even a moderate number of individuals.

Therefore, we use simulated annealing [38] to maximize the composite likelihood function. In

this algorithm, a perturbation of the pedigree is generated by locally modifying the edges and

nodes of the current pedigree (S1 Text). We explore the pedigrees with high likelihoods by

always accepting proposals with higher likelihoods and occasionally accepting those with

lower likelihoods to avoid getting stuck in local maxima. We implemented 22 different pertur-

bations (moves) detailed in S1 Text. These moves can be broadly categorized into three classes.

The first class of moves involves choosing two individuals and modifying their pairwise rela-

tionship. These moves include transitions between: parent-offspring and full siblings; parent-

offspring and half siblings; uncle-nephew and nephew-uncle; grandparent-grandchild and half

siblings; and full siblings and self. Related to these are moves that add or subtract an edge

between two nodes. For example, adding an edge causes parent-offspring relationships to

become grandparent-grandchild relationship, whereas subtracting an edge has the opposite

effect. The motivation for this class of moves is that these pairs of relationships have similar

IBD coefficients, hence similar likelihoods. So these perturbations allow transitions between

pedigrees with similar likelihoods.

The second class of moves allows bigger perturbations in the current pedigree. These

moves include splitting a pedigree into two, joining two pedigrees into one, or the combina-

tion of splitting and joining. Splitting a pedigree can be done in two ways: we can either detach

a chosen individual’s sub-pedigree (i.e. its descendant and itself) from its ancestors, or split

off a randomly selected subset of its children to form a new pedigree. Joining two pedigrees

involves creating a common ancestor between two individuals that belong to different local

pedigrees.

The last class of moves is designed to transition between similar pedigrees when sex or age

information is missing. For example, one move allows an individual and its descendant to

swap places if age information is not present to resolve the directionality of the relationship.

Another move changes the sex of an individual if sex information is not available, which in

turn switches the sex of its potential spouses.

All of these transitions modify a small part of the current pedigree to generate a new config-

uration. Since the composite likelihood is a function of the pairwise and marginal likelihoods,

the likelihood of the new configuration can be computed fast by adjusting the old likelihood

by the changes made to the modified part of the pedigree.

The outline of the simulated algorithm is described below:

Initialization: Let each individual be a singleton pedigree (i.e. everyone is unrelated). Com-

pute and store the composite likelihood of the current configuration.

Recursion:

1. Choose one of the 22 moves at random and generate a new configuration accordingly.

2. If the new configuration is an invalid pedigree, reject and go back to step 1. If it is a valid

pedigree, compute the composite likelihood CL(Hnew) for the new configuration. Accept

with probability min[(CL(Hnew)/CL(Hold))t, 1], where t is the annealing temperature.

3. Repeat steps 1-2 C times.
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4. Decrease the temperature to t/f, where f> 1 and go to step 1.

Termination: Terminate after I iterations or when the change in composite likelihood is

less than e.

The tuning parameters C, f, I, and e were optimized to achieve a balance between conver-

gence and computational efficiency using a number of trial runs on different simulated data

sets. S2 Table shows an example of the composite likelihood score at different stopping times

determined by the maximum number of iterations. We run multiple instances of the algorithm

with different random seeds. The algorithm then reports the pedigree with the highest likeli-

hood encountered among all runs.

Background relatedness

Since the composite likelihood function is based on pairwise likelihood values, any inference

based on it is limited by the quality of the pairwise likelihoods. One important factor that

confounds the likelihood computation is linkage disequilibrium (LD), which often causes

relationships to be overestimated [39]. Unrelated pairs of individuals often have higher likeli-

hoods for being distantly related (S1 Fig), which leads to false detection of relatives. The

method of [37] attempts to correct for LD by conditioning on nearby markers. However, in

our experience residual effects of LD will still tend to bias inferences when markers are in

high LD. One way to further reduce the effects of LD is pruning, or thinning, of markers.

However, there is no consensus on how best to choose a set of markers that contains minimal

LD and yet harbors enough information to detect distant relatives. To get a better sense of

the effects of LD pruning on relationship inference, we simulated various pairwise relation-

ships (i.e. second cousins, third cousins, unrelated) at linked loci. We pruned the markers

based on LD in 100 unrelated founders and measured the pairwise prediction accuracy for

the test pair. We repeated this procedure under different levels of LD pruning to choose an

appropriate level of pruning threshold (See Results). In addition to LD pruning, we further

controlled for false detection of relatives by adding a regularization term to the composite

likelihood. The regularizer was designed to weight against individuals from forming family

clusters, motivated by the fact that in large data sets there are so many potential pedigree

relationships for each individual, that most individuals will be inferred to have some pedi-

gree relationship to at least one individual in the sample, even when they are unrelated. This

is essentially a multiple testing problem in which an increasing number of individuals in the

sample implies a reduced probability of inferring an individual to be unrelated to all individ-

uals in the sample. There are natural ways of addressing this problem in a Bayesian frame-

work that we might also be able to appeal to in the current framework. In particular, we will

assign a probability distribution on the number of local pedigrees inferred. More specifically,

we used the regularized composite likelihood

CL�ðXÞ ¼ CLðXÞPrðQ ¼ qÞb; ð3Þ

where q is the number of local pedigrees and β> 0. We chose a Poisson distribution with

mean n, the sample size, as the distribution of Q. This regularization is conservative in the

sense that it favors every individual to remain a singleton unless there is strong evidence

otherwise. Our choice to use the Poisson distribution was made, in part, for computational

convenience but, as we will discuss in the Results section, resulted in good statistical proper-

ties of the method.
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Simulated dataset

We tested the performance of our method on simulated pedigrees. We generated human auto-

somal haplotypes using msprime [40] with effective population size of 10,000, average recom-

bination rate of 1.3e-8, and mutation rate of 1.25e-8. Using these founder haplotypes, we

simulated four pedigree structures shown in Fig 1.

Simulation A consisted of 10 singletons and a 45-person family that spanned 5 genera-

tions. Of the 45 family members, 10 were sampled and 35 were missing. The kinship coeffi-

cients of the sampled relative pairs ranged from 1/4 (e.g. full siblings) to 1/256 (e.g. third

cousins). Simulation B was designed to study the performance of our method on smaller

family clusters. It consisted of 4 family clusters and 4 singletons. Each family cluster con-

tained 15 to 18 members, of which only 4 of them were sampled. The sampled individuals

spanned multiple generations and formed pairwise relationships with kinship coefficients

Fig 1. Simulated pedigrees. Shaded nodes indicate sampled individuals for which we have genotype data and unshaded nodes indicate

unsampled individuals. (A) simulation A; (B) simulation B; (C) simulation C; (D) simulation D.

https://doi.org/10.1371/journal.pgen.1006963.g001
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ranging from 1/4 to 1/256. Simulation C was designed the test the method on pedigree struc-

tures in which every sampled individual, excluding singletons, has at least one close relative

in the data. It consisted of 9 singletons and a 16-person pedigree that spanned 5 generations.

The 16-person pedigree contained 7 missing individuals and 9 sampled individuals, where

each sampled individual formed a parent-offspring relationship with at least one other sam-

ple. Finally, simulation D was designed to test the method on a pedigree that is relatively easy

yet more difficult to infer than simulation C. Whereas every sample was connected by par-

ent-offspring relationships in simulation C, some samples in simulation D were connected

only by an avuncular relationship.

Each simulation scenario was replicated 100 times. For each sampled individual, we simu-

lated genotyping error by switching each allele to the alternate allele with probability 0.01. To

reduce the level of LD among markers, we used PLINK [41] to prune the original set of mark-

ers at r2 = .05, resulting in about 10,000 markers. The sex of each sample was assumed known,

whereas the age was assumed unknown.

Empirical dataset

We applied our method to reconstruct the previously unreported pedigrees of 100 individuals

in Tasiilaq villages in Greenland which had been genotyped [10] using the Illumina CardioMe-

taboChip, consisting of 196,224 SNPs. Since the European admixture into the Greenlandic

population can confound relationship inference, we selected individuals from Tasiilaq villages,

which showed one of the lowest levels of European admixture in the sample. In particular, the

100 individuals we selected were estimated to have European admixture proportion of 5 per-

cent or less. To reduce the effects of LD, with pruned the markers using PLINK at r2 = 0.05.

Due to the unusually high level of LD in the Greenlandic population, we were left with 2173

SNPs after LD-pruning.

Competing methods for comparison

We compared the performance of our method on simulated data to PRIMUS (v1.9.0), arguably

the state-of-the-art pedigree reconstruction method. Although many pedigree inference meth-

ods exist, we chose to use PRIMUS as a benchmark since it is the most flexible of the existing

methods in the types of pedigrees it can infer. More specifically, PRIMUS supports the infer-

ence of multi-generational, polygamous pedigrees and allows for missing individuals. PRIMUS

reconstructs pedigrees that are consistent with pairwise IBD estimates and reports high-scor-

ing configurations.

To estimate the pairwise IBD coefficients for the simulated data, we used two different

methods: PLINK and RELATE [37]. To use PLINK, we first estimated the population allele fre-

quencies from 100 founder individuals. We then used PLINK to estimate the IBD coefficients

for the individuals in our simulated pedigrees, where the population allele frequency estimates

were provided as input. This mimics the inference procedure recommended in the PRIMUS

documentation. A similar procedure was used to run RELATE to estimate the pairwise IBD

proportions (S2 Text). The IBD estimates were then used by PRIMUS to reconstruct likely

pedigrees. We denote the combined method of PLINK and PRIMUS as PP, and Relate and

PLINK as RP. Since PRIMUS was designed to reconstruct pedigrees where samples are con-

nected by third-degree relationships or closer, we applied PP and RP only to simulations C

and D.

We used PADRE [31] for simulations A and B, where PRIMUS was inappropriate to use

due to the presence of samples connected only by distant relationships. PADRE takes as

input relationship likelihoods by ERSA [42] and output by PRIMUS, and reports the degree
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of relationship for each pair of samples. To generate the results by PRIMUS, we used PP and

RP as described before. ERSA uses estimates of IBD segments to compute the pairwise rela-

tionship likelihoods. Since RELATE was used to compute the pairwise likelihood of IBD pro-

portions for CLAPPER, we used RELATE also to estimate the pairwise IBD segments to

generate the input for ERSA. We denote the combined method of PP and PADRE as PPP,

and RP and PADRE as RPP. The command lines used for running the softwares are provided

in S2 Text.

Recall that CLAPPER maximizes a statistic that incorporates both the likelihood score and

the number of family networks Eq (3). In PP and RP, however, all reported pedigrees have the

same number of family networks, which makes maximizing both the likelihood score and the

number of family networks equivalent to maximizing the likelihood score alone. The same is

true for PPP and RPP, which report a single best estimate of family networks.

We also compared our method to the pairwise inference method. In this method, we used

RELATE to compute the pairwise likelihood under each possible relationship (S1 Table) for all

pairs of individuals. Then we assigned each pair the relationship with the highest pairwise like-

lihood. We controlled the false positive rate by multiplying the likelihood of being unrelated

by a scalar c> 0, in order to provide comparable results between methods. The pairwise infer-

ence method produces only the best relationship for each pair, which may not result in a valid

pedigree when all pairwise relationships are pieced together. Still, it serves as a useful bench-

mark to evaluate the accuracy of pairwise predictions by our method.

Measuring the error rate

We measured the performance of our method in two ways: the frequency of estimating the

true pedigree; and the distance between the estimated pedigree and the true pedigree in terms

of pairwise relationships. We note that since CLAPPER does not consider inbred pedigrees

whereas PP and RP do, we pre-processed the output of PP and RP before measuring the error

rate to make a fair comparison. More specifically, we removed all inbred pedigrees from the

output of PP and RP and measured the error rate using just the remaining pedigrees.

Frequency of estimating the true pedigree configuration. We say that the estimated

pedigree is correct if there is a one-to-one mapping between the nodes of the estimated pedi-

gree and the nodes of the true pedigree such that each edge in the estimated pedigree has a

corresponding edge in the true pedigree. Note that for PP and RP, which potentially report

multiple highest-scoring pedigrees, we say that the estimated pedigree is correct if the true ped-

igree is in the set of highest-scoring pedigrees.

Pairwise error rate. To measure the error rate of the pairwise method, which estimates

pairwise relationships directly, we compared the true relationships to the estimated relation-

ships. Therefore, we define the error rate for each pair as

e ¼
0; if ŵ1 ¼ w1 and ŵ2 ¼ w2

1; otherwise

(

where wi is the probability that two individuals share i pairs of alleles IBD at a random locus

under the true relationship; and ŵi is the corresponding probability for the estimated relation-

ship. In other words, the estimated relationship is correct if its three Jacquard coefficients [43]

are exactly the same as those of the true relationship.
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Furthermore, to measure the distance between the estimated relationship and the true rela-

tionship for each pair, we computed the kinship coefficient distance

d ¼
j�̂ � �j

�
;

where �̂ ¼ 1

4
ŵ1 þ

1

2
ŵ2 and � ¼ 1

4
w1 þ

1

2
w2.

We also used e and d to measure the pairwise error rate of CLAPPER, where the inferred

pairwise relationships are those induced by the estimated pedigree, and the true pairwise rela-

tionships are those induced by the true pedigree. For PP and RP, which report all pedigrees

with high likelihood scores, we computed the error rate by taking the average across all high-

est-scoring pedigrees. For PPP and RPP, which report a single best degree of relationship for

each pair, we measured the error rate by e and d as defined above.

Results

Behavior of the composite likelihood

To examine the behavior of the composite likelihood, we simulated a nuclear family with two

parents and their four children at 3,000 independent loci. We then computed the likelihood of

the data under various pedigree configurations, ranging from the pedigree in which no one is

related to the true pedigree. For each pedigree configuration, we computed the likelihood

value with three different formulas: the full likelihood using MERLIN [44], composite likeli-

hood A, given by Eq (2), and composite likelihood B, given by Eq (1).

The comparison of the three likelihood formulas are shown in S2 Fig. The x-axis is the dis-

tance of the test pedigree to the true pedigree, measured by the proportion of pairwise relation-

ships that are correct in the test pedigree. As expected, the full likelihood increases as the test

configuration becomes closer to the true pedigree. Both composite likelihood formulas pre-

serve the ordering of the pedigrees induced by the full likelihood. That is, the order of pedi-

grees from the least likely to the most likely based on the full likelihood corresponds to the

ordering based on the composite likelihood formulas. Although both composite likelihood for-

mulas preserve this ordering, the likelihood surface given by Eq (2) is much flatter than the full

likelihood, whereas the likelihood surface of Eq (1) is roughly on the same order of magnitude

as the full likelihood.

Effects of linkage disequilibrium on pairwise relationship inference

As mentioned in the Methods section, we examined different thresholds for LD pruning. The

appropriate level of pruning depends both on the genome length and the types of relationships

we want to infer accurately. As shown in Fig 2, there is a trade-off between keeping enough

markers to estimate distant relationships and removing markers to reduce false detection of

relatives. For unrelated pairs, the most stringent LD pruning we tested (r2 = .025) showed the

best relationship prediction accuracy. For third cousin relationships, however, pruning the

markers too severely caused too much information loss, leading to a decrease in prediction

accuracy. A similar pattern is observed for the second cousin relationships. For our simulated

and empirical data, we prune the markers at r2 = .05, which according to our simulations,

retained enough information to estimate second and third cousins while keeping the false posi-

tive rate (i.e. estimating unrelated pairs as related) relatively low. We note that finding optimal

strategies for dealing with background LD when inferring relatedness is an important topic

that merits further research.
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Estimating simulated pedigrees

Table 1 summarizes the frequency of estimating the true pedigree and the average number of

best pedigrees reported by each method. For simulation C, where all samples were connected

by parent-offspring relationships, CLAPPER was able to find the true pedigree in all 100 exper-

iments. This showed that when the sampled individuals are connected by very close relation-

ships, CLAPPER can unambiguously find the correct pedigree. Similarly, RP inferred the true

pedigree as the single best estimate in 96 out of 100 experiments. The remaining 4 experiments

did not output any pedigrees because all likely pedigrees exceeded the maximum number of

generations we imposed (5 generations). On the other hand, PP showed a lower accuracy rate

than both CLAPPER and RP. Several experiments finished with errors due to too large a num-

ber of likely pedigrees to process, while some only produced inbred pedigrees. However, the

true pedigree was estimated in the majority of the experiments that finished successfully.

For simulation D, all methods had a lower accuracy rate for estimating the true pedigree

compared to simulation C. Some of the samples in this scenario were connected only through

an avuncular relationship, which made the inference more difficult than the pedigree given in

simulation C. Nonetheless, CLAPPER showed a higher accuracy rate than both PP and RP

even though we counted the estimated pedigree as correct if the true pedigree was found in

any of the best reported pedigrees for RP and PP. Simulations A and B were omitted from our

Fig 2. Effects of LD-pruning on pairwise prediction accuracy. The three panels show different true pairwise relationships: unrelated, third

cousins, and second cousins. Each square in a panel corresponds to the relationship prediction accuracy for a particular genome length and

LD-prune threshold. The color indicates the accuracy rate between 0 and 1.

https://doi.org/10.1371/journal.pgen.1006963.g002

Table 1. Accuracy for estimating the true pedigree.

Simulation # Reporteda

(CLAPPER)

# Correctb

(CLAPPER)

# Reporteda

(PP)

# Correctb

(PP)

# Reporteda

(RP)

# Correctb

(RP)

C 1 100/100 6 65/76 * 1 96/96 **

D 1 56/100 49 18/79 *** 3 20/100

a Number of highest scoring pedigrees reported.
b Numerator is the number of times the true pedigree was among the highest scoring pedigrees; denominator is the the number of successful experiments

that produced at least one outbred pedigree.

*Excludes 6 runs that finished with errors and 18 runs that did not produce any outbred pedigrees.

**Excludes 4 runs that did not produce any pedigrees.

***Excludes 20 runs that finished with errors and 1 run that did not produce any outbred pedigrees.

https://doi.org/10.1371/journal.pgen.1006963.t001

Pedigree inference using genome-wide SNP data

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006963 August 21, 2017 11 / 21

https://doi.org/10.1371/journal.pgen.1006963.g002
https://doi.org/10.1371/journal.pgen.1006963.t001
https://doi.org/10.1371/journal.pgen.1006963


analysis since they contained samples that were not connected by third degree relationships or

closer, which made PP and RP inappropriate to use to estimate the full pedigree.

Figs 3 and 4 show the average pairwise error rate across all replicate experiments, catego-

rized by different levels of true relatedness, ϕ. For simulation A, PPP did not finish successfully

in 19 out of 100 experiments due to errors encountered in PRIMUS (e.g. too many likely pedi-

grees to process). Similarly, PPP did not finish successfully in 24 experiments for simulation B.

Furthermore, PP and RP encountered errors or did not produce any outbred pedigrees in

some experiments (Table 1). These experiments were removed from our analyses and are not

reflected in Figs 3 and 4.

For simulations A and B, all methods had a very low false positive rate (i.e. error rate for

ϕ = 0), and relatively low error rates for estimating close relationships (Fig 3A and 3B). For

more distant relatives such as those beyond first cousins (ϕ� 1/32), however, CLAPPER was

able to estimate the relationships more accurately than both PPP and RPP. For simulation C,

all methods had zero error rates for all relationship categories except PP, which showed a non-

zero false positive rate (Fig 3C). For simulation D, CLAPPER outperformed RP across all rela-

tionship categories, but had a lower accuracy rate than PP in many relationship categories.

However, PP showed a significantly higher false positive rate than CLAPPER (Fig 3D).

Furthermore, Fig 4 shows that even when the estimated relationship by CLAPPER is

wrong, it is generally close to the true relationship. For example, the median error rate for ϕ =

1/128 was 0.5, which is equivalent to estimating second cousins once removed as third cousins.

Fig 3. Comparison of prediction error rates. Each panel compares the average error rate between

CLAPPER and competing methods for a particular simulation scenario: (A) simulation A; (B) simulation B; (C)

simulation C; (D) simulation D. The x-axis shows different relationship categories measured by the kinship

coefficient; the y-axis is the average error rate �e (See Measuring the Error Rate). Analysis excludes all

experiments that did not finish successfully or did not produce any outbred pedigrees.

https://doi.org/10.1371/journal.pgen.1006963.g003
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Overall, the median error rate of CLAPPER was equal to or lower than that of the competing

methods across all relationship categories.

CLAPPER also performed considerably better than the pairwise inference method. The

likelihoods in the pairwise prediction were weighted so that its false positive rate roughly

matched that of our method. Fig 5 show that at similar false positive rates, our method

Fig 4. Absolute between the expected kinship coefficient under true and inferred relationships,

normalized by the true kinship coefficient. (A) simulation A; (B) simulation B; (C) simulation C; (D)

simulation D. The x-axis is the relationship category measured by the kinship coefficient; the y-axis is the

distance d between the true relationship and the relationship estimated by our method (See Measuring the

Error Rate in Materials and methods section). The magenta line indicates the median value for each box plot.

Analysis excludes all experiments that did not finish successfully or did not produce any outbred pedigrees.

https://doi.org/10.1371/journal.pgen.1006963.g004
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estimated pairwise relationships with a greater accuracy than the pairwise method across

almost all relationship categories. Fig 6 further demonstrates that our method has a significant

advantage over the pairwise prediction method in detecting relatives. If the purpose of rela-

tionship inference is to find relatives–to discover the number of family clusters present in the

Fig 5. Comparison of prediction error rates between CLAPPER and pairwise inference. Each panel

compares the average error rate between the pairwise method and CLAPPER for a particular simulation

scenario: (A) simulation A; (B) simulation B; (C) simulation C; (D) simulation D.

https://doi.org/10.1371/journal.pgen.1006963.g005

Fig 6. ROC curve for detecting relatives in a sample: Pairwise vs. CLAPPER. (A) simulation A; (B) simulation B; (C) simulation C; (D)

simulation D.

https://doi.org/10.1371/journal.pgen.1006963.g006
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data, for example–Fig 6 demonstrates that our method is able to detect relatives far more accu-

rately than the pairwise method. These figures show that even though our method and the

pairwise inference method both use the same pairwise likelihood values to estimate relation-

ships, leveraging information from all pairs of relationships improves the inference signifi-

cantly compared to considering each pair in isolation.

Each experiment was run 3 times with different random number seeds, where each run

consisted of 2 million iterations. The runtime of our method depends on many factors, includ-

ing the number of individuals, the hidden pedigree structure, the number of missing individu-

als, and the annealing schedule in the simulated annealing algorithm. That said, each run on

our simulated data, excluding the pre-computation time for calculating the pairwise likeli-

hoods, took about 9 seconds on 2.5 GHz Intel Core i5 processor.

Estimating the greenlandic inuit pedigrees

To demonstrate our method’s ability to infer pedigrees in practical applications, we estimated

the previously unreported pedigrees of 100 individuals from Tasiilaq villages in Greenland.

Because the Greenlandic Inuit population has high levels of LD, only 1868 SNPs remained

after pruning the markers at r2 = .05. Our simulation study showed that at this number of

SNPs, regularization with Poi(n) caused the error rate for estimating distant relatives (ϕ< 1/

32) to be very high; but using no regularization at all led to a high false positive rate (S3 Fig).

So we chose to use Poi(n/2) as our regularization, which still produced a lower false positive

rate, yet performed better in inferring distant relatives on simulated data.

We ran our algorithm 5 times with different random number seeds, resulting in 5 pedigrees

estimates. The top three estimates with the highest composite likelihood scores were within 1.2

likelihood units of each other. The other two estimates were both about 20 likelihood units

away from the top three. The inconsistency of the multiple runs was likely caused by the

existence of multiple local peaks on the likelihood surface, which makes finding the global

optimum difficult in our heuristic optimization. Each run, which consisted of 80 million

iterations, finished in about 24 minutes on 2.5 GHz Intel Core i5 processor. S4 Fig shows the

estimated pedigree drawn by PhenoTips [45]. The reconstructed pedigree consisted of 38 sin-

gletons and 8 non-singleton family clusters. Many of these clusters consisted of close relation-

ships such as parent-offspring, full siblings, half-siblings, and avuncular relationships. Based

on our simulations, we expect more than 90 percent of the estimated relationships in these cat-

egories to be correct.

Discussion

In this report, we have shown that the use of composite likelihood allows us to analyze pedi-

grees containing many individuals at many loci, where computing the full likelihood would be

prohibitively slow. Our method can estimate pedigrees when the number of possible pedigrees

is too large to enumerate, which is true even for tens of individuals in a multi-generational

pedigree. Our method is also one of the very few methods that can support complex pedigree

structures such as polygamy, multigenerational pedigrees (up to 5 generations), and missing

individuals. In addition, we can incorporate information about sex, age, and the number of

generations spanned by the sample to better estimate the pedigree.

We have shown that our method has a significant advantage over the pairwise inference

method. It can better estimate relationships beyond first cousins (Fig 5) and is able to detect

relatives much more accurately (Fig 6). The composite likelihood considers all pairwise likeli-

hoods jointly, which in turn can help resolve uncertain relationships in the context of other

pairwise relationships. Therefore, even for pairwise relationship inference, where estimating
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the entire pedigrees may not necessarily be of interest, our method can be used to estimate the

relationships more accurately.

Our method also showed an improvement over PRIMUS (PP and RP) and PADRE (PPP

and RPP). PRIMUS’s reconstruction algorithm relies on accurate pairwise relationship assign-

ments based on IBD estimates. If the sample consists mostly of distant relatives, however, rela-

tionship assignment becomes uncertain due to high variance in IBD sharing, which often leads

to incorrect pedigree reconstruction. Although our method also relies on pairwise informa-

tion, we showed that working directly with pairwise likelihood values rather than IBD-based

relationships assignments improved the power significantly. Furthermore, PRIMUS’s enumer-

ation of possible pedigrees becomes computationally cumbersome as the number of likely ped-

igrees increases rapidly for a set of distantly related samples. If the data contains many close

relationships, however, PRIMUS can reconstruct all likely pedigrees very fast, whereas our

method produces a single best pedigree, which may be close but not exactly correct. Thus the

performance of each method depends on the sample structure and a suitable method must be

chosen accordingly. Similar to PRIMUS, the performance of PADRE depends crucially on

accurate estimates of IBD proportions and segments, and poor estimates of either parameter

can lead to biases in the relationship inference. We note that IBD estimation is a difficult

problem and better estimates of IBD would improve the performance of both PRIMUS and

PADRE.

We applied our method on the Greenlandic Inuit dataset to demonstrate its ability infer

previously unknown pedigrees from genetic data. Although the estimates of distant relation-

ships are uncertain, we can still get a general sense of pedigree structures hidden in the data

and take appropriate actions for downstream analyses. For example, the inferred pedigree can

be used to filter out close relatives or model relatedness among samples in association studies.

Furthermore, we can validate or improve the estimated pedigree with other evidence such as

age.

Pedigree inference based on our composite likelihood is heavily influenced by how well we

can compute the pairwise likelihoods. An important factor that affects the pairwise likelihood

computation is LD, which often leads to overestimation of relatedness. Although the HMM by

[37] conditions on nearby markers, it does not remove the effects of LD completely and neces-

sitates LD-pruning. Unfortunately, there is no consensus on how best to prune markers while

still retaining enough information to infer distant relatives. Although we carried out a simple

simulation study to get a rough sense of appropriate level of pruning, it is by no means a com-

plete solution. More work is needed on the effects of LD on relatedness inferences and how to

remedy the problem, whether it be by more extensive simulations studies, or by modeling LD

in the likelihood computation. Furthermore, care must be taken to use appropriate allele

frequencies in likelihood computation to account for other potentially confounding factors

such as population substructure [46, 47] and admixture [48, 49]. As better methods for esti-

mating pairwise likelihoods become available, our method for estimating pedigrees should

also improve.

There are limitations to our method that require further work. Our method assumes that all

individuals are outbred, which may not be true of many systems including some human popu-

lations [50, 51]. It currently does not support pedigrees with cycles caused by inbreeding or

complex cyclic relationships such as double first cousins. When inbreeding is present, CLAP-

PER infers pedigrees that are close to the underlying truth under the assumption that there is

no inbreeding (S3 Text). Pedigree non-identifiability also poses a challenge to pedigree estima-

tion. Donnelley [52] remarked that two pairs of cousin-type pedigrees that have equal numbers

of meioses are not identifiable (e.g. half cousins vs. great half avuncular) no matter how much

genetic data are available. Furthermore, Kirkpatrick [53] gave examples of non-identifiable
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3-person pedigrees where no likelihood-based methods, including the full likelihood, can find

the correct pedigree for certain. Another limitation of our method is that it does not provide

an uncertainty measure on the estimated pedigree. This could be solved in two ways: by block-

bootstrapping the data and repeating the inference, which would be slow; or using a Bayesian

approach by assigning a prior to pedigrees and attempting to sample from the posterior distri-

bution. Furthermore, while computationally efficient compared to full likelihood methods,

our method is still based on calculation of pairwise relationships and does, therefore, not scale

up to GWAS data sets with hundreds of thousands of individuals. However, it may be possible

to use a divide-and-conquer approach in which individuals are first divided into clusters using

methods such as [54], then estimating the pedigree of each cluster separately, and finally esti-

mating more distant relationships among clusters.

Overall, our method provides a computationally efficient way to estimate pedigrees of

seemingly unrelated individuals. It improves our ability to validate and discover pedigrees in

realistic genetic datasets where we expect a high level of missing data. The ability to estimate

pedigrees more accurately opens up possibilities to develop and improve numerous pedigree-

based or pedigree-aware studies, from correcting cryptic relatedness in GWAS to estimating

demographic parameters of the very recent past. However, as noted in Introduction, the naive

use of estimated pedigrees in downstream analyses may not be justified when there is signifi-

cant statistical uncertainty in the estimation of the pedigree. Such analyses would need to

take the statistical uncertainty in pedigree estimation into account, a topic of potential future

research.

Our software is available for download at https://github.com/amyko/clapper.
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female; diamonds for unknown sex.
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