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Abstract The goal of protein engineering and design is to
identify sequences that adopt three-dimensional structures of
desired function. Often, this is treated as a single-objective
optimization problem, identifying the sequence–structure so-
lution with the lowest computed free energy of folding.
However, many design problems are multi-state, multi-speci-
ficity, or otherwise require concurrent optimization of multiple
objectives. There may be tradeoffs among objectives, where
improving one feature requires compromising another. The
challenge lies in determining solutions that are part of the
Pareto optimal set—designs where no further improvement
can be achieved in any of the objectives without degrading
one of the others. Pareto optimality problems are found in all
areas of study, from economics to engineering to biology, and
computational methods have been developed specifically to
identify the Pareto frontier. We review progress in multi-

objective protein design, the development of Pareto optimiza-
tion methods, and present a specific case study using multi-
objective optimization methods to model the tradeoff between
three parameters, stability, specificity, and complexity, of a set
of interacting synthetic collagen peptides.
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Introduction

The ability to engineer proteins or design them from scratch holds
the promise for the control of chemical and spatial properties of
materials at the nanoscale. Despite a limited alphabet of 20 amino
acids, living organisms have evolved proteins as highly efficient
catalysts, materials with photonic properties, molecular nano-
machines capable of converting between light, chemical, and me-
chanical energy, and sophisticated signaling and regulatory net-
works. Still, natural evolutionary processes have accessed only an
infinitesimal slice of potential protein sequences (Povolotskaya
and Kondrashov 2010), suggesting an immense expanse of un-
discovered protein functionality waiting to be discovered.

The field is making forays into this unexplored territory,
developing proteins as therapeutics to fight disease and infec-
tion, as materials for biomedical applications, and as catalysts
for industrial or household use (Braxton and Wells 1992;
Jiang et al. 2008; Röthlisberger et al. 2008; Whitehead et al.
2012). The computer has been an essential tool in these ex-
plorations, employing physical or statistical models of se-
quence–structure–function relationships in a high-throughput
fashion, sampling large swaths of sequence space to identify
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promising candidates for characterization and development in the
laboratory. The use of computational protein design is rapidly
expanding, pushing the state-of-the-art in computational models
that efficiently and accurately compute the quality of candidate
sequences, and algorithmic or hardware advances that promote
rapid sampling of sequence space.

To apply computationalmethods to a specific design problem,
it is necessary to have a defined computable objective. In nearly
all projects, the central objective is optimizing the thermodynam-
ic stability of a unique folded state that is able to perform the
desired function. Thermodynamic stability is computed using
chemical models of various degrees of resolution from heuristic
sequence-based scoring functions (Nautiyal et al. 1995; Summa
et al. 2002) to high-accuracy but computationally expensive
quantum mechanics calculations of energetics (Kiss et al.
2013). The majority of computational protein design platforms
calculate energetics of interactions at the atomic level, emphasiz-
ing non-bonding interactions, i.e., van derWaals packing, hydro-
gen bonding, and electrostatics (Kuhlman et al. 2003). However,
other objectives may be desirable: solubility, immunogenicity,
toxicity, cell permeability, dynamics, or functional efficiency.
Each requires an appropriate quantitative model relating the ob-
jective to protein sequence for it to be computationally
optimizable. Tools for evaluating solubility (Sormanni et al.
2015) can be applied to optimize protein libraries for solubility
and enhance the concentration and shelf life of protein
formulations. Humanization of therapeutic antibodies using
tools such as those by Choi et al. (2015) and Griswold and
Bailey-Kellogg (2016) can be applied to minimize adverse im-
mune responses during administration. At the end of this review,
we discuss in some detail the specific problem of designing
complex sets of specifically interacting molecules, focusing on
collagen mimetic peptide studies from our laboratory.

There are a number of well-developed global search heu-
ristics for addressing single-objective optimization problems.
Effective approaches should converge on the same set of glob-
ally optimal solutions regardless of the starting point, although
in practice, the degeneracy of solutions for a particular fold
can be large, and, often, the practical goal is to identify solu-
tions that are Bgood enough^ instead of globally optimal.
Simulated annealing (Hellinga and Richards 1994) and genetic
algorithms (Voigt et al. 2000) are commonly used to sample
high-barrier paths along a sequence trajectory between the
starting point and a target solution.

Multi-objective protein design

In practice, protein design requires consideration of multiple
objectives. This can complicate optimization if the quantita-
tive measures of the multiple objectives are in different units,
i.e., how would the stability of a therapeutic protein, measured
in terms of free energy of folding, be compared with toxicity

based on the maximum tolerated dose? Furthermore, objectives
may be in conflict, resulting in a tradeoff where optimizing one
compromises the other. For example, the objective of optimiz-
ing the stability of a target protein fold may be achieved by
maximizing the number of favorable residue–residue interac-
tions throughout the structure. However, this does not take into
account the stability of that sequence in competing compact
states that differ from the native fold, i.e., the specificity of a
sequence for the unique target state. It was shown using lattice
chain models of simple protein heteropolymers that the stability
and specificity of folding are in fundamental conflict (Chan and
Dill 1991). Introducing hydrophobic residues into a sequence
will stabilize the native fold, but also increase the degeneracy of
states it is likely to adopt (Handel et al. 1993). The conflict
between stability and specificity also exists in protein–protein
binding interactions. The signaling protein calmodulin interacts
with hundreds of targets and achieves this multi-specificity at
the expense of the stability of individual calmodulin–target in-
teractions (Shifman and Mayo 2002; Fromer and Shifman
2009).

Stability is also often at odds with other desirable design
objectives. Increasing hydrophobicity may affect solubility,
expression yield, and complicate purification. In designing
enzymes, enhancing stability may dampen protein dynamics
that facilitate catalysis, a phenomenon seen in nature where
thermophilic versions of enzymes are inactive at room tem-
perature (Howell et al. 2014). Enhancing the stability of ther-
apeutic proteins may improve pharmacokinetic properties
such as in vivo half-life (Hall 2014), but may also increase
their immunogenicity (Camacho et al. 2008). One can easily
envision the need to simultaneously optimize several objec-
tives from intrinsic stability and specificity of folding to cost
and yield of production to therapeutic safety and efficacy.

A number of strategies have emerged in the field for deal-
ing with the inherent multi-objective nature of protein design
problems. The simplest is to ignore alternate objectives and
focus on one, such as stability. This is the nature of Bforward
design^, or positive design (Fleishman and Baker 2012), which
seeks to optimize the stability of the target state. The key ther-
modynamic parameter that determines the probability a sequence
will fold into the target state is the energy gap, i.e., the difference
in stability between the target state and competing states (Fig. 1).
Optimizing this gap is referred to as Bnegative design^. In for-
ward design, the negative design problem is not explicitly con-
sidered under the assumption that improving the target stability
will simultaneously improve the energy gap. This is often a rea-
sonable approximation, particularly when the starting point for
design is a natural protein, where much of negative design has
been performed by evolution. On the other hand, there are ex-
amples where the positive design approach is ineffective, as seen
in model systems (Yue et al. 1995), and in practical designs, such
as the case of the development of collagen mimetic peptides
(CMPs) presented later.
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An alternative in multi-state design is to explicitly consider
a relevant subset of conformational states that a sequence may
adopt. This may be accomplished by combining states into a
single objective, such as the Boltzmann probability of forming
the target over competing states (Seeman and Kallenbach
1983; Havranek and Harbury 2003; Stapleton et al. 2015).
In the case where multiple target states are desired, summing
the stabilities of the sequence mapped onto each target struc-
ture (Ambroggio and Kuhlman 2006) or by separating se-
quence optimization for a set of states while gradually
enforcing coupling constraints to drive convergence to a sin-
gle solution (Sevy et al. 2015). Algorithmic solutions to ex-
plicitly treating an arbitrary number of competing states was
used to develop an interactome of α-helical oligomers
(Grigoryan et al. 2009).

Multi-objective problems may also take the form of dispa-
rate properties that are not scored using the same scales, units,
or computational methods. One approach would be to com-
bine multiple objectives into a static cost function that weights
them appropriately. For example, in the de novo design of a
four-helix bundle porphyrin cofactor binding protein, there
were multiple design objectives: optimizing metal binding,
protein sequence, and topology of the bundle. Metal coordi-
nation is highly sensitive to bond lengths and angles and is
most effectively modeled using quantum mechanics calcula-
tions. To simplify this calculation, coordination geometry was
expressed as a series of harmonic constraints on key bond
lengths and angles, and concurrently optimized with sequence
and topology using standard atomistic force fields (Cochran
et al. 2005). The other approach is to algorithmically separate
the quantum mechanics optimization of the active site config-
uration, choice of scaffold, and sequence optimization into
discrete steps, as has been done in the development of several
artificial enzymes (Zanghellini et al. 2006; Jiang et al. 2008;
Röthlisberger et al. 2008). Fleishman and colleagues have
explored using fuzzy logic operators as a strategy for incorpo-
rating disparate variables into a single scoring function
(Warszawski et al. 2014). Importantly, this aggregation

approach has underlying mathematical limitations, such that
it does not reach all available solutions in certain scenarios
(Das and Dennis 1997).

Pareto optimality

Multi-objective tradeoff problems are not limited to protein
engineering, and are found in nearly all fields, from econom-
ics to engineering to biological evolution. Unifying these
problems is the concept of finding solutions that satisfy the
Pareto optimality criterion. These are the subset of solutions
where the evaluation of one objective could not be improved
without reducing another; for example, the distribution of a
fixed number of goods between two parties (Fig. 2). Formal
definitions of the Pareto optimal set with regard to protein
design can be found in previous studies (Belure et al. 2017).
Algorithms that search for Pareto optimal solutions have been
applied across science from materials (Hartke 2004), nano-
technology (Wiecha et al. 2017), and protein folding
(Cutello et al. 2006) to understanding constraints on animal
evolution (Sheftel et al. 2013).

The Pareto non-dominated set, often called the Pareto fron-
tier, are attractive targets for laboratory characterization, par-
ticularly if the relative significance of individual objectives to
design success is a priori unknown. Thus, several groups have
developed algorithms for identifying the Pareto frontier in
protein design problems. Bailey-Kellogg and colleagues de-
veloped PEPFR (Protein Engineering Pareto Frontier), which
uses dynamic programming to implement an efficient divide-
and-conquer approach, and applied it to design problems in
therapeutic protein deimmunization, characterizing
interacting sets of bZIP helical oligomers and optimizing
site-directed recombination protocols for generating diverse
libraries that maintain stability and activity (He et al. 2012;
Salvat et al. 2015). Pareto refinement methods have also been
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Fig. 1 Computed stabilities of a series of states representing target and
competing protein conformations or binding interactions can be
represented as an energy level diagram. In positive design, the stability
of the target state Etarget is the only objective that is optimized. For
negative design, the difference in stability between target and
competing states is also included to optimize the sequence to both
stably and specifically fold in the target conformation
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Fig. 2 The Pareto optimal set is depicted for a bi-objective problem f1, f2,
where non-dominated solutions (red) cannot be further improved for f1
without degrading f2 or vice versa. Other solutions (gray) may be
improved along either objective without compromising the other
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applied to the design of stabilizing mutations to proteins that
minimally disrupt the native structure, concurrently optimiz-
ing energy and RMSD from the initial structure (Nivón et al.
2013). State-of-the-art multi-objective optimization evolution-
ary algorithms such as SMS-EMOA have been applied to the
design of peptide ligands that bind with reasonable affinity
and selectivity for a specific isoform of 14-3-3 proteins
(Sanchez-Faddeev et al. 2012). In characterizing protein de-
signs that are well distributed along a Pareto optimal set, one is
able to evaluate the relative importance of objectives to design
success. Below, we discuss how the analysis of Pareto opti-
mality may help guide experiments in the design of a collagen
peptide interactome.

Specific case study: collagen peptide interactome

We have been using CMPs as model systems for exploring the
tradeoff between stability, specificity, and system complexity
in oligomeric interactions. Inside of cells, thousands of pro-
teins co-exist and function at very high concentrations without
non-specifically aggregating. The same phenomenon occurs
outside of cells in the extracellular matrix, where complex
mixtures of fibrous proteins, proteoglycans, and other bio-
polymers co-assemble into a structurally controlled network.
We have been using computationally designed mimics of one
such extracellular protein, collagen, to understand how spec-
ificity is maintained under such complex conditions.

Natural fibrous collagen is composed of three chains that
associate into a triple-stranded helix. Type 1 collagen (COL1),
a major component of skin and bone connective tissue, exists
as a heterotrimer, containing two strands coming from the
COL1A1 gene and one from the COL1A2 gene. This
heterospecificity is largely governed by interactions between
globular pro-domains which are cleaved during protein matu-
ration. However, peptide fragments of COL1 show preference
for heterotrimer formation in the absence of pro-domains
(Saccà et al. 2002) and it is possible to generate heterotrimers
composed of chains with three different sequences using net-
works of complementary charge pair interactions (Gauba and
Hartgerink 2007; Fallas et al. 2009).

Subsequently, we demonstrated that combining stability
and energy gap specificity as separate steps in a Monte
Carlo simulated annealing (MCSA) protocol could produce
an abc heterotrimer where assembly of a folded triple-helix
required the presence of all three peptides (Fig. 3) (Xu et al.
2010, 2011). The target abc was maintained by an extensive
network of interchain electrostatic interactions. Competing
states such as aaa, bbb, and ccc homotrimers, or aab, bbc
… heterotrimers were disfavored by repulsive electrostatic
interactions. Numerical simulations showed a clear tradeoff
between heterotrimer stability and specificity. The most stable
collagen peptide is rich in proline and hydroxyproline, cyclic

sidechain amino acids that provide conformational stability to
the collagen triple-helix. However, these lack the charge pair
interactions that promote specificity.

Each run of the MCSA on abc heterotrimers yielded a
unique design with similar values for the stability and speci-
ficity objectives. This high degeneracy in objective space led
us to consider a third objective: could multiple abc-type
heterotrimers assemble when present in the same solution,
i.e., could the complexity of the system be optimized within
the design constraints? Mimicking the natural process of pro-
tein circular permutation, we generated additional peptides e,
f, and g, which, when combined with a, b, and c, formed two
separate heterotrimers: abc + def (Xu et al. 2013). However,
the specificity was notably affected, suggesting an emerging
tradeoff between specificity and complexity.

A systematic computational analysis of complexity, stability,
and specificity demonstrates that complexity severely constrains
the specificity of association (Fig. 4). The abc and abc + def
designs lie on or near the apparent Pareto frontier, although the
shallow dependence of energy gap and stability suggest that
target stability could be increased without significant tradeoff
for specificity. Increasing the number of peptides beyond six
exhibits a significant tradeoff between complexity and specifici-
ty. Given that the number of states scales with the cube of the
number of peptide types, the observed tradeoff is not surprising.
Recently, we have applied a number of evolutionary and non-
evolutionary algorithms to exploring the Pareto frontier for the
12-peptide system (Belure et al. 2017). Algorithms such as SMS-
EMOA produce sets of non-dominated solutions, although rep-
lica exchange is also effective.

Conclusions

The collagen peptides provide a useful system for exploring
tradeoffs among various objectives in designing an interac-
tome of synthetic peptides. Notably, a similar constraint exists
in natural proteomes, where complexity is limited by non-
specific interactions between proteins (Tompa and Rose
2011), and measures of protein Bstickiness^ negatively corre-
late with expression levels (Levy et al. 2012). Nearly all pro-
tein design problems are either implicitly or explicitly multi-
objective, and the development of efficient algorithms for pro-
ducing a Pareto optimal set of sequences is an important goal.
A practical approach for addressing multiple objectives in
design would involve the synthesis and characterization of
sequences that span a significant portion of the Pareto frontier
in order to evaluate the relative importance of the multiple
objectives. Subsequent design would then focus on libraries
of solutions in a particular region of the frontier that represent
an effective balance of the various objectives.
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