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The copper-containing nitrite reductases (CuNIRs) are a class
of enzymes that mediate the reduction of nitrite to nitric oxide
in biological systems. Metal–ligand complexes that reproduce
the salient features of the active site of CuNIRs are therefore
of fundamental interest, both for elucidating the possible
mode of action of the enzymes and for developing biomimetic
catalysts for nitrite reduction. Herein, we describe the synthesis
and characterization of a new tris(2-pyridyl) copper complex
([Cu1(NO2)2]) that binds two molecules of nitrite, and displays
all three of the common binding modes for NO2

−, with
one nitrite bound in an asymmetric quasi-bidentate κ2-ONO
manner and the other bound in a monodentate fashion with
a linkage isomerism between the κ1-ONO and κ1-NO2 binding
modes. We use density functional theory to help rationalize the
presence of all three of these linkage isomers in one compound,
before assessing the redox activity of [Cu1(NO2)2]. These latter
studies show that the complex is not a competent nitrite
reduction electrocatalyst in non-aqueous solvent, even in the
presence of additional proton donors, a finding which may
have implications for the design of biomimetic catalysts for
nitrite reduction.

1. Introduction
The oxides of nitrogen are key constituents of the natural
nitrogen cycle. Of these nitrogen oxides, nitrite (NO2

−) occupies
arguably the most prominent position, being an intermediate
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Figure 1. The modes of binding of nitrite to metal centres discussed in this paper.

in a range of transformations between the various oxidation states of nitrogen [1]. The reduction of
nitrite to nitric oxide (NO) is one such transformation, which is a critical step during the process of
denitrification performed by a range of bacteria. The overall equation for this conversion is

NO2
− + e− + 2H+ → NO + H2O. (1.1)

Various classes of enzymes are involved in this transformation, based on haems, molybdenum and
copper [2]. In the case of Cu, the enzymes performing this reaction are known as the copper-containing
nitrite reductases (CuNIRs), and the reaction performed can therefore be written as

Cu(I) + NO2
− + 2H+ → Cu(II) + NO + H2O. (1.2)

The crystal structure of CuNIR (isolated from Achromobacter cycloclastes) was first reported by Adman
and co-workers in 1991 [3]. This and subsequent studies have revealed that the active site for nitrite
reduction consists of a Cu(II) ion coordinated by three histidine ligands and a single water molecule in
a distorted tetrahedral geometry [4]. During nitrite reduction, NO2

− is believed to displace water from
this complex and bind to the Cu(II) centre through both of its oxygen atoms (κ2-ONO binding mode;
figure 1), leading to a distorted square-based pyramidal geometry at the Cu [2,5]. Subsequent electron
transfer and protonation steps then lead to oxygen abstraction from the bound nitrite, NO liberation and
the regeneration of the Cu(II) complex in its water-bound form, ready to enter the catalytic cycle again
upon binding of additional nitrite [6,7].

The apparently rather simple active-site structure of CuNIR (a tripodal N-donor ligand which
supports a copper centre undergoing a one-electron redox reaction) has led numerous groups of
coordination chemists to attempt the synthesis of functional analogues of this enzyme [8–24]. Most of
these complexes bind only one molecule of nitrite, but Woollard-Shore et al. [20] have reported two
examples where two nitrite molecules are bound to a single Cu centre. In both of these examples, one
nitrite is bound to the metal through both its oxygen atoms (κ2-ONO), while the other nitrite binds
through a single oxygen (κ1-ONO). Lehnert and co-workers have also reported a series of copper
complexes that bind nitrite in both a monodentate and a bidentate fashion (including a di-κ1-ONO
complex and a κ1-ONO/κ1-NO2 complex) [25].

The discovery and investigation of more such binding mode isomers of tripodal N-donor copper
complexes is important, both from the standpoint of understanding how the natural enzymes work
and in terms of developing biomimetic copper catalysts for applications such as the removal of nitrite
from water streams [26] and NO-release systems for biomedical applications [27]. However, to the best
of our knowledge, no other examples of nitrite linkage isomerism in mononuclear copper complexes
incorporating tripodal N-donor ligands have been reported to date, and no examples where nitrite is
present in all three of its most common binding modes (κ1-NO2, κ1-ONO and κ2-ONO; figure 1) are
known at all.

Herein, we report the synthesis and characterization of a new copper complex which contains a
tripodal N-donor ligand (ligand 1) and two molecules of nitrite. This complex ([Cu1(NO2)2]) forms
immediately upon addition of nitrite to a solution of the precursor copper complex [Cu(1)2]2+, the
synthesis and characterization of which we also report. [Cu(1)2]2+ shares a common geometry with a
number of similar complexes reported in the 1990s by Jonas & Stack [28] although the effects of adding
nitrite to these previously reported complexes have hitherto not been documented. [Cu1(NO2)2] (whose
structure we determine by single crystal X-ray diffraction) displays all three common binding modes for
NO2

−, with one nitrite bound in an asymmetric quasi-bidentate κ2-ONO manner and the other bound
in a monodentate fashion with linkage isomerism between κ1-ONO and κ1-NO2 binding modes (with
approx. 0.62/0.38 occupancy, respectively). We use density functional theory (DFT) to help rationalize
the presence of all three of these linkage isomers in one compound, before assessing the redox activity
of [Cu1(NO2)2]. These latter studies show that the complex is not a competent nitrite electroreduction
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catalyst in non-aqueous solvent, even in the presence of additional proton donors, a finding which may
have implications for the design of biomimetic catalysts for nitrite reduction.

2. Experimental section
2.1. General experimental remarks
Unless otherwise stated, all syntheses were conducted under nitrogen in air- and moisture-free solvents
obtained from a commercial solvent purification system. Sodium hydride (60% dispersion in mineral oil),
methyl iodide (99%), [Cu(CH3CN)4]PF6 (97%), benzoic acid (99.5%) and tetrabutylammonium nitrite
(97%, TBA-NO2) were supplied by Sigma-Aldrich. Tetrabutylammonium hexafluorophosphate (TBA-
PF6) (98%) was obtained from Alfa Aesar. 6-methyl-tris(2-pyridyl)methanol was prepared according
to the published procedure [29].

All 1H and 13C NMR spectra were recorded on a Bruker AV 400 instrument, at a constant temperature
of 300 K. Chemical shifts are reported in parts per million from low to high field. Coupling constants
(J) are reported in hertz (Hz). Standard abbreviations indicating multiplicity were used as follows: m,
multiplet; d, doublet; s, singlet. UV–vis spectra were recorded on a JASCO V-670 spectrophotometer
using 1 cm path length cuvettes. CHN analyses were collected by the services facility at the School of
Chemistry, University of Glasgow, as were LM-MS mass spectra (ESI, positive mode, Bruker micrOTOF-
Q machine). IR spectra were collected in the solid state on a Shimadzu IRAffinity-1S Fourier Transform
Infrared Spectrophotometer. X-band electron paramagnetic resonance (EPR) spectra were recorded on a
Bruker ELEXSYS E500 Spectrometer and simulations were performed using Bruker’s Xsophe Program
Package [30]. Melting points were gauged using an Electrothermal IA 9000 digital melting point machine.
Experiments performed at ‘room temperature’ were carried out at 20°C. Electrochemical experiments
were performed as below.

2.2. Synthesis of ligand 1
6-methyl-tris(2-pyridyl)methanol (0.380 g, 1.37 mmol, 1 eq.) was dissolved in THF (7 ml) under nitrogen.
Meanwhile, a suspension of NaH (60% dispersion in mineral oil, 0.274 g, 6.85 mmol, 5 eq.) was prepared
in 25 ml THF under nitrogen. To this suspension, the solution of 6-methyl-tris(2-pyridyl)methanol was
then added via cannula, followed by 0.43 ml (0.972 g, 6.85 mmol, 5 eq.) of methyl iodide to give an off-
white suspension. The reaction mixture was then heated up to 60°C under nitrogen overnight, during
which time it was observed to turn orange. After cooling to room temperature, the reaction mixture was
diluted with 100 ml CHCl3 and then washed with water and then brine. The organic phase was dried
over MgSO4 to give a clear orange solution, which was concentrated in vacuo to yield a reddish-orange
oil. To this oil was added 25 ml acetonitrile and the resulting suspension was extracted with 25 ml of
pentane, whereupon two clear phases became evident: an upper colourless (pentane) layer and a lower
bright yellow (acetonitrile) layer. Collection of the acetonitrile layer after further washing with pentane
(2 × 25 ml) and concentration under reduced pressure then yielded compound 1 as an off-white solid
(0.373 g, 93%), m.p. = 101–103°C. Anal. calcd. for C18H17N3O: C 74.20, H 5.88, N 14.42. Found: C 73.80,
H 5.89, N 14.13. 1H NMR (CDCl3, 400 MHz), δ = 8.51–8.49 (m, 2H, Hf), 7.64 (dt, 2H, J1 = 7.8, J2 = 1.1, Hi),
7.58 (td, 2H, J1 = 7.2, J2 = 1.6, Hg or Hh), 7.47 (t, 1H, J = 7.6, Hb), 7.38 (d, 1H, J = 7.6, Ha or Hc), 7.09–7.05
(m, 2H, Hg or Hh), 6.93 (d, 1H, J = 7.6, Ha or Hc), 3.21 (s, 3H, He), 2.40 (s, 3H, Hd). Assignments of signals
to groups of protons are based on two-dimensional (COSY) spectra and the expected coupling patterns
of the peaks, although the symmetry of the molecule prevents unambiguous assignments. Letter codes
correspond to those shown in scheme 1. The 1H NMR spectrum of this compound is shown in electronic
supplementary material, figures S1 and S2. 13C NMR (CDCl3, 100 MHz), δ = 161.8, 160.6, 157.2, 148.4,
136.0, 135.8, 124.1, 121.8, 121.5, 120.8, 88.5, 53.0, 24.7. The 13C NMR spectrum of this compound is shown
in electronic supplementary material, figure S3. ESI-LMMS (methanol): m/z = 314.1257 [M + Na]+ (calcd.
for C18H17N3NaO; 314.1269). IR (solid state, cm−1) ν = 3066 (br), 2980 (w), 2956 (w), 2927 (m), 1583 (s),
1572 (s), 1461 (s), 1446 (s), 1435 (s), 1113 (s), 1081 (s), 985 (s), 802 (s), 771 (s), 751 (s).

2.3. Synthesis of complex [Cu(1)2](PF6)2
Free ligand 1 (0.260 g, 0.89 mmol, 1 eq.) was dissolved in acetonitrile (10 ml) under nitrogen. Meanwhile,
a solution of [Cu(CH3CN)4]PF6 (0.316 g, 0.85 mmol, 0.95 eq.) was prepared in 50 ml of acetonitrile under
nitrogen. The solution of compound 1 was then added to the solution of the copper salt dropwise over
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Scheme 1. The general synthetic route followed to synthesize ligand 1 and complex [Cu(1)2](PF6)2. Italic letters on the product structures
correspond to the 1H NMR signal assignments in the ‘Experimental section’.

30 min at room temperature, producing a bright yellow solution. After complete addition, the reaction
mixture was stirred for a further 90 min at room temperature, resulting in a yellow solution and a white
precipitate. The solution was then filtered under air, and the volume of the filtrate reduced by half.
Diethyl ether was then added to the filtrate. This yellow solution was subsequently sealed to prevent
evaporation of the solvents and allowed to stand at room temperature under air for two weeks. After this
time, the reaction mixture was observed to consist of a lilac solution and a blue-green precipitate. The
precipitate was removed by filtration and the purple filtrate concentrated in vacuo to yield [Cu(1)2](PF6)2
as a lilac solid (0.325 g, 80% based on ligand 1), m.p. = 200°C (dec.). Anal. calcd. for C36H34CuF12N6O2P2:
C 46.19, H 3.66, N 8.98. Found: C 46.35, H 3.63, N 9.05. ESI-LMMS (methanol): m/z = 354.0589 [Cu + 1]+
(calcd. for C18H17CuN3O; 354.0668); m/z = 322.5938 [Cu + (1)2]2+ (calcd. for C36H34CuN6O2; 322.6020).
IR (solid state, cm−1) ν = 3115 (vw, br), 2987 (vw, br), 1599 (m), 1573 (w), 1474 (m), 1451 (m), 1433 (m),
1092 (m), 830 (s), 762 (m). Absorption spectrum (acetonitrile): λmax, ε; 560 nm, 56 M−1 cm−1.

2.4. Synthesis of complex [Cu1(NO2)2]
To a solution of [Cu(1)2](PF6)2 (0.065 g, 0.069 mmol, 1 eq.) in acetonitrile (1 ml) was added a solution
of tetrabutylammonium nitrite (0.040 g, 0.14 mmol, 2 eq.) in acetonitrile (0.5 ml), giving a dark green
solution. After agitation for 5 min at room temperature, 12 ml of diethyl ether were added to the reaction
vessel, which was then sealed and stored at 4°C overnight. In the morning, large (1–2 mm) green,
column-shaped crystals were obtained, suitable for X-ray diffraction (see below). These crystals were
then washed with diethyl ether and dried at 120°C, giving [Cu1(NO2)2] as dark green crystals (0.022 g,
71%), m.p. = 215°C (dec.). Anal. calcd. for C18H17CuN5O5: C 48.38, H 3.83, N 15.67. Found: C 48.40, H
3.73, N 15.12. ESI-LMMS (acetonitrile): m/z = 354.0564 [Cu + 1]+ (calcd. for C18H17CuN3O; 354.0668). IR
(solid state, cm−1) ν = 3117 (br), 1597 (s), 1451 (m), 1437 (m), 1373 (s), 1327 (m), 1128 (s), 1087 (s), 1025
(m), 772 (s), 657 (s). Absorption spectrum (acetonitrile): λmax, ε; 643 nm, 120 M−1 cm−1.

2.5. Electrochemical methods
Electrochemical studies were performed in a single-chamber cell with a three-electrode configuration
using a CH Instruments CHI700 series potentiostat. The supporting electrolyte was 0.1 M TBA-
PF6 in acetonitrile. A large surface area strip of carbon felt (Alfa Aesar) was used as the counter
electrode, along with an Ag/AgNO3 pseudo-reference electrode. Potentials are reported relative to
the ferrocenium/ferrocene couple, the position of which was judged by adding ferrocene to the
samples analysed. Working electrodes were washed with acetone and deionized water prior to use.
Cyclic voltammograms were collected at room temperature under an atmosphere of Ar at a scan rate
of 100 mV s−1. A glassy carbon disc electrode (area = 0.071 cm2, CH Instruments) was used as the
working electrode for cyclic voltammetry. Measurements were conducted without stirring and with iR
compensation enabled.

2.6. Computational methods
All calculations were performed with the program Gaussian 09 [31] at the DFT level. The M06-L
exchange–correlation functional was used, [32] which is a pure functional of the meta-GGA type,
which has been shown to perform well for transition-metal complexes [33,34]. The def2-TZVP basis
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set was used, [35] with the ‘W06’ auxiliary basis for density fitting [36]. The effect of exact exchange
was gauged by comparing to the M06 functional, [37] which is a hybrid meta-GGA with 27% exact-
exchange admixture. No significant differences in structures, energies or spin density distributions
were found. Interestingly, however, vibrational frequencies calculated with M06 were blue-shifted
by as much as 80 cm–1 compared with M06-L. Modes involving N–O stretching were particularly
strongly affected. The agreement with experiment was significantly better for the M06-L frequencies.
All computational results reported in the paper were therefore obtained with M06-L/def2-TZVP; data
obtained with M06 are available via the University of Glasgow’s open access online data repository
[38]. All structures were fully optimized; stationary points were identified as minima by the absence of
imaginary frequencies. Gibbs free energies were calculated based on the usual harmonic-oscillator/rigid-
rotor/ideal-gas approximation at 298.15 K and 101.325 kPa. Structures were manipulated and visualized
with the programs Avogadro [39,40], Jmol [41] and ChemCraft [42].

2.7. Crystallography
Crystallographic data were collected at the University of Glasgow on a Bruker APEX-II CCD
diffractometer. A green, column-shaped crystal of dimensions 0.46 × 0.1 × 0.06 mm was used for single
crystal X-ray diffraction data collection. C18H17CuN5O5 crystallized in the triclinic space group P − 1
(space group No. 2), with unit cell dimensions a = 8.7123 (17), b = 8.7388 (17), c = 14.342 (3), α = 72.586
(4)°, β = 73.955 (4)°, γ = 62.928 (4)° and V = 915.0 (3) Å3, T = 100 K. In total, 15 440 reflections were
measured by ω scans, with 3197 independent reflections with Rint = 0.079, θmax = 25.0°, θmin = 1.5° using
Mo Kα radiation, λ = 0.71073 Å. The structure was solved using SHELXS and refined using SHELXL
(both within OLEX2) [43,44]. OLEX2 was also used for molecular graphics and to prepare material for
publication. CCDC 1547352 contains the supplementary crystallographic data for this paper. More details
on the crystallographic data and its collection can be found in the electronic supplementary material.

3. Results and discussion
3.1. Synthesis of ligand 1 and complex [Cu(1)2](PF6)2
A general route to the synthesis of ligand 1 and copper complex [Cu(1)2](PF6)2 is given in scheme 1.
Hence, deprotonation of 6-methyl-tris(2-pyridyl)methanol [29] with NaH followed by methylation
with methyl iodide yielded the free ligand (1) in excellent yield after purification. Compound 1 was
methylated in this way in order to prevent any coordination of the alcohol group to the metal centre,
which it was feared might interfere in the subsequent binding of the metal centre to any small molecule
ligands that were subsequently added.

After methylation, copper was then inserted into ligand 1 by stirring the free ligand with
[Cu(CH3CN)4]PF6 at room temperature. Subsequent exposure to air then yielded the purple complex
[Cu(1)2](PF6)2. The electronic absorption spectrum of this complex (figure 2a, black line) showed strong
similarities to that reported for the analogous complex (containing an -OMe substituent on the pyridyl
ring in place of the methyl substituent) reported previously by Jonas & Stack ([Cu(1)2]2+ displays λmax

at 560 nm, with an extinction coefficient of 56 M−1 cm−1, while the -OMe derivative has λmax = 580 nm
with ε = 57 M−1 cm−1) [28]. The position of the absorption maximum for this transition at a value well
below 600 nm was previously rationalized on the basis of the Jahn–Teller distortion which is expected
for a d9 Cu(II) ion ligated by six almost equivalent ligands. This distortion, it was argued, should lead
to ligand field transitions at higher energies as the distortion away from octahedral geometry becomes
greater (and as the Cu−N bonds in the equatorial plane therefore become shorter). A λmax value of
560 nm therefore corresponds to a complex in which the geometry is significantly distorted away from
octahedral symmetry. To obtain further insight into the nature of the geometry around the copper
centre in [Cu(1)2]2+, EPR spectroscopy was performed on [Cu(1)2](PF6)2. The fluid solution spectrum in
acetonitrile (inset to figure 2b) is centred at giso = 2.109 and exhibits the classic four-line signal for Cu(II),
with a coupling of 71.4 × 10–4 cm–1 to the 63,65Cu isotopes (I = 3/2; 100% abundant). At the high-field
end of the spectrum, where molecular tumbling affords the narrowest linewidth, additional hyperfine
splittings are observed. The spectrum was well reproduced by including a superhyperfine coupling of
13.1 × 10–4 cm–1 to four 14N nuclei (I = 1, 99.7% abundant)—two from each of the tripodal ligands that
constitute the donor atoms to the singly occupied dx2−y2 orbital.

A frozen solution spectrum was recorded in an acetonitrile/dichloromethane glass at 130 K (figure 2b,
main panel). This has the signature axial profile of a Cu(II) d9 ion with a 2B1 ground state, with
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Figure 2. (a) UV–vis spectra of complex [Cu(1)2](PF6)2 in acetonitrile (black line) and of this complex after addition of 10 equivalents of
TBA-NO2, yielding [Cu1(NO2)2] (red line). (b) TheX-bandEPR spectrumof [Cu(1)2](PF6)2 recorded in acetonitrile/dichloromethane solution
at 130 K (conditions: frequency, 9.4201 GHz; power, 2.0 mW; modulation, 0.2 mT). Experimental data are represented by the black line
and the simulation is depicted by the red trace; simulation parameters are given in the text. The inset shows the fluid solution spectrum
at 293 K (experimental conditions: frequency, 9.854 GHz; power, 10 mW; modulation, 0.5 mT).

g|| > g⊥ > ge (free electron g-value) and A|| � A⊥. The simulation gave spin-Hamiltonian parameters:
g = (2.057, 2.058, 2.227); A{63,65Cu} = (10, 10, 193) × 10–4 cm–1; A{14N} = (13, 13, 12) × 10–4 cm–1. Although
the superhyperfine coupling from the 14N nuclei was less than the experimental linewidth, it was
nonetheless included and approximated by matching the average value to the one obtained from the
isotropic spectrum. There is a slight drift away from strict axial symmetry, with the best fit obtained
with inequivalent gx and gy values. This stems from the methylation of one pyridyl arm in 1. The
spectral profile is near-identical to that reported by Jonas & Stack [28] for their analogous complex
with methoxylated pyridyl groups, and is typical of complexes of Cu(II) in five-coordinate and distorted
octahedral geometries with pyridyl ligands [45–47].

3.2. Synthesis and structure of complex [Cu1(NO2)2]
Upon addition of nitrite to [Cu(1)2](PF6)2, the complex undergoes rapid reaction as signalled by an
immediate colour change from lilac to bottle-green. Hence, when 10 equivalents of tetrabutylammonium
nitrite (TBA-NO2) were added to a 1.2 mM solution of [Cu(1)2](PF6)2 in acetonitrile, the colour change
was instantaneous and gave rise to the absorption spectrum shown as the red line in figure 2a
(λmax = 643 nm, ε = 120 M−1 cm−1). This reaction was repeated on a preparative scale, allowing green
crystals of [Cu1(NO2)2] to be obtained by vapour diffusion of diethyl ether into an acetonitrile solution
of [Cu1(NO2)2]. These crystals then proved suitable for X-ray diffraction (figure 3).

The crystal structure of [Cu1(NO2)2] shows the copper centre to be coordinated octahedrally, with
three Cu−N bonds to the pyridine moieties in ligand 1 and a further three bonds between the Cu centre
and two nitrite anions. The Cu–N bond lengths between the Cu and the nitrogen donors in ligand 1 are:
Cu–N1 = 2.122(3), Cu–N2 = 2.009(3) and Cu–N3 = 2.169(4) Å, which are in reasonable agreement with
the distances reported previously by Tanaka and co-workers for Cu(II)-tris(2-pyridyl) complexes with
only one bound nitrite [48,49] and Kodera et al. [50] for Cu(II)-tris(2-pyridyl) complexes featuring two
bound bromides.

More interestingly, the structure also displays isomerism in the two bound nitrite ligands. The first
nitrite (defined by nitrogen N1A/N1B and oxygens O1A/O1B and O2A/O2B) is bound to the Cu(II)
centre in an asymmetric quasi-bidentate manner with some disorder in the bond lengths, reminiscent of
that observed by Lehnert and co-workers [25]. This disorder comes about as a result of the two Cu−O
bond lengths being slightly different in the two isomers, which have N1A/B occupancies in a ratio
of approximately 0.55 : 0.45. For example, the Cu−O1B bond length is 2.010(18) Å, while the Cu−O2B
distance is considerably longer at 2.66(2) Å. Similar quasi-bidentate interactions of nitrite with a Cu(II)
centre in a tris(2-pyridyl) complex have previously been reported by Woollard-Shore et al. [20] who found
a long Cu−O interaction of 2.5620 Å.
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Figure 3. The crystal structure of [Cu1(NO2)2]. Crystallographic details can be found in the electronic supplementary material. Colour
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Figure 4. Chemical structures of the linkage isomers observed by single crystal X-ray diffraction of [Cu1(NO2)2]. These structures are
based on the crystallographic data summarized in figure 3.

The second nitrite in the structure (defined by nitrogen N2A/N2B and oxygens O3A/O3B and O4A)
is bound in a monodentate fashion. Again, however, there is disorder in the nature of this binding,
this time a linkage isomerization between κ1-ONO and κ1-NO2 binding modes (with approx. 0.62/0.38
occupancy, respectively). The structure of the O-bound isomer is shown on the left-hand side of figure 4.
Such a combination of κ1-ONO and quasi-κ2-ONO binding modes for nitrite ligands on Cu(II)-tris(2-
pyridyl) complexes has been reported before by Woollard-Shore et al. [20]. In our case, the coordinating
oxygen (O3A) displays a Cu−O3A bond length of 1.922(5) Å and unequal N−O bond lengths within
the κ1-bound nitrite of O3A–N2A = 1.227(8) Å and O4A–N2A = 1.171(7) Å. These compare to a Cu−O
coordination bond of length 1.9701(17) Å and internal N−O bond lengths of 1.290(3) and 1.221(3)Å in the
previously reported structure [20].
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metal–donor distances are given in Å.

The second linkage isomer (see the κ1-NO2 structure on the right-hand side of figure 4) evinces a
Cu1−N2B bond length of 2.147(14) Å and more equal internal bond lengths (O3B−N2B = 1.249(12) and
O4A−N2B = 1.276(12) Å) when compared with the κ1-ONO linkage isomer. The presence of both quasi-
κ2-bound and κ1-bound nitrite isomers, together with further isomerism in the linkage of the κ1-bound
isomers is, to the best of our knowledge, unprecedented for copper complexes (although Raithby and
co-workers have reported such behaviour for nickel(II) complexes with tripodal N,N,N-donor ligands
[51–54]).

To clarify the energetic and electronic aspects of the two types of isomerism and to analyse the
structures of the different forms, we undertook a series of DFT calculations. There are four isomeric
forms to consider: both of the κ1-bound linkage isomers (κ1-ONO and κ1-NO2) can exist in two forms,
depending on which of the Cu–O bonds of the quasi-chelating κ2-ONO ligand is short or long. Because
these two forms are de facto enantiomeric (but for the methyl groups, which are remote from the metal
centre), they are energetically degenerate for all intents and purposes, which is consistent with the
approximately 1 : 1 occupancy in the X-ray structure. It is, therefore, sufficient to consider in the following
only one form of each of these linkage isomers.

As can be seen from figure 5, the corresponding copper–donor distances for the two linkage isomers
are very similar. The quasi-chelating κ2-ONO ligand is bound asymmetrically, with one short and one
long Cu–O interaction, as seen in the X-ray structure. This asymmetry in the coordination is mirrored in
the Cu–Npyr distances trans to the bidentate nitrite: the two short Cu–N/O bonds are (approx.) trans to
each other, as are the two long ones. This feature is not apparent from the X-ray structure, where these
Cu–Npyr bonds have similar lengths (2.12 and 2.17 Å) and the nitrogens have unique positions. Such
asymmetry in the coordination is expected for an octahedral d9 system: the two long Cu–N/O bonds
define the Jahn–Teller axis, along which the octahedron is tetragonally distorted (elongated).

Looking at the spin density distributions and Mulliken spin populations for the two linkage isomers
(figure 6), there is again very little difference between them. In essence, around half of the spin of one
electron is localized on the metal and approximately 0.2 of the spin of one electron is localized on each
of the nitrite ligands. The nitrites therefore carry a significant fraction of the unpaired spin density. The
shape of the spin density on copper is clearly recognizable as that corresponding to the dx2−y2 orbital,
which is the SOMO in these complexes (noting that the Jahn–Teller axis is taken to be the z-axis by
definition).

The two linkage isomers are nearly energetically degenerate. The κ2-ONO, κ1-NO2 isomer is
calculated to be less stable than the κ2-ONO, κ1-ONO isomer by 4 kJ mol–1 in terms of potential energy
and just 1 kJ mol–1 in terms of Gibbs free energy. The small energy difference is consistent with the
concurrent presence of both isomers in the crystal in approximately equal proportion. Similarly, small
energy differences between O- and N-coordinated nitrite isomers have been reported before by Lehnert
and co-workers for their series of Cu complexes [25].

The infrared spectrum of [Cu1(NO2)2] reveals a number of peaks that fall in the frequency range
characteristic of bound nitrite. However, the assignment of these is complicated by the fact that several
of these bands (bands 1, 2 and 6 in figure 7) overlap with bands exhibited by ligand 1 and [Cu(1)2](PF6)2
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Figure 7. Experimental (red line) and calculated (blue line) infrared spectra of [Cu1(NO2)2] and a depiction of the various N–O stretching
modes that are possible. Number labels on the calculated spectrum correspond to the stretches discussed in the main text below
(the calculated spectrum is the sum of the spectra for the two linkage isomers and has been shifted by –40 cm–1). See electronic
supplementary material, figure S4 for deconvoluted calculated spectra for the two linkage isomers.

(see ‘Experimental section’). Hence, only the bands at 1373, 1327 and 1131 cm−1 (labels 3, 4 and 5,
respectively) are present in the infrared spectrum of [Cu1(NO2)2] but not in the spectra of ligand 1 and
[Cu(1)2](PF6)2.

Based on the literature, two alternatives then exist for the assignment of these bands. In the first
scenario, the bands at 1373 and 1131 cm−1 emanate from terminal and internal N–O stretches of O-
bound nitrite, respectively [48]. Meanwhile, the band at 1327 cm−1 is assigned to the κ1-NO2 symmetric
stretching mode [20]. In the second scenario, the two bands at 1373 and 1327 cm−1 are assigned to
terminal N–O stretches from O-bound nitrites, and now the band at 1131 cm−1 is assigned to the κ1-NO2
symmetric stretching mode [25]. Our calculated vibrational data suggest that perhaps the first scenario
is the more likely. Taking into account that the M06-L functional somewhat overestimates vibrational
frequencies (especially modes involving N–O stretching), we predict that the κ1-NO2 symmetric stretch
should appear between 1340 and 1300 cm−1. Furthermore, we predict that a terminal N–O stretch from
κ2O-bound nitrite should manifest between 1400 and 1354 cm−1, with an internal N–O stretch from this
O-bound nitrite featuring between 1203 and 1158 cm−1. Regardless, however, of which of these scenarios
is more correct, both scenarios agree that nitrite is present in [Cu1(NO2)2] in both N-bound and O-bound
forms, in agreement with the X-ray diffraction data.

The EPR spectrum of [Cu1(NO2)2] in acetonitrile (figure 8) showed a shift of the resonant field position
to the lower field and a concomitant decrease in the 63,65Cu hyperfine coupling constant. The line
broadening compared with [Cu(1)2](PF6)2 is a consequence of perturbed molecular tumbling relative
to the timescale of the experiment and therefore any superhyperfine features indicating the N-donor
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power, 10 mW; modulation, 0.5 mT). Experimental data are represented by the black line; the simulation is depicted by the red trace.

ligands in the first coordination sphere were obscured. The spectrum was simulated with giso = 2.132
and Aiso = 63 × 10–4 cm–1. The smaller Cu hyperfine coupling reveals less spin density localized on the
Cu centre, consistent with a six-coordinate complex. A frozen solution spectrum of this complex recorded
in an acetonitrile/dichloromethane glass at 130 K is shown in the electronic supplementary material,
figure S5.

3.3. Redox activity of [Cu1(NO2)2] and nitrite electroreduction studies
On account of the known nitrite electroreduction activity of allied Cu-tris(2-pyridyl) complexes
[22,23,48], we hypothesized that [Cu1(NO2)2] might also be active for this transformation. Initially,
cyclic voltammetry was performed on a nitrite-free solution of [Cu(1)2](PF6)2 in acetonitrile containing
0.1 M tetrabutylammonium hexafluorophosphate (TBA-PF6) as the supporting electrolyte. This evinced
a reduction process centred at around −0.5 V (versus the ferrocenium/ferrocene couple), which we
attribute to reduction of the Cu(II) centre to the Cu(I) oxidation state by analogy to previous studies of
such complexes in non-aqueous solvents (black trace in figure 9a) [28]. However, this redox event is only
quasi-reversible, with the re-oxidation event occurring over a rather broad range and with considerable
separation between the cathodic and anodic peaks. Such behaviour has been noted previously for
complexes consisting of two tripodal ligands coordinated to one Cu(II) centre [28] and would be
consistent with extensive ligand rearrangements taking place as a result of reduction and re-oxidation
of the copper centre. Hence, reduction of the Cu(II) centre in [Cu(1)2]2+ would produce a Cu(I) centre,
which would be likely to exist preferentially in a tetrahedral coordination environment. Hence, loss of
one of the bound tripodal ligands may occur or both of the tripodal ligands may remain bound but
undergo significant rearrangements as a result of reduction. Re-oxidation would then require a change
in geometry back to a higher coordination number. Such a scenario would also be consistent with the
reproducible nature of the CVs of [Cu(1)2]2+ under these conditions: repeated cycling over the range
shown by the black trace in figure 9a does not lead to any decrease in the signal or alteration in the shape
of the voltammogram, consistent with slow ligand rearrangements that accommodate the preferred
coordination geometry of these two oxidation states of copper [28].

Upon addition of two equivalents of a soluble nitrite source to [Cu(1)2]2+, the colour of the solution
turns from lilac to green (indicating the formation of [Cu1(NO2)2]) and the redox wave attributed to
the Cu(II)/Cu(I) couple appears to shift to slightly more anodic potentials, as shown by the red trace in
figure 9a. Upon addition of excess nitrite, the Cu(II)/Cu(I) couple becomes less well defined (black trace
in figure 9b). Meanwhile, the oxidation events that were evident upon the addition of two equivalents
of nitrite (at 0 V and above) become more pronounced. However, these oxidation events seem to be due
mainly to the background oxidation of nitrite as indicated by the red trace in figure 9b, which shows that
these waves are present when the nitrite salt is dissolved in the electrolyte in the absence of any copper
complex.

Further additions of nitrite to solutions of [Cu1(NO2)2] show an increase in the wave corresponding
to background nitrite oxidation, but do not show any catalytic waves that could be attributed to the
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reduction of nitrite (figure 10a, black trace). Hence, we concluded that no electrocatalytic reduction of
nitrite as a result of the presence of our copper complex was occurring under these conditions. This is
perhaps not unexpected, as equations (1.1) and (1.2) clearly show that the most probable nitrite reduction
reactions all require protons. We therefore attempted to switch on electrocatalysis in our system by
the addition of a soluble proton source (in this case, benzoic acid). Tripodal copper complexes have
previously been used to demonstrate nitrite electroreduction to NO in aqueous solution, and these
studies have shown that nitrite reduction does not occur at pH values above 9, on account of the dearth
of protons [22,23,48]. There was, therefore, good reason to suppose that addition of an external proton
source would be efficacious in our case. However, the red trace in figure 10a shows that adding 20
equivalents of benzoic acid to a solution containing 20 equivalents of nitrite and one equivalent of
copper complex fails to produce any reductive features that could be interpreted as a catalytic wave.
Indeed, figure 10b shows an overlay of the red trace from figure 10a with the CV displayed by the
[Cu(1)2]2+ ion on its own, without any nitrite or benzoic acid present. This clearly shows that there
is no reductive activity in the presence of nitrite and benzoic acid that exceeds in magnitude the current
for the reduction of the complex alone. On this basis, we are forced to conclude that [Cu1(NO2)2] is not
an active electrocatalyst for nitrite reduction under these conditions, even in the presence of an external
proton source.
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4. Conclusion
In summary, we have reported the synthesis and characterization of the first example of a copper complex
([Cu1(NO2)2]) containing all three of the most common binding modes for nitrite (κ2-ONO, κ1-ONO
and κ1-NO2), as confirmed by single crystal X-ray diffraction. Furthermore, the diffraction data indicate
that the relative populations of species containing κ1-ONO and κ1-NO2 linkages are around 0.62 and
0.38, respectively. Using DFT, we then rationalize the appearance of both of these linkage isomers in
the same compound on the basis of the very small difference in energy between these two forms. The
solution-phase behaviour of [Cu1(NO2)2] (probed by EPR and UV–vis spectroscopy) also suggests that
the copper centre is bound to two nitrites. However, electrochemical studies reveal that [Cu1(NO2)2] is
not a competent nitrite reduction electrocatalyst in acetonitrile, even in the presence of additional proton
donors. This was a surprise to us, given that analogous complexes have been reported to perform this
transformation in aqueous environments. The lack of reactivity in our case therefore warrants further
investigation, with the inclusion on the tripodal ligand of pendant acid–base units that can mediate
proton-coupled-electron transfer [55] being one such avenue that we will explore.
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